metal-organic compounds
[η5-2,3-Bis(trimethylsilyl)-2,3-dicarba-nido-hexaborane(2−)]chlorido(N,N,N′,N′-tetramethylethylenediamine)dysprosium(III)
aDepartment of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA, and bDepartment of Chemistry, Southern Methodist University, Dallas, TX 75275, USA
*Correspondence e-mail: zheng@cz.chem.niu.edu
The structure of the title compound, [Dy(C8H22B4Si2)Cl(C6H16N2)], reveals that a center of symmetry exists within the dimeric half-sandwich units. Within each half-sandwich, the DyIII ion is coordinated by the five-membered ring of the carborane, tetramethylethylenediamine and the chloride ion.
Related literature
For related literature, see: Bazan et al. (1993); Tomlinson et al. (2005); Wang et al. (2006).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2003); cell SMART and SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808013615/si2081sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808013615/si2081Isup2.hkl
The reaction of DyCl3 with the TMEDA solvated monosodium nido- compound, nido-1-Na(TMEDA)2–2,3-(SiMe3)2-2,3-C2B4H4, in a 1:2 molar ratio in dry benzene at 60° C produced the corresponding half sandwich carborane in 88% yield.
The hydrogen atoms on carbon atoms were refined using the riding model in SHELXL with the Uiso equal to 1.5 times of that of the preceding carbon atoms for the methyl groups and 1.3 times for the rings. The C—H distances are equal to 0.97 and 0.96 Å for the CH2 and CH3 groups, respectively. The hydrogen atoms attached to boron atoms were located using the difference map, those of the carborane ring were refined using the riding model with B—H distances 0.93 Å. The hydrogen atom attached to B6 was refined with an isotropic displacement parameter with B—H distance 0.96 Å. The Uiso(H) = 1.2 times Ueq(B3,B4,B5).
Data collection: SMART (Bruker, 2003); cell
SMART and SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Dy(C8H22B4Si2)Cl(C6H16N2)] | F(000) = 1068 |
Mr = 531.84 | Dx = 1.500 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 562 reflections |
a = 11.4467 (8) Å | θ = −14–14° |
b = 14.8624 (10) Å | µ = 3.39 mm−1 |
c = 13.8615 (9) Å | T = 293 K |
β = 92.770 (1)° | Column, colorless |
V = 2355.4 (3) Å3 | 0.80 × 0.30 × 0.30 mm |
Z = 4 |
Bruker SMART CCD PLATFORM diffractometer | 4151 independent reflections |
Radiation source: fine-focus sealed tube | 4142 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.019 |
Detector resolution: 0 pixels mm-1 | θmax = 25.0°, θmin = 2.0° |
ω scans | h = −13→13 |
Absorption correction: multi-scan SADABS (Sheldrick, 2006) | k = −17→17 |
Tmin = 0.257, Tmax = 0.362 | l = −16→16 |
17271 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.024 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.050 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.44 | w = 1/[σ2(Fo2) + 3.9928P] where P = (Fo2 + 2Fc2)/3 |
4151 reflections | (Δ/σ)max = 0.013 |
231 parameters | Δρmax = 0.64 e Å−3 |
0 restraints | Δρmin = −0.61 e Å−3 |
[Dy(C8H22B4Si2)Cl(C6H16N2)] | V = 2355.4 (3) Å3 |
Mr = 531.84 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 11.4467 (8) Å | µ = 3.39 mm−1 |
b = 14.8624 (10) Å | T = 293 K |
c = 13.8615 (9) Å | 0.80 × 0.30 × 0.30 mm |
β = 92.770 (1)° |
Bruker SMART CCD PLATFORM diffractometer | 4151 independent reflections |
Absorption correction: multi-scan SADABS (Sheldrick, 2006) | 4142 reflections with I > 2σ(I) |
Tmin = 0.257, Tmax = 0.362 | Rint = 0.019 |
17271 measured reflections |
R[F2 > 2σ(F2)] = 0.024 | 0 restraints |
wR(F2) = 0.050 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.44 | Δρmax = 0.64 e Å−3 |
4151 reflections | Δρmin = −0.61 e Å−3 |
231 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Dy | 0.584689 (12) | 0.954047 (10) | 0.626856 (11) | 0.02053 (6) | |
Cl | 0.65147 (8) | 0.79787 (6) | 0.69040 (8) | 0.0406 (2) | |
Si1 | 0.37951 (8) | 0.73248 (6) | 0.55959 (7) | 0.0268 (2) | |
Si2 | 0.31576 (8) | 0.84186 (6) | 0.80092 (7) | 0.0269 (2) | |
C1 | 0.3894 (3) | 0.8543 (2) | 0.5966 (2) | 0.0205 (6) | |
C2 | 0.3757 (3) | 0.8993 (2) | 0.6921 (2) | 0.0221 (7) | |
B3 | 0.3682 (3) | 1.0040 (3) | 0.6794 (3) | 0.0249 (8) | |
H3 | 0.3640 | 1.0465 | 0.7285 | 0.030* | |
B4 | 0.3693 (3) | 1.0245 (2) | 0.5630 (3) | 0.0233 (8) | |
H4 | 0.3622 | 1.0799 | 0.5320 | 0.028* | |
B5 | 0.3862 (3) | 0.9239 (2) | 0.5134 (3) | 0.0217 (7) | |
H5 | 0.3926 | 0.9117 | 0.4481 | 0.026* | |
B6 | 0.2804 (3) | 0.9338 (3) | 0.6029 (3) | 0.0239 (8) | |
C7 | 0.4863 (4) | 0.7136 (3) | 0.4645 (3) | 0.0501 (11) | |
H7A | 0.4791 | 0.6531 | 0.4410 | 0.075* | |
H7B | 0.5642 | 0.7232 | 0.4914 | 0.075* | |
H7C | 0.4707 | 0.7550 | 0.4123 | 0.075* | |
C8 | 0.2302 (4) | 0.7083 (3) | 0.5048 (3) | 0.0472 (11) | |
H8A | 0.1723 | 0.7344 | 0.5441 | 0.071* | |
H8B | 0.2185 | 0.6444 | 0.5012 | 0.071* | |
H8C | 0.2230 | 0.7336 | 0.4411 | 0.071* | |
C9 | 0.4155 (3) | 0.6475 (2) | 0.6554 (3) | 0.0380 (9) | |
H9A | 0.3536 | 0.6453 | 0.6996 | 0.057* | |
H9B | 0.4873 | 0.6639 | 0.6896 | 0.057* | |
H9C | 0.4242 | 0.5894 | 0.6262 | 0.057* | |
C10 | 0.1876 (3) | 0.7697 (3) | 0.7643 (3) | 0.0372 (9) | |
H10A | 0.1693 | 0.7311 | 0.8170 | 0.056* | |
H10B | 0.2062 | 0.7338 | 0.7095 | 0.056* | |
H10C | 0.1214 | 0.8072 | 0.7474 | 0.056* | |
C11 | 0.4250 (4) | 0.7748 (3) | 0.8752 (3) | 0.0450 (10) | |
H11A | 0.4679 | 0.8139 | 0.9191 | 0.068* | |
H11B | 0.4780 | 0.7458 | 0.8335 | 0.068* | |
H11C | 0.3850 | 0.7300 | 0.9112 | 0.068* | |
C12 | 0.2567 (4) | 0.9287 (3) | 0.8824 (3) | 0.0436 (10) | |
H12A | 0.3179 | 0.9698 | 0.9023 | 0.065* | |
H12B | 0.2270 | 0.9000 | 0.9382 | 0.065* | |
H12C | 0.1947 | 0.9611 | 0.8487 | 0.065* | |
N1 | 0.6388 (3) | 1.0410 (2) | 0.7853 (2) | 0.0323 (7) | |
C13 | 0.7672 (3) | 1.0466 (3) | 0.8066 (3) | 0.0430 (10) | |
H13A | 0.7826 | 1.0429 | 0.8760 | 0.052* | |
H13B | 0.7950 | 1.1046 | 0.7854 | 0.052* | |
C14 | 0.8344 (3) | 0.9737 (3) | 0.7587 (3) | 0.0367 (9) | |
H14A | 0.9169 | 0.9798 | 0.7768 | 0.044* | |
H14B | 0.8086 | 0.9155 | 0.7812 | 0.044* | |
N2 | 0.8178 (3) | 0.9778 (2) | 0.6525 (2) | 0.0345 (7) | |
C15 | 0.5868 (4) | 0.9852 (3) | 0.8603 (3) | 0.0442 (10) | |
H15A | 0.6170 | 0.9250 | 0.8572 | 0.066* | |
H15B | 0.5034 | 0.9840 | 0.8496 | 0.066* | |
H15C | 0.6064 | 1.0102 | 0.9229 | 0.066* | |
C16 | 0.5897 (4) | 1.1327 (3) | 0.7910 (3) | 0.0464 (10) | |
H16A | 0.6069 | 1.1570 | 0.8543 | 0.070* | |
H16B | 0.5064 | 1.1303 | 0.7788 | 0.070* | |
H16C | 0.6237 | 1.1704 | 0.7436 | 0.070* | |
C17 | 0.8846 (3) | 0.9040 (3) | 0.6097 (4) | 0.0554 (12) | |
H17A | 0.9663 | 0.9113 | 0.6268 | 0.083* | |
H17B | 0.8727 | 0.9054 | 0.5407 | 0.083* | |
H17C | 0.8581 | 0.8474 | 0.6338 | 0.083* | |
C18 | 0.8693 (4) | 1.0633 (3) | 0.6189 (3) | 0.0517 (12) | |
H18A | 0.9477 | 1.0692 | 0.6460 | 0.078* | |
H18B | 0.8230 | 1.1130 | 0.6392 | 0.078* | |
H18C | 0.8706 | 1.0628 | 0.5497 | 0.078* | |
H6 | 0.191 (3) | 0.916 (2) | 0.600 (3) | 0.029 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Dy | 0.01951 (8) | 0.01862 (9) | 0.02317 (9) | −0.00146 (6) | −0.00200 (6) | 0.00244 (6) |
Cl | 0.0311 (5) | 0.0249 (4) | 0.0647 (6) | 0.0002 (4) | −0.0081 (4) | 0.0114 (4) |
Si1 | 0.0314 (5) | 0.0189 (5) | 0.0301 (5) | −0.0025 (4) | 0.0010 (4) | −0.0016 (4) |
Si2 | 0.0303 (5) | 0.0268 (5) | 0.0238 (5) | −0.0015 (4) | 0.0049 (4) | 0.0036 (4) |
C1 | 0.0178 (15) | 0.0198 (16) | 0.0238 (16) | −0.0006 (12) | 0.0005 (12) | 0.0010 (13) |
C2 | 0.0196 (16) | 0.0224 (16) | 0.0242 (17) | −0.0003 (13) | 0.0008 (13) | 0.0005 (13) |
B3 | 0.0251 (19) | 0.0226 (19) | 0.027 (2) | 0.0016 (15) | 0.0014 (15) | −0.0026 (15) |
B4 | 0.0221 (18) | 0.0163 (18) | 0.031 (2) | 0.0009 (14) | 0.0003 (15) | 0.0034 (15) |
B5 | 0.0184 (17) | 0.0230 (19) | 0.0237 (18) | −0.0028 (14) | −0.0002 (14) | −0.0003 (15) |
B6 | 0.0207 (18) | 0.0231 (19) | 0.028 (2) | 0.0002 (15) | 0.0010 (15) | 0.0021 (15) |
C7 | 0.067 (3) | 0.036 (2) | 0.049 (3) | 0.008 (2) | 0.022 (2) | −0.0054 (19) |
C8 | 0.050 (3) | 0.036 (2) | 0.054 (3) | −0.0117 (19) | −0.019 (2) | −0.0039 (19) |
C9 | 0.039 (2) | 0.0247 (19) | 0.049 (2) | −0.0006 (16) | −0.0026 (18) | 0.0039 (17) |
C10 | 0.033 (2) | 0.040 (2) | 0.040 (2) | −0.0074 (17) | 0.0114 (17) | 0.0021 (17) |
C11 | 0.048 (2) | 0.045 (2) | 0.041 (2) | 0.0010 (19) | −0.0038 (19) | 0.0168 (19) |
C12 | 0.053 (3) | 0.042 (2) | 0.036 (2) | −0.0025 (19) | 0.0161 (19) | −0.0034 (18) |
N1 | 0.0360 (17) | 0.0301 (16) | 0.0303 (16) | −0.0061 (13) | −0.0058 (13) | −0.0029 (13) |
C13 | 0.037 (2) | 0.047 (2) | 0.044 (2) | −0.0102 (18) | −0.0129 (18) | −0.0051 (19) |
C14 | 0.0300 (19) | 0.039 (2) | 0.039 (2) | −0.0056 (16) | −0.0141 (16) | 0.0089 (17) |
N2 | 0.0266 (15) | 0.0383 (18) | 0.0377 (17) | −0.0059 (13) | −0.0058 (13) | 0.0031 (14) |
C15 | 0.052 (2) | 0.053 (3) | 0.027 (2) | −0.011 (2) | −0.0055 (18) | 0.0033 (18) |
C16 | 0.053 (3) | 0.034 (2) | 0.052 (3) | −0.0002 (19) | −0.005 (2) | −0.0141 (19) |
C17 | 0.025 (2) | 0.068 (3) | 0.073 (3) | −0.001 (2) | 0.002 (2) | −0.016 (3) |
C18 | 0.037 (2) | 0.068 (3) | 0.049 (3) | −0.023 (2) | −0.0137 (19) | 0.020 (2) |
Dy—Cl | 2.5851 (9) | C9—H9B | 0.9600 |
Dy—N1 | 2.598 (3) | C9—H9C | 0.9600 |
Dy—B5i | 2.692 (4) | C10—H10A | 0.9600 |
Dy—N2 | 2.698 (3) | C10—H10B | 0.9600 |
Dy—C1 | 2.698 (3) | C10—H10C | 0.9600 |
Dy—C2 | 2.723 (3) | C11—H11A | 0.9600 |
Dy—B4i | 2.728 (4) | C11—H11B | 0.9600 |
Si1—C7 | 1.861 (4) | C11—H11C | 0.9600 |
Si1—C9 | 1.865 (4) | C12—H12A | 0.9600 |
Si1—C8 | 1.872 (4) | C12—H12B | 0.9600 |
Si1—C1 | 1.884 (3) | C12—H12C | 0.9600 |
Si2—C12 | 1.864 (4) | N1—C15 | 1.477 (5) |
Si2—C10 | 1.867 (4) | N1—C16 | 1.477 (5) |
Si2—C11 | 1.869 (4) | N1—C13 | 1.487 (5) |
Si2—C2 | 1.890 (3) | C13—C14 | 1.502 (6) |
C1—C2 | 1.498 (4) | C13—H13A | 0.9700 |
C1—B5 | 1.548 (5) | C13—H13B | 0.9700 |
C1—B6 | 1.724 (5) | C14—N2 | 1.477 (5) |
C2—B3 | 1.568 (5) | C14—H14A | 0.9700 |
C2—B6 | 1.689 (5) | C14—H14B | 0.9700 |
B3—B4 | 1.642 (5) | N2—C17 | 1.478 (5) |
B3—H3 | 0.9300 | N2—C18 | 1.485 (5) |
B4—B5 | 1.661 (5) | C15—H15A | 0.9600 |
B4—Dyi | 2.728 (4) | C15—H15B | 0.9600 |
B4—H4 | 0.9300 | C15—H15C | 0.9600 |
B5—Dyi | 2.692 (4) | C16—H16A | 0.9600 |
B5—H5 | 0.9300 | C16—H16B | 0.9600 |
B6—H6 | 1.06 (4) | C16—H16C | 0.9600 |
C7—H7A | 0.9600 | C17—H17A | 0.9600 |
C7—H7B | 0.9600 | C17—H17B | 0.9600 |
C7—H7C | 0.9600 | C17—H17C | 0.9600 |
C8—H8A | 0.9600 | C18—H18A | 0.9600 |
C8—H8B | 0.9600 | C18—H18B | 0.9600 |
C8—H8C | 0.9600 | C18—H18C | 0.9600 |
C9—H9A | 0.9600 | ||
Cl—Dy—N1 | 95.98 (7) | Si1—C8—H8B | 109.5 |
Cl—Dy—B5i | 143.74 (8) | H8A—C8—H8B | 109.5 |
N1—Dy—B5i | 104.06 (10) | Si1—C8—H8C | 109.5 |
Cl—Dy—N2 | 78.36 (7) | H8A—C8—H8C | 109.5 |
N1—Dy—N2 | 68.26 (10) | H8B—C8—H8C | 109.5 |
B5i—Dy—N2 | 81.43 (10) | Si1—C9—H9A | 109.5 |
Cl—Dy—C1 | 77.81 (7) | Si1—C9—H9B | 109.5 |
N1—Dy—C1 | 124.51 (10) | H9A—C9—H9B | 109.5 |
B5i—Dy—C1 | 112.86 (10) | Si1—C9—H9C | 109.5 |
N2—Dy—C1 | 154.04 (9) | H9A—C9—H9C | 109.5 |
Cl—Dy—C2 | 82.45 (7) | H9B—C9—H9C | 109.5 |
N1—Dy—C2 | 92.59 (10) | Si2—C10—H10A | 109.5 |
B5i—Dy—C2 | 125.64 (10) | Si2—C10—H10B | 109.5 |
N2—Dy—C2 | 151.01 (9) | H10A—C10—H10B | 109.5 |
C1—Dy—C2 | 32.08 (9) | Si2—C10—H10C | 109.5 |
Cl—Dy—B4i | 111.47 (8) | H10A—C10—H10C | 109.5 |
N1—Dy—B4i | 135.13 (10) | H10B—C10—H10C | 109.5 |
B5i—Dy—B4i | 35.69 (11) | Si2—C11—H11A | 109.5 |
N2—Dy—B4i | 82.89 (10) | Si2—C11—H11B | 109.5 |
C1—Dy—B4i | 96.39 (10) | H11A—C11—H11B | 109.5 |
C2—Dy—B4i | 124.68 (10) | Si2—C11—H11C | 109.5 |
C7—Si1—C9 | 105.8 (2) | H11A—C11—H11C | 109.5 |
C7—Si1—C8 | 107.6 (2) | H11B—C11—H11C | 109.5 |
C9—Si1—C8 | 108.95 (19) | Si2—C12—H12A | 109.5 |
C7—Si1—C1 | 107.74 (17) | Si2—C12—H12B | 109.5 |
C9—Si1—C1 | 116.69 (16) | H12A—C12—H12B | 109.5 |
C8—Si1—C1 | 109.69 (17) | Si2—C12—H12C | 109.5 |
C12—Si2—C10 | 105.03 (19) | H12A—C12—H12C | 109.5 |
C12—Si2—C11 | 106.8 (2) | H12B—C12—H12C | 109.5 |
C10—Si2—C11 | 109.84 (19) | C15—N1—C16 | 108.3 (3) |
C12—Si2—C2 | 109.07 (17) | C15—N1—C13 | 108.6 (3) |
C10—Si2—C2 | 110.65 (16) | C16—N1—C13 | 108.3 (3) |
C11—Si2—C2 | 114.95 (17) | C15—N1—Dy | 103.2 (2) |
C2—C1—B5 | 111.1 (3) | C16—N1—Dy | 115.3 (2) |
C2—C1—B6 | 62.8 (2) | C13—N1—Dy | 112.9 (2) |
B5—C1—B6 | 65.7 (2) | N1—C13—C14 | 113.2 (3) |
C2—C1—Si1 | 131.5 (2) | N1—C13—H13A | 108.9 |
B5—C1—Si1 | 116.1 (2) | C14—C13—H13A | 108.9 |
B6—C1—Si1 | 129.7 (2) | N1—C13—H13B | 108.9 |
C2—C1—Dy | 74.86 (17) | C14—C13—H13B | 108.9 |
B5—C1—Dy | 74.80 (17) | H13A—C13—H13B | 107.7 |
B6—C1—Dy | 102.23 (18) | N2—C14—C13 | 111.5 (3) |
Si1—C1—Dy | 127.49 (14) | N2—C14—H14A | 109.3 |
C1—C2—B3 | 110.6 (3) | C13—C14—H14A | 109.3 |
C1—C2—B6 | 65.2 (2) | N2—C14—H14B | 109.3 |
B3—C2—B6 | 65.6 (2) | C13—C14—H14B | 109.3 |
C1—C2—Si2 | 124.1 (2) | H14A—C14—H14B | 108.0 |
B3—C2—Si2 | 121.2 (2) | C14—N2—C17 | 109.0 (3) |
B6—C2—Si2 | 118.4 (2) | C14—N2—C18 | 108.3 (3) |
C1—C2—Dy | 73.05 (17) | C17—N2—C18 | 106.7 (3) |
B3—C2—Dy | 73.14 (18) | C14—N2—Dy | 101.8 (2) |
B6—C2—Dy | 102.27 (19) | C17—N2—Dy | 112.2 (2) |
Si2—C2—Dy | 139.32 (15) | C18—N2—Dy | 118.4 (2) |
C2—B3—B4 | 106.9 (3) | N1—C15—H15A | 109.5 |
C2—B3—H3 | 126.5 | N1—C15—H15B | 109.5 |
B4—B3—H3 | 126.5 | H15A—C15—H15B | 109.5 |
B3—B4—B5 | 104.3 (3) | N1—C15—H15C | 109.5 |
B3—B4—Dyi | 168.7 (2) | H15A—C15—H15C | 109.5 |
B5—B4—Dyi | 70.97 (18) | H15B—C15—H15C | 109.5 |
B3—B4—H4 | 127.9 | N1—C16—H16A | 109.5 |
B5—B4—H4 | 127.9 | N1—C16—H16B | 109.5 |
Dyi—B4—H4 | 57.8 | H16A—C16—H16B | 109.5 |
C1—B5—B4 | 107.0 (3) | N1—C16—H16C | 109.5 |
C1—B5—Dyi | 171.5 (2) | H16A—C16—H16C | 109.5 |
B4—B5—Dyi | 73.34 (18) | H16B—C16—H16C | 109.5 |
C1—B5—H5 | 126.5 | N2—C17—H17A | 109.5 |
B4—B5—H5 | 126.5 | N2—C17—H17B | 109.5 |
Dyi—B5—H5 | 53.8 | H17A—C17—H17B | 109.5 |
C2—B6—C1 | 52.07 (18) | N2—C17—H17C | 109.5 |
C2—B6—H6 | 122.4 (19) | H17A—C17—H17C | 109.5 |
C1—B6—H6 | 122 (2) | H17B—C17—H17C | 109.5 |
Si1—C7—H7A | 109.5 | N2—C18—H18A | 109.5 |
Si1—C7—H7B | 109.5 | N2—C18—H18B | 109.5 |
H7A—C7—H7B | 109.5 | H18A—C18—H18B | 109.5 |
Si1—C7—H7C | 109.5 | N2—C18—H18C | 109.5 |
H7A—C7—H7C | 109.5 | H18A—C18—H18C | 109.5 |
H7B—C7—H7C | 109.5 | H18B—C18—H18C | 109.5 |
Si1—C8—H8A | 109.5 |
Symmetry code: (i) −x+1, −y+2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Dy(C8H22B4Si2)Cl(C6H16N2)] |
Mr | 531.84 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 11.4467 (8), 14.8624 (10), 13.8615 (9) |
β (°) | 92.770 (1) |
V (Å3) | 2355.4 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 3.39 |
Crystal size (mm) | 0.80 × 0.30 × 0.30 |
Data collection | |
Diffractometer | Bruker SMART CCD PLATFORM diffractometer |
Absorption correction | Multi-scan SADABS (Sheldrick, 2006) |
Tmin, Tmax | 0.257, 0.362 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17271, 4151, 4142 |
Rint | 0.019 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.024, 0.050, 1.44 |
No. of reflections | 4151 |
No. of parameters | 231 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.64, −0.61 |
Computer programs: SMART (Bruker, 2003), SMART and SAINT (Bruker, 2003), SAINT (Bruker, 2003), SIR97 (Altomare et al., 1999), SHELXTL (Sheldrick, 2008).
Acknowledgements
This work was supported by Northern Illinois University and by grants from the donors of the Petroleum Research Fund, administered by the American Chemical Society, and the National Science Foundation. JAM thanks the Robert A. Welch Foundation (grant N-1322).
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Bazan, G. C., Schaefer, W. P. & Bercaw, J. E. (1993). Organometallics, 12, 2126–2130. CSD CrossRef CAS Web of Science Google Scholar
Bruker (2003). SMART and SAINT. Bruker Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2006). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tomlinson, S., Zheng, C., Hosmane, N. S., Yang, J., Wang, Y., Zhang, H., Gray, T. G., Demissie, T., Maguire, J. A., Baumann, F., Klein, A., Sarkar, B., Kaim, W. & Lipscomb, W. N. (2005). Organometallics 24, 2177–2187. Web of Science CSD CrossRef CAS Google Scholar
Wang, J., Smith, J., Zheng, C., Maguire, J. A. & Hosmane, N. S. (2006). Organometallics, 25, 4118–4130. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The lanthanacarboranes (LnC2B4) cage systems are of interest in that their structural chemistry depends on the number and nature of the metal ligands other than the particular carborane. For example, the reaction of the tetrahydrofuran (THF) solvated dilithium compounds of B4C8H22Si22- with LnCl3 in 2:1 molar ratios produced exclusively a trinuclear clusters (Tomlinson et al. 2005, Wang et al. 2006, and literature cited therein). The methoxide and oxide ions were thought to be the result of a degradation of the THF molecules. This is consistent with the observation that the reaction of the TMEDA lithiacarboranes with LnCl3 in 2:1 molar ratios gave the expected full sandwich lanthanacarboranes. This tendency for TMEDA to disrupt complex aggregation and alter the course of a metalation reactions was also found in the d-block metals. The reaction of the THF solvated dilithium salts of B4C8H22Si22- with either CoCl2 or NiCl2 induced a metal disproportion reaction yielding commo-complexes and the respective metals. On the other hand, similar reactions with the TMEDA-solvated carborane dianions produced the corresponding closo-compound (Tomlinson et al. 2005). The reaction of a nido-compound with a number of lanthanide halides in 2:1 carborane-to-lanthanide molar ratios produced only the corresponding dimers (Wang et al. 2006). The presence of the reactive chlorides made these compounds potentially useful precursors in the syntheses of other lanthanacarboranes. Since dimer formation is thought to inhibit the reactions of the metallacatboranes (Bazan et al. 1993), the synthesis of a monomeric dysprosacarborane was attempted by the reaction of DyCl3 and the nido-compound, giving the title compound. The structure of the title compound, shown in Figure 1, is somewhat surprising in that it still remains a dimer. The structure consists of two half-sandwich units bridged at the B4, B5 positions by two pairs of B—H—Dy bonds. The average coordination bond distances (Å) are: Dy—Cl 2.5851 (9), Dy—N1 2.598 (3), Dy—N2 2.698 (3), Dy—B4,B5 2.728 (4), 2.692 (4), Dy-av(C1, C2, B3, B4, B5) 2.720 and the corresponding bond angles (°) are Cl—Dy—N1 95.98 (7), Cl—Dy—B5 143.74 (8), N(1)—Dy—N(2) 68.3 (1), B(5)—Dy—B(4) 35.7 (1). The Dy-av(C2B3) distance of 2.712Å and the Dy—Cl distance of 2.5851 (9) Å in the structure are similar to the values of 2.717 Å and 2.5757 (14) Å, respectively, found in anther Dy compound (Wang et al. 2006). This is one of the few instances where the substitution of THF by TMEDA molecules does not change either the cluster or intermolecular geometries.