organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bi­cyclo­[2.2.2]oct-7-ene-2,3,5,6-tetra­carboxylic dianhydride

aDepartment of Chemistry, North University of China, Taiyuan, Shanxi 030051, People's Republic of China
*Correspondence e-mail: hutuopingsx@yahoo.com.cn

(Received 5 April 2008; accepted 29 April 2008; online 10 May 2008)

In the title compound, C12H8O6, mol­ecules are linked by weak C—H⋯O inter­actions involving all the potential donors, generating a three-dimensional network.

[Scheme 1]

Experimental

Crystal data
  • C12H8O6

  • Mr = 248.18

  • Monoclinic, P 21 /n

  • a = 7.627 (2) Å

  • b = 13.877 (3) Å

  • c = 9.823 (2) Å

  • β = 100.68 (2)°

  • V = 1021.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 296 (2) K

  • 0.28 × 0.16 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.921, Tmax = 0.987

  • 11412 measured reflections

  • 2119 independent reflections

  • 1460 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.099

  • S = 1.01

  • 2118 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O2i 0.98 2.50 3.313 (3) 140
C8—H8⋯O3ii 0.98 2.58 3.175 (2) 119
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The molecule of the title complex, (I) (Fig. 1), is neutral. Molecules are linked by C—H···O weak interactions involving all the potential donors, generating a three-dimensional network, as shown in Fig. 2. No conventional hydrogen bonding was found in the structure.

Related literature top

Please supply any relevant related literature.

Experimental top

The title compound was obtained unintentionally as the product of an attempted synthesis of a polymeric network complex of znic with the bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic acid. The title compound (0.4 mmol) and Zn(NO3)2. 6H2O (0.2 mmol) were dissolved in 15 ml distilled water, to which 2 drops of H3PO4 (w.t. 18%) was added. The solution was put into the oven at 50 centigrade degree for 1 day. Colourless prism crystals were collected by filtration.

Refinement top

H atoms were positioned geometrically and refined using a riding model with C—H = 0.980 Å and 0.930 Å, respectively, with Uiso(H) = 1.2 times Ueq(C). Reflection -111 was omitted because it was eclipsed by the beam stop.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SMART (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram viewed down the a axis.
Bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride top
Crystal data top
C12H8O6F(000) = 512
Mr = 248.18Dx = 1.613 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2677 reflections
a = 7.627 (2) Åθ = 2.9–24.1°
b = 13.877 (3) ŵ = 0.13 mm1
c = 9.823 (2) ÅT = 296 K
β = 100.68 (2)°Prism, colourless
V = 1021.7 (4) Å30.28 × 0.16 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2119 independent reflections
Radiation source: fine-focus sealed tube1460 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ϕ and ω scansθmax = 26.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.921, Tmax = 0.987k = 1715
11412 measured reflectionsl = 1112
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0334P)2 + 0.3914P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2118 reflectionsΔρmax = 0.21 e Å3
164 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.005 (1)
Crystal data top
C12H8O6V = 1021.7 (4) Å3
Mr = 248.18Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.627 (2) ŵ = 0.13 mm1
b = 13.877 (3) ÅT = 296 K
c = 9.823 (2) Å0.28 × 0.16 × 0.10 mm
β = 100.68 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2119 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1460 reflections with I > 2σ(I)
Tmin = 0.921, Tmax = 0.987Rint = 0.051
11412 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.01Δρmax = 0.21 e Å3
2118 reflectionsΔρmin = 0.16 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7820 (3)0.83700 (16)0.6304 (2)0.0449 (5)
C20.5829 (2)0.84372 (13)0.61717 (19)0.0355 (4)
H20.52390.83810.52000.043*
C30.5305 (2)0.93909 (13)0.68048 (19)0.0350 (4)
H30.56460.99520.63070.042*
C40.3256 (2)0.93415 (13)0.67248 (18)0.0344 (4)
H40.26330.93010.57600.041*
C50.2627 (3)1.01999 (15)0.7435 (2)0.0416 (5)
C60.1858 (3)0.89126 (15)0.8635 (2)0.0434 (5)
C70.2788 (2)0.84782 (13)0.75613 (18)0.0352 (4)
H70.19840.80390.69620.042*
C80.4506 (2)0.79445 (13)0.82409 (18)0.0354 (4)
H80.42510.74130.88310.042*
C90.5347 (2)0.75817 (13)0.70190 (19)0.0358 (4)
H90.45260.71450.64290.043*
C100.7097 (3)0.70890 (16)0.7535 (2)0.0462 (5)
C110.5767 (2)0.86683 (14)0.90425 (19)0.0392 (5)
H110.62210.86020.99840.047*
C120.6180 (2)0.94061 (14)0.83043 (19)0.0394 (5)
H120.69510.98950.86860.047*
O10.88296 (19)0.89053 (13)0.58906 (17)0.0638 (5)
O20.7409 (2)0.64134 (12)0.82843 (18)0.0681 (5)
O30.2829 (2)1.10382 (11)0.72476 (16)0.0596 (4)
O40.1289 (2)0.85316 (12)0.95463 (16)0.0629 (5)
O50.84589 (17)0.75576 (11)0.70513 (15)0.0537 (4)
O60.17498 (18)0.99043 (10)0.84767 (14)0.0485 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0359 (11)0.0528 (13)0.0462 (12)0.0033 (10)0.0079 (9)0.0067 (10)
C20.0311 (9)0.0378 (11)0.0373 (10)0.0016 (8)0.0054 (7)0.0023 (8)
C30.0334 (9)0.0298 (10)0.0422 (10)0.0030 (8)0.0076 (8)0.0016 (8)
C40.0337 (9)0.0331 (10)0.0351 (9)0.0039 (8)0.0031 (7)0.0014 (8)
C50.0405 (11)0.0389 (12)0.0429 (11)0.0098 (9)0.0018 (9)0.0003 (9)
C60.0355 (10)0.0470 (13)0.0482 (12)0.0008 (9)0.0089 (9)0.0024 (10)
C70.0313 (9)0.0327 (11)0.0411 (10)0.0025 (8)0.0052 (8)0.0035 (8)
C80.0375 (10)0.0297 (10)0.0390 (10)0.0002 (8)0.0070 (8)0.0033 (8)
C90.0328 (9)0.0309 (10)0.0423 (10)0.0017 (8)0.0033 (8)0.0024 (8)
C100.0455 (12)0.0419 (13)0.0490 (12)0.0112 (10)0.0031 (9)0.0021 (10)
C110.0386 (10)0.0415 (11)0.0353 (10)0.0047 (9)0.0013 (8)0.0021 (9)
C120.0349 (10)0.0369 (11)0.0448 (11)0.0035 (8)0.0034 (8)0.0078 (9)
O10.0392 (8)0.0791 (12)0.0768 (11)0.0069 (8)0.0205 (8)0.0052 (9)
O20.0689 (11)0.0550 (10)0.0784 (11)0.0261 (8)0.0083 (9)0.0170 (9)
O30.0726 (11)0.0345 (9)0.0716 (11)0.0137 (7)0.0131 (8)0.0022 (8)
O40.0655 (10)0.0696 (11)0.0616 (10)0.0019 (8)0.0328 (8)0.0038 (8)
O50.0326 (7)0.0582 (10)0.0685 (10)0.0107 (7)0.0044 (7)0.0018 (8)
O60.0500 (8)0.0464 (9)0.0516 (8)0.0096 (6)0.0161 (7)0.0056 (7)
Geometric parameters (Å, º) top
C1—O11.194 (2)C6—O61.386 (2)
C1—O51.384 (2)C6—C71.502 (3)
C1—C21.503 (3)C7—C81.545 (2)
C2—C91.533 (3)C7—H70.9800
C2—C31.546 (3)C8—C111.508 (3)
C2—H20.9800C8—C91.546 (3)
C3—C121.500 (3)C8—H80.9800
C3—C41.551 (2)C9—C101.502 (3)
C3—H30.9800C9—H90.9800
C4—C51.504 (3)C10—O21.188 (2)
C4—C71.532 (3)C10—O51.382 (3)
C4—H40.9800C11—C121.326 (3)
C5—O31.192 (2)C11—H110.9300
C5—O61.384 (2)C12—H120.9300
C6—O41.189 (2)
O1—C1—O5120.12 (18)C6—C7—C8111.21 (15)
O1—C1—C2129.6 (2)C4—C7—C8110.07 (15)
O5—C1—C2110.29 (18)C6—C7—H7110.3
C1—C2—C9104.20 (15)C4—C7—H7110.3
C1—C2—C3110.54 (15)C8—C7—H7110.3
C9—C2—C3109.79 (15)C11—C8—C7108.31 (15)
C1—C2—H2110.7C11—C8—C9107.83 (15)
C9—C2—H2110.7C7—C8—C9105.15 (14)
C3—C2—H2110.7C11—C8—H8111.7
C12—C3—C2107.81 (15)C7—C8—H8111.7
C12—C3—C4108.10 (15)C9—C8—H8111.7
C2—C3—C4105.96 (14)C10—C9—C2104.37 (15)
C12—C3—H3111.6C10—C9—C8110.90 (15)
C2—C3—H3111.6C2—C9—C8110.18 (14)
C4—C3—H3111.6C10—C9—H9110.4
C5—C4—C7104.15 (16)C2—C9—H9110.4
C5—C4—C3110.29 (15)C8—C9—H9110.4
C7—C4—C3109.89 (14)O2—C10—O5120.48 (18)
C5—C4—H4110.8O2—C10—C9129.2 (2)
C7—C4—H4110.8O5—C10—C9110.31 (17)
C3—C4—H4110.8C12—C11—C8114.96 (16)
O3—C5—O6119.82 (19)C12—C11—H11122.5
O3—C5—C4129.8 (2)C8—C11—H11122.5
O6—C5—C4110.36 (17)C11—C12—C3114.75 (17)
O4—C6—O6120.26 (19)C11—C12—H12122.6
O4—C6—C7129.5 (2)C3—C12—H12122.6
O6—C6—C7110.22 (17)C10—O5—C1110.67 (15)
C6—C7—C4104.49 (15)C5—O6—C6110.52 (16)
O1—C1—C2—C9175.3 (2)C4—C7—C8—C962.20 (17)
O5—C1—C2—C93.2 (2)C1—C2—C9—C101.16 (19)
O1—C1—C2—C357.4 (3)C3—C2—C9—C10119.57 (16)
O5—C1—C2—C3121.13 (17)C1—C2—C9—C8117.95 (15)
C1—C2—C3—C1259.7 (2)C3—C2—C9—C80.46 (19)
C9—C2—C3—C1254.68 (18)C11—C8—C9—C1061.6 (2)
C1—C2—C3—C4175.28 (15)C7—C8—C9—C10176.98 (15)
C9—C2—C3—C460.87 (18)C11—C8—C9—C253.47 (18)
C12—C3—C4—C559.5 (2)C7—C8—C9—C261.93 (17)
C2—C3—C4—C5174.86 (15)C2—C9—C10—O2176.5 (2)
C12—C3—C4—C754.75 (19)C8—C9—C10—O257.9 (3)
C2—C3—C4—C760.60 (18)C2—C9—C10—O51.2 (2)
C7—C4—C5—O3172.72 (19)C8—C9—C10—O5119.86 (17)
C3—C4—C5—O354.9 (3)C7—C8—C11—C1256.8 (2)
C7—C4—C5—O64.85 (19)C9—C8—C11—C1256.5 (2)
C3—C4—C5—O6122.71 (16)C8—C11—C12—C30.4 (2)
O4—C6—C7—C4177.8 (2)C2—C3—C12—C1157.5 (2)
O6—C6—C7—C40.55 (19)C4—C3—C12—C1156.6 (2)
O4—C6—C7—C859.1 (3)O2—C10—O5—C1174.58 (19)
O6—C6—C7—C8119.27 (16)C9—C10—O5—C13.4 (2)
C5—C4—C7—C62.49 (18)O1—C1—O5—C10174.51 (19)
C3—C4—C7—C6120.62 (15)C2—C1—O5—C104.2 (2)
C5—C4—C7—C8117.01 (16)O3—C5—O6—C6172.38 (18)
C3—C4—C7—C81.1 (2)C4—C5—O6—C65.5 (2)
C6—C7—C8—C1162.4 (2)O4—C6—O6—C5174.79 (18)
C4—C7—C8—C1152.87 (19)C7—C6—O6—C53.7 (2)
C6—C7—C8—C9177.52 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.982.503.313 (3)140
C8—H8···O3ii0.982.583.175 (2)119
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+1/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC12H8O6
Mr248.18
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)7.627 (2), 13.877 (3), 9.823 (2)
β (°) 100.68 (2)
V3)1021.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.28 × 0.16 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.921, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
11412, 2119, 1460
Rint0.051
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.099, 1.01
No. of reflections2118
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.16

Computer programs: SMART (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.982.503.313 (3)140
C8—H8···O3ii0.982.583.175 (2)119
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+1/2, y1/2, z+3/2.
 

Acknowledgements

The author acknowledges funding support from the Natural Science Foundation of Shanxi Province (2007011033), the Program of Technological Industrialization in Universities of Shanxi Province (20070308) and the Start-up Fund of the North University of China.

References

First citationBruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds