organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3-Nitro­phen­yl)-N′-pivaloylthio­urea

aDepartment of Chemical Sciences, Faculty of Science and Technology, Universiti Malaysia Terengganu, Mengabang Telipot, 21030 Kuala Terengganu, Malaysia, and bSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
*Correspondence e-mail: mohdsukeri@umt.edu.my

(Received 23 April 2008; accepted 14 May 2008; online 21 May 2008)

In the title compound, C12H15N3O3S, there is an intra­molecular N—H⋯O hydrogen bond. The crystal structure is stabilized by inter­molecular N—H⋯O, N—H⋯S and C—H⋯S hydrogen bonds, forming a two-dimensional network parallel to the ac plane.

Related literature

For related crystal structures, see: Saeed & Flörke (2007[Saeed, A. & Flörke, U. (2007). Acta Cryst. E63, o4259.]); Sultana et al. (2007[Sultana, S., Khawar Rauf, M., Ebihara, M. & Badshah, A. (2007). Acta Cryst. E63, o2801.]).

[Scheme 1]

Experimental

Crystal data
  • C12H15N3O3S

  • Mr = 281.33

  • Orthorhombic, P n a 21

  • a = 20.400 (5) Å

  • b = 10.886 (3) Å

  • c = 6.2120 (15) Å

  • V = 1379.5 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 273 (2) K

  • 0.48 × 0.18 × 0.12 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.893, Tmax = 0.972

  • 8152 measured reflections

  • 3020 independent reflections

  • 2321 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.103

  • S = 0.91

  • 3020 reflections

  • 172 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.14 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1296 Friedel pairs

  • Flack parameter: 0.07 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1 0.86 1.92 2.605 (3) 135
N1—H1A⋯S1i 0.86 2.76 3.582 (2) 160
C3—H3A⋯S1i 0.96 2.83 3.742 (3) 159
N2—H2A⋯O2ii 0.86 2.52 3.197 (3) 137
Symmetry codes: (i) [-x+2, -y+1, z-{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Two isomers of N-nitrophenyl-N'-pivaloylthiourea were reported by Saeed & Flörke, (2007) (nitro group at ortho position) and Sultana et al., (2007) (nitro group at para position). Here, the molecule with a nitro group in the meta position, (I), has been successfully synthesized (Fig. 1). The molecule displays similar bond distances and angles to the related compounds.

The carbonylthiourea (S1/N1/N2/O1/C4–C7) and 3-nitrophenyl fragments are essentially planar, with maximum deviation of 0.077Å for atom O2 from the least square plane. The carbonylthiourea fragment makes a dihedral angle of 85.64 (7)° to the nitrophenyl fragment. There is an intramolecular hydrogen bond, N2—H2···O1 leading to a pseudo-six membered ring (O1···H2—N2—C6—N1—C5—O1). In the crystal structure, the molecules are linked by intermolecular interactions, N—H···O, N—H···S and C—H···S (symmetry codes as in Table 1) forming a two dimensional network along the ac plane (Fig.2).

Related literature top

For related crystal structures, see: Saeed & Flörke (2007); Sultana et al. (2007); Flack (1983).

Experimental top

To a stirring acetone solution (75 ml) of pivaloyl chloride (5.0 g, 0.04 mol) and ammonium thiocyanate (3.15 g, 0.04 mol), 3-nitroaniline (5.73 g, 0.04 mol) in 40 ml of acetone was added dropwise. The solution mixture was refluxed for 1 h. The resulting solution was poured into a beaker containing some ice blocks. The white precipitate was filtered off and washed with distilled water and cold ethanol before being dried under vacuum. Good quality crystals were obtained by recrystallization from THF.

Refinement top

After their location in the difference map, all H-atoms were fixed geometrically at ideal positions and allowed to ride on the parent C or N atoms with C—H = 0.93–0.97Å and N—H = 0.86Å with Uiso(H)= 1.2 (CH2 and NH) or 1.5Ueq(C)(CH3).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. : The molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate intramolecular hydrogen bond.
[Figure 2] Fig. 2. : Packing diagram of compound,(I), viewed down the b axis. The dashed lines denote the N—H···O, N—H···S and C—H···S hydrogen bonds.
N-(3-Nitrophenyl)-N'-pivaloylthiourea top
Crystal data top
C12H15N3O3SF(000) = 592
Mr = 281.33Dx = 1.355 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 925 reflections
a = 20.400 (5) Åθ = 2.0–27.5°
b = 10.886 (3) ŵ = 0.24 mm1
c = 6.2120 (15) ÅT = 273 K
V = 1379.5 (6) Å3Block, colourless
Z = 40.48 × 0.18 × 0.12 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3020 independent reflections
Radiation source: fine-focus sealed tube2321 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 83.66 pixels mm-1θmax = 27.5°, θmin = 2.0°
ω scansh = 2126
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 1314
Tmin = 0.893, Tmax = 0.972l = 77
8152 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0642P)2 + 0.0515P]
where P = (Fo2 + 2Fc2)/3
S = 0.91(Δ/σ)max < 0.001
3020 reflectionsΔρmax = 0.28 e Å3
172 parametersΔρmin = 0.15 e Å3
1 restraintAbsolute structure: Flack (1983), 1296 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.07 (9)
Crystal data top
C12H15N3O3SV = 1379.5 (6) Å3
Mr = 281.33Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 20.400 (5) ŵ = 0.24 mm1
b = 10.886 (3) ÅT = 273 K
c = 6.2120 (15) Å0.48 × 0.18 × 0.12 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3020 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2321 reflections with I > 2σ(I)
Tmin = 0.893, Tmax = 0.972Rint = 0.032
8152 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.103Δρmax = 0.28 e Å3
S = 0.91Δρmin = 0.15 e Å3
3020 reflectionsAbsolute structure: Flack (1983), 1296 Friedel pairs
172 parametersAbsolute structure parameter: 0.07 (9)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.97040 (3)0.39600 (5)0.62603 (13)0.04412 (17)
O30.72971 (13)0.0240 (2)0.9230 (4)0.0936 (8)
O20.73374 (10)0.13216 (17)0.6346 (5)0.0791 (6)
O10.84682 (10)0.73243 (15)0.7556 (4)0.0694 (6)
N20.86872 (9)0.49974 (16)0.8218 (3)0.0422 (5)
H2A0.84560.56400.84800.051*
N10.92866 (9)0.62483 (14)0.5965 (3)0.0394 (5)
H1A0.96030.63040.50550.047*
C110.79218 (11)0.2008 (2)0.9299 (4)0.0414 (5)
C100.81336 (11)0.1747 (2)1.1350 (5)0.0490 (6)
H10A0.79990.10351.20520.059*
C90.85486 (13)0.2563 (2)1.2331 (5)0.0521 (6)
H9A0.87040.23951.37080.062*
C80.87392 (11)0.36328 (19)1.1304 (5)0.0463 (5)
H8A0.90180.41871.19850.056*
C70.85101 (11)0.38661 (19)0.9253 (4)0.0387 (5)
C120.80979 (11)0.3062 (2)0.8226 (4)0.0413 (5)
H12A0.79420.32240.68480.050*
N30.74809 (11)0.11334 (19)0.8218 (5)0.0557 (6)
C60.91904 (11)0.50999 (19)0.6876 (4)0.0375 (5)
C50.89385 (11)0.73105 (18)0.6338 (5)0.0421 (5)
C40.91691 (13)0.8460 (2)0.5166 (4)0.0451 (6)
C30.90038 (15)0.8322 (3)0.2772 (5)0.0635 (8)
H3A0.92390.76340.21890.095*
H3B0.91280.90560.20190.095*
H3C0.85410.81880.26100.095*
C20.87985 (15)0.9559 (2)0.6113 (7)0.0733 (8)
H2B0.89050.96410.76110.110*
H2C0.83350.94300.59580.110*
H2D0.89231.02940.53630.110*
C10.99039 (14)0.8627 (2)0.5451 (6)0.0625 (8)
H1B1.01300.79380.48340.094*
H1C1.00050.86810.69570.094*
H1D1.00410.93680.47420.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0528 (3)0.0349 (3)0.0446 (3)0.0050 (2)0.0020 (3)0.0025 (3)
O30.124 (2)0.0680 (13)0.0885 (16)0.0522 (13)0.0132 (15)0.0002 (13)
O20.0909 (15)0.0660 (12)0.0804 (15)0.0173 (10)0.0336 (15)0.0052 (14)
O10.0707 (13)0.0443 (10)0.0930 (16)0.0126 (9)0.0308 (12)0.0156 (10)
N20.0457 (10)0.0311 (9)0.0497 (11)0.0041 (8)0.0075 (10)0.0086 (8)
N10.0440 (10)0.0325 (9)0.0416 (13)0.0003 (7)0.0044 (10)0.0064 (8)
C110.0378 (12)0.0376 (12)0.0488 (14)0.0003 (10)0.0062 (11)0.0013 (11)
C100.0557 (14)0.0387 (11)0.0526 (14)0.0019 (10)0.0128 (15)0.0136 (15)
C90.0650 (16)0.0508 (14)0.0404 (13)0.0030 (13)0.0015 (12)0.0109 (12)
C80.0488 (12)0.0427 (11)0.0474 (13)0.0016 (9)0.0003 (15)0.0004 (14)
C70.0396 (13)0.0366 (12)0.0399 (13)0.0020 (9)0.0051 (10)0.0043 (10)
C120.0423 (13)0.0409 (12)0.0409 (13)0.0024 (10)0.0016 (11)0.0056 (11)
N30.0540 (13)0.0435 (12)0.0695 (16)0.0055 (10)0.0068 (12)0.0009 (11)
C60.0391 (11)0.0367 (12)0.0366 (14)0.0034 (10)0.0084 (9)0.0029 (9)
C50.0441 (12)0.0350 (10)0.0471 (12)0.0004 (9)0.0006 (13)0.0067 (13)
C40.0520 (15)0.0313 (11)0.0519 (15)0.0003 (11)0.0008 (12)0.0078 (10)
C30.0761 (19)0.0570 (16)0.0575 (19)0.0034 (14)0.0070 (15)0.0183 (14)
C20.093 (2)0.0359 (12)0.091 (2)0.0162 (13)0.020 (2)0.0097 (18)
C10.0643 (18)0.0414 (14)0.082 (2)0.0118 (13)0.0026 (15)0.0018 (13)
Geometric parameters (Å, º) top
S1—C61.668 (2)C8—C71.381 (4)
O3—N31.217 (3)C8—H8A0.9300
O2—N31.216 (3)C7—C121.371 (3)
O1—C51.222 (3)C12—H12A0.9300
N2—C61.327 (3)C5—C41.523 (3)
N2—C71.435 (3)C4—C11.520 (4)
N2—H2A0.8600C4—C31.532 (4)
N1—C51.377 (3)C4—C21.532 (4)
N1—C61.386 (3)C3—H3A0.9600
N1—H1A0.8600C3—H3B0.9600
C11—C101.375 (4)C3—H3C0.9600
C11—C121.375 (3)C2—H2B0.9600
C11—N31.472 (3)C2—H2C0.9600
C10—C91.370 (4)C2—H2D0.9600
C10—H10A0.9300C1—H1B0.9600
C9—C81.384 (3)C1—H1C0.9600
C9—H9A0.9300C1—H1D0.9600
C6—N2—C7123.23 (18)N1—C6—S1119.22 (17)
C6—N2—H2A118.4O1—C5—N1121.3 (2)
C7—N2—H2A118.4O1—C5—C4121.9 (2)
C5—N1—C6128.0 (2)N1—C5—C4116.8 (2)
C5—N1—H1A116.0C1—C4—C5110.3 (2)
C6—N1—H1A116.0C1—C4—C3110.0 (2)
C10—C11—C12122.7 (2)C5—C4—C3108.4 (2)
C10—C11—N3118.8 (2)C1—C4—C2110.4 (2)
C12—C11—N3118.6 (2)C5—C4—C2107.8 (2)
C9—C10—C11118.2 (2)C3—C4—C2109.9 (3)
C9—C10—H10A120.9C4—C3—H3A109.5
C11—C10—H10A120.9C4—C3—H3B109.5
C10—C9—C8120.9 (3)H3A—C3—H3B109.5
C10—C9—H9A119.5C4—C3—H3C109.5
C8—C9—H9A119.5H3A—C3—H3C109.5
C7—C8—C9119.0 (2)H3B—C3—H3C109.5
C7—C8—H8A120.5C4—C2—H2B109.5
C9—C8—H8A120.5C4—C2—H2C109.5
C12—C7—C8121.3 (2)H2B—C2—H2C109.5
C12—C7—N2119.6 (2)C4—C2—H2D109.5
C8—C7—N2119.1 (2)H2B—C2—H2D109.5
C7—C12—C11117.9 (2)H2C—C2—H2D109.5
C7—C12—H12A121.1C4—C1—H1B109.5
C11—C12—H12A121.1C4—C1—H1C109.5
O2—N3—O3123.7 (3)H1B—C1—H1C109.5
O2—N3—C11118.3 (2)C4—C1—H1D109.5
O3—N3—C11118.0 (3)H1B—C1—H1D109.5
N2—C6—N1116.21 (19)H1C—C1—H1D109.5
N2—C6—S1124.57 (17)
C12—C11—C10—C91.5 (4)C10—C11—N3—O33.4 (3)
N3—C11—C10—C9179.4 (2)C12—C11—N3—O3175.7 (2)
C11—C10—C9—C81.2 (4)C7—N2—C6—N1178.4 (2)
C10—C9—C8—C70.6 (4)C7—N2—C6—S12.2 (3)
C9—C8—C7—C120.2 (4)C5—N1—C6—N22.6 (4)
C9—C8—C7—N2177.6 (2)C5—N1—C6—S1176.9 (2)
C6—N2—C7—C1287.3 (3)C6—N1—C5—O12.1 (4)
C6—N2—C7—C895.2 (3)C6—N1—C5—C4177.8 (2)
C8—C7—C12—C110.4 (3)O1—C5—C4—C1130.5 (3)
N2—C7—C12—C11177.81 (19)N1—C5—C4—C149.4 (3)
C10—C11—C12—C71.0 (3)O1—C5—C4—C3109.0 (3)
N3—C11—C12—C7179.9 (2)N1—C5—C4—C371.1 (3)
C10—C11—N3—O2174.3 (2)O1—C5—C4—C29.9 (4)
C12—C11—N3—O26.6 (3)N1—C5—C4—C2170.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.861.922.605 (3)135
N1—H1A···S1i0.862.763.582 (2)160
C3—H3A···S1i0.962.833.742 (3)159
N2—H2A···O2ii0.862.523.197 (3)137
Symmetry codes: (i) x+2, y+1, z1/2; (ii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H15N3O3S
Mr281.33
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)273
a, b, c (Å)20.400 (5), 10.886 (3), 6.2120 (15)
V3)1379.5 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.48 × 0.18 × 0.12
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.893, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
8152, 3020, 2321
Rint0.032
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.103, 0.91
No. of reflections3020
No. of parameters172
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.15
Absolute structureFlack (1983), 1296 Friedel pairs
Absolute structure parameter0.07 (9)

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.861.922.605 (3)135
N1—H1A···S1i0.862.763.582 (2)160
C3—H3A···S1i0.962.833.742 (3)159
N2—H2A···O2ii0.862.523.197 (3)137
Symmetry codes: (i) x+2, y+1, z1/2; (ii) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Malaysian Government, Universiti Kebangsaan Malaysia, Universiti Malaysia Terengganu and the Ministry of Higher Education, Malaysia, for research grants OUP UKM OUP-BIT-28/20076 and UMT-FRGS-59001.

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSaeed, A. & Flörke, U. (2007). Acta Cryst. E63, o4259.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSultana, S., Khawar Rauf, M., Ebihara, M. & Badshah, A. (2007). Acta Cryst. E63, o2801.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds