metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[chlorido(methyl phenyl sulfide-κS)mercury(II)]-μ-chlorido]

aDepartment of Chemistry, PO Box 3000, FI-90014 University of Oulu, Finland
*Correspondence e-mail: risto.laitinen@oulu.fi

(Received 2 May 2008; accepted 8 May 2008; online 14 May 2008)

The title compound, [HgCl2(C7H8S)]n, was isolated from the reaction of MeSPh with HgCl2. The HgII atom has a distorted tetra­hedral geometry and is coordinated by one S atom and three Cl atoms. Two of the Cl atoms act as bridging ligands between the Hg atoms, forming a two-dimensional polymeric structure.

Related literature

For related literature, see: Peindy et al. (2005[Peindy, H. N., Guyon, F., Knorr, M. & Strohmann, C. (2005). Z. Anorg. Allg. Chem., 631, 2397-2400.]).

[Scheme 1]

Experimental

Crystal data
  • [HgCl2(C7H8S)]

  • Mr = 395.68

  • Orthorhombic, P b c a

  • a = 5.9616 (12) Å

  • b = 14.935 (3) Å

  • c = 22.142 (4) Å

  • V = 1971.4 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 16.30 mm−1

  • T = 150 (2) K

  • 0.25 × 0.10 × 0.08 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SHELXTL; Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.106, Tmax = 0.355 (expected range = 0.081–0.271)

  • 9374 measured reflections

  • 1760 independent reflections

  • 1562 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.092

  • S = 1.07

  • 1760 reflections

  • 102 parameters

  • H-atom parameters constrained

  • Δρmax = 2.22 e Å−3

  • Δρmin = −1.51 e Å−3

Table 1
Selected bond lengths (Å)

Hg1—Cl1 2.3429 (18)
Hg1—S1 2.4548 (17)
Hg1—Cl2 2.6050 (17)
Hg1—Cl2i 2.742 (2)
Symmetry code: (i) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. London: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GmbH, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Crystals of [HgCl2(MeSPh)]n (I) were isolated from the reaction of MeSPh with HgCl2 in EtOH. The asymmetric unit of I consists of one Hg atom, MeSPh ligand and two chlorine atoms. The mercury(II) atom has distorted tetrahedral geometry and is coordinated to one sulfur atom and three chlorine atoms. Two of the chlorine atoms act as bridging ligands between the mercury atoms forming a two-dimensional polymeric structure. The Hg - Cl bond lenghts are 2.6050 (17) and 2.742 (2) Å for the bridging chlorines and 2.3429 (18) Å for the terminal chlorine, The Hg - S bond length is 2.4548 (17) Å. The bond parameters can be compared to those in [{PhS(CH2)SPh}Hg2Cl4]n where Hg atom has a similar coordination environment (Peindy et al. (2005)]

Related literature top

For related literature, see: Peindy et al. (2005)

Experimental top

The addition of MeSPh (0.603 g; 4.85 mmol) to HgCl2 (0.283 g: 1.04 mmol) in 10 ml EtOH gave at first a clear solution followed by precipitation of colourless crystals. Decomposition of the crystals took place upon removal of the solvent. Crystals suitable for crystal structure determination were picked from the reaction solution.

Refinement top

H atoms were positioned geometrically and refined using a riding model with C—H = 0.95 - 0.98 Å and with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of I indicating the numbering of the atoms. The thermal ellipsoids have been drawn at 50% probability.
[Figure 2] Fig. 2. The packing of polymer chains.
catena-Poly[[chlorido(methyl phenyl sulfide-κS)mercury(II)]-µ-chlorido] top
Crystal data top
[HgCl2(C7H8S)]F(000) = 1440
Mr = 395.68Dx = 2.666 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1562 reflections
a = 5.9616 (12) Åθ = 3.7–25.4°
b = 14.935 (3) ŵ = 16.30 mm1
c = 22.142 (4) ÅT = 150 K
V = 1971.4 (7) Å3Needle, colourless
Z = 80.25 × 0.10 × 0.08 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
1760 independent reflections
Radiation source: fine-focus sealed tube1562 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
ϕ scans, and ω scans with κ offsetsθmax = 25.5°, θmin = 3.7°
Absorption correction: multi-scan
(SHELXTL; Sheldrick 2008)
h = 77
Tmin = 0.106, Tmax = 0.355k = 1816
9374 measured reflectionsl = 2326
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0473P)2 + 8.371P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1760 reflectionsΔρmax = 2.22 e Å3
102 parametersΔρmin = 1.51 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0014 (3)
Crystal data top
[HgCl2(C7H8S)]V = 1971.4 (7) Å3
Mr = 395.68Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 5.9616 (12) ŵ = 16.30 mm1
b = 14.935 (3) ÅT = 150 K
c = 22.142 (4) Å0.25 × 0.10 × 0.08 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
1760 independent reflections
Absorption correction: multi-scan
(SHELXTL; Sheldrick 2008)
1562 reflections with I > 2σ(I)
Tmin = 0.106, Tmax = 0.355Rint = 0.063
9374 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.07Δρmax = 2.22 e Å3
1760 reflectionsΔρmin = 1.51 e Å3
102 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.04378 (5)0.284473 (18)0.188615 (12)0.03063 (19)
Cl10.0758 (3)0.43434 (12)0.15855 (8)0.0366 (4)
Cl20.0860 (3)0.26914 (14)0.30526 (7)0.0327 (4)
S10.1319 (3)0.13004 (11)0.15897 (7)0.0284 (4)
C10.0764 (12)0.1286 (5)0.0799 (3)0.0282 (15)
C20.1212 (14)0.1616 (5)0.0562 (3)0.0353 (16)
H20.23350.18560.08200.042*
C30.1532 (14)0.1592 (5)0.0055 (3)0.0405 (18)
H30.28990.18020.02230.049*
C40.0143 (15)0.1260 (6)0.0432 (4)0.045 (2)
H40.00720.12560.08570.054*
C50.2088 (15)0.0941 (5)0.0191 (3)0.0417 (19)
H50.32160.07110.04510.050*
C60.2443 (13)0.0948 (4)0.0425 (3)0.0343 (15)
H60.38040.07280.05910.041*
C70.0891 (15)0.0613 (6)0.1887 (3)0.0371 (18)
H11A0.23450.08810.17870.056*
H11B0.07370.05700.23270.056*
H11C0.07960.00130.17090.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.0363 (3)0.0265 (2)0.0291 (2)0.00098 (11)0.00083 (10)0.00019 (10)
Cl10.0428 (10)0.0268 (9)0.0401 (10)0.0015 (7)0.0006 (8)0.0041 (7)
Cl20.0319 (8)0.0446 (10)0.0217 (8)0.0000 (8)0.0009 (6)0.0017 (7)
S10.0325 (9)0.0279 (8)0.0247 (8)0.0024 (7)0.0007 (7)0.0011 (6)
C10.035 (4)0.028 (3)0.021 (3)0.003 (3)0.001 (3)0.002 (3)
C20.048 (4)0.028 (4)0.030 (4)0.005 (3)0.002 (3)0.004 (3)
C30.052 (5)0.038 (4)0.031 (4)0.003 (4)0.003 (3)0.000 (3)
C40.067 (5)0.042 (4)0.024 (4)0.013 (4)0.003 (4)0.001 (3)
C50.058 (5)0.039 (4)0.029 (4)0.002 (4)0.009 (4)0.004 (3)
C60.043 (4)0.028 (3)0.033 (4)0.002 (3)0.006 (3)0.002 (3)
C70.046 (4)0.030 (4)0.036 (4)0.011 (4)0.002 (3)0.003 (3)
Geometric parameters (Å, º) top
Hg1—Cl12.3429 (18)C3—C41.392 (12)
Hg1—S12.4548 (17)C3—H30.9500
Hg1—Cl22.6050 (17)C4—C51.362 (12)
Hg1—Cl2i2.742 (2)C4—H40.9500
Cl2—Hg1ii2.742 (2)C5—C61.381 (10)
S1—C11.782 (7)C5—H50.9500
S1—C71.795 (8)C6—H60.9500
C1—C21.381 (10)C7—H11A0.9800
C1—C61.393 (10)C7—H11B0.9800
C2—C31.380 (10)C7—H11C0.9800
C2—H20.9500
Cl1—Hg1—S1143.53 (7)C2—C3—H3119.9
Cl1—Hg1—Cl2110.97 (7)C4—C3—H3119.9
S1—Hg1—Cl299.31 (6)C5—C4—C3120.1 (7)
Cl1—Hg1—Cl2i100.08 (6)C5—C4—H4120.0
S1—Hg1—Cl2i98.49 (6)C3—C4—H4120.0
Cl2—Hg1—Cl2i92.28 (5)C4—C5—C6120.9 (7)
Hg1—Cl2—Hg1ii97.92 (6)C4—C5—H5119.5
C1—S1—C7102.5 (3)C6—C5—H5119.5
C1—S1—Hg1103.6 (2)C5—C6—C1118.6 (7)
C7—S1—Hg1106.4 (3)C5—C6—H6120.7
C2—C1—C6121.1 (6)C1—C6—H6120.7
C2—C1—S1121.8 (5)S1—C7—H11A109.5
C6—C1—S1117.0 (5)S1—C7—H11B109.5
C3—C2—C1119.0 (7)H11A—C7—H11B109.5
C3—C2—H2120.5S1—C7—H11C109.5
C1—C2—H2120.5H11A—C7—H11C109.5
C2—C3—C4120.2 (8)H11B—C7—H11C109.5
Cl1—Hg1—Cl2—Hg1ii77.75 (8)C7—S1—C1—C6120.4 (6)
S1—Hg1—Cl2—Hg1ii81.56 (7)Hg1—S1—C1—C6129.1 (5)
Cl2i—Hg1—Cl2—Hg1ii179.453 (9)C6—C1—C2—C31.3 (11)
Cl1—Hg1—S1—C140.3 (3)S1—C1—C2—C3179.5 (6)
Cl2—Hg1—S1—C1173.5 (2)C1—C2—C3—C41.6 (11)
Cl2i—Hg1—S1—C179.7 (2)C2—C3—C4—C51.3 (12)
Cl1—Hg1—S1—C7147.9 (3)C3—C4—C5—C60.6 (12)
Cl2—Hg1—S1—C765.8 (3)C4—C5—C6—C10.3 (11)
Cl2i—Hg1—S1—C728.0 (3)C2—C1—C6—C50.6 (10)
C7—S1—C1—C261.4 (7)S1—C1—C6—C5178.9 (5)
Hg1—S1—C1—C249.2 (6)
Symmetry codes: (i) x1/2, y, z+1/2; (ii) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formula[HgCl2(C7H8S)]
Mr395.68
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)150
a, b, c (Å)5.9616 (12), 14.935 (3), 22.142 (4)
V3)1971.4 (7)
Z8
Radiation typeMo Kα
µ (mm1)16.30
Crystal size (mm)0.25 × 0.10 × 0.08
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SHELXTL; Sheldrick 2008)
Tmin, Tmax0.106, 0.355
No. of measured, independent and
observed [I > 2σ(I)] reflections
9374, 1760, 1562
Rint0.063
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.092, 1.07
No. of reflections1760
No. of parameters102
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.22, 1.51

Computer programs: COLLECT (Nonius, 1998), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Berndt, 1999), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Hg1—Cl12.3429 (18)Hg1—Cl22.6050 (17)
Hg1—S12.4548 (17)Hg1—Cl2i2.742 (2)
Symmetry code: (i) x1/2, y, z+1/2.
 

Acknowledgements

Financial support from the Academy of Finland is gratefully acknowledged.

References

First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GmbH, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. London: Academic Press.  Google Scholar
First citationPeindy, H. N., Guyon, F., Knorr, M. & Strohmann, C. (2005). Z. Anorg. Allg. Chem., 631, 2397–2400.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds