inorganic compounds
Dineodymium(III) ditungstate(VI), Nd2W2O9
aInstitut für Kristallographie, Universität zu Köln, Zülpicher Strasse 49b, D-50674 Köln, Germany
*Correspondence e-mail: peter.held@uni-koeln.de
Single crystals of monoclinic Nd2W2O9 were obtained by growth from tungsten borate in an atmosphere of air. The consists of chains of distorted [WO6] octahedra that run along the c axis of the structure, and of [NdO9] polyhedra that are connected via common faces and common edges to form a three-dimensional framework.
Related literature
For literature on related structures, see: Lacorre et al. (2000), Goutenoire et al. (2000) and Evans et al. (2005) for La2Mo2O9; Laligant et al. (2001) for La2W2O9; Yoshimura et al. (1976) for Ce2W2O9; Borisov & Klevtsova (1970) for Pr2W2O9; Aruga et al. (2005) for Eu2W2O9.
Experimental
Crystal data
|
Data collection: X-AREA (Stoe & Cie, 2001); cell X-AREA; data reduction: X-AREA; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS (Dowty, 2002); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808009914/si2082sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808009914/si2082Isup2.hkl
Light purple prismatic single crystals of Nd2W2O9 were obtained by growth from tungsten borate
using a melt of composition Nd2O3: B2O3: WO3 = 22.5: 25: 52.5. An appropriate homogenized powder mixture of Nd2O3 (99.9%, Alfa Aesar), B2O3 (99.98% Alfa Aesar) and WO3 (99.8%, Alfa Aesar) was heated in a covered platinum crucible in air atmosphere to 1423 K and subsequently cooled at a rate of 3 K h-1 to 1173 K. Transparent single crystals of the title compound were separated mechanically from the tungsten borate flux.Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for
R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.Data collection: X-AREA (Stoe & Cie, 2001); cell
X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS (Dowty, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Nd2W2O9 | F(000) = 1360 |
Mr = 800.17 | Dx = 8.008 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.6501 (11) Å | Cell parameters from 25 reflections |
b = 9.8547 (10) Å | θ = 20.1–27.6° |
c = 9.2326 (13) Å | µ = 49.96 mm−1 |
β = 107.538 (11)° | T = 290 K |
V = 663.69 (15) Å3 | Prism, light purple |
Z = 4 | 0.25 × 0.15 × 0.13 mm |
Stoe IPDSII diffractometer | 2330 independent reflections |
Radiation source: fine-focus sealed tube | 2072 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.088 |
ω and ϕ scans | θmax = 32.2°, θmin = 2.8° |
Absorption correction: numerical [X-SHAPE (Stoe & Cie, 1999) and X-RED (Stoe & Cie, 2001)] | h = −11→11 |
Tmin = 0.080, Tmax = 0.469 | k = −14→14 |
15723 measured reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | w = 1/[σ2(Fo2) + (0.0439P)2 + 16.1611P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.093 | (Δ/σ)max < 0.001 |
S = 1.09 | Δρmax = 2.34 e Å−3 |
2330 reflections | Δρmin = −1.62 e Å−3 |
119 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.00391 (19) |
Nd2W2O9 | V = 663.69 (15) Å3 |
Mr = 800.17 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.6501 (11) Å | µ = 49.96 mm−1 |
b = 9.8547 (10) Å | T = 290 K |
c = 9.2326 (13) Å | 0.25 × 0.15 × 0.13 mm |
β = 107.538 (11)° |
Stoe IPDSII diffractometer | 2330 independent reflections |
Absorption correction: numerical [X-SHAPE (Stoe & Cie, 1999) and X-RED (Stoe & Cie, 2001)] | 2072 reflections with I > 2σ(I) |
Tmin = 0.080, Tmax = 0.469 | Rint = 0.088 |
15723 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.093 | w = 1/[σ2(Fo2) + (0.0439P)2 + 16.1611P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | Δρmax = 2.34 e Å−3 |
2330 reflections | Δρmin = −1.62 e Å−3 |
119 parameters |
Experimental. A suitable single-crystal was carefully selected under a polarizing microscope and mounted in a glass capillary. The scattering intensities were collected on an imaging plate diffractometer (IPDS II, Stoe & Cie) equipped with a fine focus sealed tube X-ray source (Mo Kα, λ = 0.71073 Å) operating at 50 kV and 30 mA. Intensity data for the title compound were collected at room temperature by ω-scans in 180 frames (0 < ω < 180°; ϕ = 0° and 90°, Δω = 2°, exposure time of 10 min) in the 2Θ range 2.29 to 59.53°. Structure solution and refinement were carried out using the programs SIR92 (Altomare et al., 1993) and SHELXL97 (Sheldrick, 2008). A numerical absorption correction (X-RED (Stoe & Cie, 2001) was applied after optimization of the crystal shape (X-SHAPE (Stoe & Cie, 1999)). The last cycles of refinement included atomic positions and anisotropic parameters for all atoms. The final difference maps were free of any chemically significant features. The refinement was based on F2 for ALL reflections. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
W1 | 0.57359 (5) | 0.72579 (4) | −0.03462 (4) | 0.01073 (11) | |
W2 | −0.07053 (5) | 0.75136 (4) | 0.26320 (4) | 0.01058 (11) | |
Nd1 | 0.28098 (7) | 0.95544 (5) | 0.07401 (5) | 0.01298 (13) | |
Nd2 | 0.22931 (7) | 0.55245 (5) | 0.15396 (5) | 0.01243 (13) | |
O1 | −0.0113 (10) | 0.3795 (7) | 0.0941 (7) | 0.0131 (12) | |
O2 | 0.4920 (10) | 0.5969 (7) | −0.1761 (7) | 0.0144 (12) | |
O3 | 0.7367 (9) | 0.8644 (7) | 0.1417 (7) | 0.0128 (12) | |
O4 | 0.7687 (10) | 0.6210 (8) | 0.0779 (8) | 0.0152 (13) | |
O5 | 0.0438 (10) | 0.5887 (7) | 0.3447 (8) | 0.0139 (12) | |
O6 | 0.0995 (10) | 0.7810 (7) | 0.1630 (8) | 0.0149 (13) | |
O7 | 0.4449 (9) | 0.8935 (6) | −0.1077 (7) | 0.0109 (11) | |
O8 | 0.4091 (10) | 0.7091 (8) | 0.0739 (8) | 0.0147 (12) | |
O9 | −0.2605 (10) | 0.6904 (8) | 0.3610 (7) | 0.0143 (13) |
U11 | U22 | U33 | U12 | U13 | U23 | |
W1 | 0.01099 (18) | 0.01014 (18) | 0.01053 (17) | 0.00011 (11) | 0.00245 (12) | 0.00011 (11) |
W2 | 0.01064 (18) | 0.01036 (17) | 0.01018 (17) | 0.00025 (11) | 0.00230 (12) | 0.00037 (11) |
Nd1 | 0.0138 (2) | 0.0122 (2) | 0.0118 (2) | −0.00143 (15) | 0.00216 (16) | 0.00027 (15) |
Nd2 | 0.0124 (2) | 0.0116 (2) | 0.0123 (2) | −0.00062 (15) | 0.00227 (16) | 0.00016 (15) |
O1 | 0.016 (3) | 0.009 (3) | 0.011 (3) | 0.002 (2) | −0.001 (2) | 0.003 (2) |
O2 | 0.022 (3) | 0.010 (3) | 0.009 (3) | −0.002 (2) | 0.001 (2) | −0.003 (2) |
O3 | 0.015 (3) | 0.011 (3) | 0.011 (3) | 0.006 (2) | 0.001 (2) | 0.001 (2) |
O4 | 0.013 (3) | 0.017 (3) | 0.012 (3) | 0.006 (2) | −0.001 (2) | 0.005 (2) |
O5 | 0.018 (3) | 0.009 (3) | 0.012 (3) | 0.002 (2) | 0.001 (2) | 0.004 (2) |
O6 | 0.013 (3) | 0.015 (3) | 0.019 (3) | −0.004 (2) | 0.008 (2) | 0.004 (2) |
O7 | 0.014 (3) | 0.006 (3) | 0.011 (3) | 0.002 (2) | 0.001 (2) | 0.002 (2) |
O8 | 0.011 (3) | 0.019 (3) | 0.016 (3) | −0.004 (2) | 0.007 (2) | −0.001 (3) |
O9 | 0.017 (3) | 0.015 (3) | 0.012 (3) | 0.001 (2) | 0.007 (2) | 0.002 (2) |
W1—O2 | 1.794 (7) | Nd1—Nd2vi | 3.7787 (9) |
W1—O8 | 1.837 (7) | Nd1—Nd2viii | 3.9479 (9) |
W1—O4 | 1.855 (7) | Nd2—O8 | 2.331 (7) |
W1—O7 | 1.938 (6) | Nd2—O7vii | 2.379 (6) |
W1—O9i | 1.990 (7) | Nd2—O1 | 2.447 (7) |
W1—O3 | 2.202 (7) | Nd2—O6 | 2.473 (8) |
W1—Nd1ii | 3.3885 (7) | Nd2—O1ix | 2.485 (6) |
W1—Nd2iii | 3.4651 (7) | Nd2—O2iii | 2.548 (8) |
W1—Nd1 | 3.5344 (7) | Nd2—O5 | 2.598 (7) |
W2—O1iv | 1.796 (6) | Nd2—O3x | 2.601 (7) |
W2—O6 | 1.833 (7) | Nd2—O4iii | 2.743 (8) |
W2—O5 | 1.872 (6) | Nd2—W2xi | 3.3800 (7) |
W2—O3v | 1.917 (6) | Nd2—W1iii | 3.4651 (7) |
W2—O9 | 2.020 (7) | O1—W2xi | 1.796 (6) |
W2—O4v | 2.196 (7) | O1—Nd2ix | 2.485 (6) |
W2—Nd2iv | 3.3800 (7) | O2—Nd1vi | 2.439 (7) |
W2—Nd2 | 3.3934 (7) | O2—Nd2iii | 2.548 (8) |
Nd1—O5vi | 2.377 (6) | O3—W2xii | 1.917 (6) |
Nd1—O9iv | 2.409 (8) | O3—Nd2viii | 2.601 (7) |
Nd1—O2vii | 2.439 (7) | O3—Nd1ii | 2.641 (7) |
Nd1—O7 | 2.455 (7) | O4—W2xii | 2.196 (7) |
Nd1—O6 | 2.499 (7) | O4—Nd2iii | 2.743 (8) |
Nd1—O7ii | 2.513 (7) | O5—Nd1vii | 2.377 (6) |
Nd1—O8 | 2.618 (8) | O7—Nd2vi | 2.379 (6) |
Nd1—O3ii | 2.641 (7) | O7—Nd1ii | 2.513 (7) |
Nd1—O5iv | 3.096 (7) | O9—W1xiii | 1.990 (7) |
Nd1—W1ii | 3.3885 (7) | O9—Nd1xi | 2.409 (8) |
O2—W1—O8 | 100.9 (3) | O8—Nd1—Nd2vi | 84.50 (16) |
O2—W1—O4 | 93.3 (3) | O3ii—Nd1—Nd2vi | 43.46 (15) |
O8—W1—O4 | 102.3 (3) | W1ii—Nd1—Nd2vi | 81.091 (15) |
O2—W1—O7 | 108.8 (3) | W1—Nd1—Nd2vi | 64.843 (14) |
O8—W1—O7 | 84.6 (3) | O5vi—Nd1—Nd2viii | 159.13 (18) |
O4—W1—O7 | 155.3 (3) | O9iv—Nd1—Nd2viii | 74.28 (17) |
O2—W1—O9i | 94.2 (3) | O2vii—Nd1—Nd2viii | 38.63 (18) |
O8—W1—O9i | 160.6 (3) | O7—Nd1—Nd2viii | 84.99 (15) |
O4—W1—O9i | 88.8 (3) | O6—Nd1—Nd2viii | 118.17 (17) |
O7—W1—O9i | 79.0 (3) | O7ii—Nd1—Nd2viii | 35.06 (14) |
O2—W1—O3 | 166.6 (3) | O8—Nd1—Nd2viii | 86.62 (16) |
O8—W1—O3 | 88.9 (3) | O3ii—Nd1—Nd2viii | 98.06 (15) |
O4—W1—O3 | 75.5 (3) | W1ii—Nd1—Nd2viii | 64.182 (13) |
O7—W1—O3 | 81.0 (3) | W1—Nd1—Nd2viii | 76.989 (16) |
O9i—W1—O3 | 78.4 (3) | Nd2vi—Nd1—Nd2viii | 116.337 (18) |
O2—W1—Nd1ii | 129.2 (2) | O8—Nd2—O7vii | 80.4 (2) |
O8—W1—Nd1ii | 116.3 (2) | O8—Nd2—O1 | 149.9 (2) |
O4—W1—Nd1ii | 110.0 (2) | O7vii—Nd2—O1 | 129.0 (2) |
O7—W1—Nd1ii | 47.2 (2) | O8—Nd2—O6 | 71.9 (3) |
O9i—W1—Nd1ii | 44.4 (2) | O7vii—Nd2—O6 | 86.5 (2) |
O3—W1—Nd1ii | 51.18 (18) | O1—Nd2—O6 | 111.1 (2) |
O2—W1—Nd2iii | 45.4 (2) | O8—Nd2—O1ix | 79.9 (2) |
O8—W1—Nd2iii | 122.5 (2) | O7vii—Nd2—O1ix | 151.4 (2) |
O4—W1—Nd2iii | 51.9 (2) | O1—Nd2—O1ix | 74.3 (3) |
O7—W1—Nd2iii | 142.0 (2) | O6—Nd2—O1ix | 67.7 (2) |
O9i—W1—Nd2iii | 76.8 (2) | O8—Nd2—O2iii | 81.3 (3) |
O3—W1—Nd2iii | 121.46 (17) | O7vii—Nd2—O2iii | 74.0 (2) |
Nd1ii—W1—Nd2iii | 120.734 (19) | O1—Nd2—O2iii | 99.8 (2) |
O2—W1—Nd1 | 123.3 (2) | O6—Nd2—O2iii | 149.1 (2) |
O8—W1—Nd1 | 46.0 (2) | O1ix—Nd2—O2iii | 122.9 (2) |
O4—W1—Nd1 | 132.0 (2) | O8—Nd2—O5 | 128.2 (2) |
O7—W1—Nd1 | 41.7 (2) | O7vii—Nd2—O5 | 73.2 (2) |
O9i—W1—Nd1 | 115.0 (2) | O1—Nd2—O5 | 73.8 (2) |
O3—W1—Nd1 | 70.08 (18) | O6—Nd2—O5 | 62.9 (2) |
Nd1ii—W1—Nd1 | 72.141 (17) | O1ix—Nd2—O5 | 103.6 (2) |
Nd2iii—W1—Nd1 | 166.031 (17) | O2iii—Nd2—O5 | 129.8 (2) |
O1iv—W2—O6 | 96.6 (3) | O8—Nd2—O3x | 139.7 (2) |
O1iv—W2—O5 | 106.8 (3) | O7vii—Nd2—O3x | 66.3 (2) |
O6—W2—O5 | 91.3 (3) | O1—Nd2—O3x | 64.6 (2) |
O1iv—W2—O3v | 93.3 (3) | O6—Nd2—O3x | 125.3 (2) |
O6—W2—O3v | 98.6 (3) | O1ix—Nd2—O3x | 138.9 (2) |
O5—W2—O3v | 156.4 (3) | O2iii—Nd2—O3x | 68.4 (2) |
O1iv—W2—O9 | 91.1 (3) | O5—Nd2—O3x | 64.0 (2) |
O6—W2—O9 | 171.5 (3) | O8—Nd2—O4iii | 91.3 (2) |
O5—W2—O9 | 83.0 (3) | O7vii—Nd2—O4iii | 134.1 (2) |
O3v—W2—O9 | 84.5 (3) | O1—Nd2—O4iii | 64.5 (2) |
O1iv—W2—O4v | 166.5 (3) | O6—Nd2—O4iii | 133.7 (2) |
O6—W2—O4v | 90.9 (3) | O1ix—Nd2—O4iii | 67.0 (2) |
O5—W2—O4v | 84.0 (3) | O2iii—Nd2—O4iii | 60.1 (2) |
O3v—W2—O4v | 74.5 (3) | O5—Nd2—O4iii | 138.4 (2) |
O9—W2—O4v | 82.2 (3) | O3x—Nd2—O4iii | 95.7 (2) |
O1iv—W2—Nd2iv | 44.5 (2) | O8—Nd2—W2xi | 160.01 (19) |
O6—W2—Nd2iv | 109.4 (2) | O7vii—Nd2—W2xi | 100.57 (16) |
O5—W2—Nd2iv | 144.8 (2) | O1—Nd2—W2xi | 30.95 (15) |
O3v—W2—Nd2iv | 50.0 (2) | O6—Nd2—W2xi | 128.07 (16) |
O9—W2—Nd2iv | 78.7 (2) | O1ix—Nd2—W2xi | 104.97 (16) |
O4v—W2—Nd2iv | 122.34 (18) | O2iii—Nd2—W2xi | 79.85 (16) |
O1iv—W2—Nd2 | 120.5 (2) | O5—Nd2—W2xi | 70.14 (16) |
O6—W2—Nd2 | 45.2 (2) | O3x—Nd2—W2xi | 34.37 (14) |
O5—W2—Nd2 | 49.4 (2) | O4iii—Nd2—W2xi | 73.54 (16) |
O3v—W2—Nd2 | 129.1 (2) | O8—Nd2—W2 | 103.17 (19) |
O9—W2—Nd2 | 127.1 (2) | O7vii—Nd2—W2 | 86.45 (16) |
O4v—W2—Nd2 | 72.57 (19) | O1—Nd2—W2 | 86.55 (17) |
Nd2iv—W2—Nd2 | 153.578 (17) | O6—Nd2—W2 | 31.75 (16) |
O5vi—Nd1—O9iv | 108.0 (2) | O1ix—Nd2—W2 | 77.98 (17) |
O5vi—Nd1—O2vii | 156.0 (2) | O2iii—Nd2—W2 | 159.08 (15) |
O9iv—Nd1—O2vii | 92.4 (2) | O5—Nd2—W2 | 33.16 (14) |
O5vi—Nd1—O7 | 75.9 (2) | O3x—Nd2—W2 | 97.17 (16) |
O9iv—Nd1—O7 | 119.6 (2) | O4iii—Nd2—W2 | 139.03 (14) |
O2vii—Nd1—O7 | 105.4 (2) | W2xi—Nd2—W2 | 96.814 (16) |
O5vi—Nd1—O6 | 79.4 (2) | O8—Nd2—W1iii | 93.93 (19) |
O9iv—Nd1—O6 | 119.7 (2) | O7vii—Nd2—W1iii | 102.97 (16) |
O2vii—Nd1—O6 | 79.5 (2) | O1—Nd2—W1iii | 75.32 (17) |
O7—Nd1—O6 | 120.2 (2) | O6—Nd2—W1iii | 161.63 (17) |
O5vi—Nd1—O7ii | 127.1 (2) | O1ix—Nd2—W1iii | 98.99 (16) |
O9iv—Nd1—O7ii | 60.9 (2) | O2iii—Nd2—W1iii | 30.07 (15) |
O2vii—Nd1—O7ii | 73.7 (2) | O5—Nd2—W1iii | 134.69 (15) |
O7—Nd1—O7ii | 69.7 (2) | O3x—Nd2—W1iii | 73.07 (16) |
O6—Nd1—O7ii | 153.1 (2) | O4iii—Nd2—W1iii | 32.17 (14) |
O5vi—Nd1—O8 | 90.9 (2) | W2xi—Nd2—W1iii | 66.284 (15) |
O9iv—Nd1—O8 | 160.7 (2) | W2—Nd2—W1iii | 161.709 (19) |
O2vii—Nd1—O8 | 70.3 (2) | W2xi—O1—Nd2 | 104.6 (3) |
O7—Nd1—O8 | 60.1 (2) | W2xi—O1—Nd2ix | 148.7 (4) |
O6—Nd1—O8 | 66.9 (2) | Nd2—O1—Nd2ix | 105.7 (2) |
O7ii—Nd1—O8 | 104.5 (2) | W1—O2—Nd1vi | 145.5 (4) |
O5vi—Nd1—O3ii | 66.4 (2) | W1—O2—Nd2iii | 104.6 (3) |
O9iv—Nd1—O3ii | 63.2 (2) | Nd1vi—O2—Nd2iii | 104.7 (3) |
O2vii—Nd1—O3ii | 136.4 (2) | W2xii—O3—W1 | 103.7 (3) |
O7—Nd1—O3ii | 64.7 (2) | W2xii—O3—Nd2viii | 95.7 (2) |
O6—Nd1—O3ii | 143.4 (2) | W1—O3—Nd2viii | 152.7 (3) |
O7ii—Nd1—O3ii | 63.0 (2) | W2xii—O3—Nd1ii | 133.4 (3) |
O8—Nd1—O3ii | 123.9 (2) | W1—O3—Nd1ii | 88.3 (2) |
O5vi—Nd1—W1ii | 105.15 (17) | Nd2viii—O3—Nd1ii | 92.2 (2) |
O9iv—Nd1—W1ii | 35.29 (17) | W1—O4—W2xii | 106.1 (3) |
O2vii—Nd1—W1ii | 98.77 (17) | W1—O4—Nd2iii | 95.9 (3) |
O7—Nd1—W1ii | 84.57 (15) | W2xii—O4—Nd2iii | 147.0 (3) |
O6—Nd1—W1ii | 154.94 (18) | W2—O5—Nd1vii | 130.8 (4) |
O7ii—Nd1—W1ii | 34.47 (14) | W2—O5—Nd2 | 97.5 (3) |
O8—Nd1—W1ii | 136.43 (15) | Nd1vii—O5—Nd2 | 98.8 (3) |
O3ii—Nd1—W1ii | 40.51 (15) | W2—O6—Nd2 | 103.0 (3) |
O5vi—Nd1—W1 | 90.51 (18) | W2—O6—Nd1 | 145.6 (4) |
O9iv—Nd1—W1 | 141.30 (17) | Nd2—O6—Nd1 | 110.3 (3) |
O2vii—Nd1—W1 | 80.66 (17) | W1—O7—Nd2vi | 130.6 (3) |
O7—Nd1—W1 | 31.71 (14) | W1—O7—Nd1 | 106.5 (3) |
O6—Nd1—W1 | 96.60 (18) | Nd2vi—O7—Nd1 | 102.8 (2) |
O7ii—Nd1—W1 | 80.69 (15) | W1—O7—Nd1ii | 98.3 (3) |
O8—Nd1—W1 | 30.35 (15) | Nd2vi—O7—Nd1ii | 107.6 (2) |
O3ii—Nd1—W1 | 96.28 (15) | Nd1—O7—Nd1ii | 110.3 (2) |
W1ii—Nd1—W1 | 107.859 (18) | W1—O8—Nd2 | 143.0 (4) |
O5vi—Nd1—Nd2vi | 42.80 (18) | W1—O8—Nd1 | 103.6 (3) |
O9iv—Nd1—Nd2vi | 106.32 (16) | Nd2—O8—Nd1 | 110.9 (3) |
O2vii—Nd1—Nd2vi | 143.23 (18) | W1xiii—O9—W2 | 138.0 (4) |
O7—Nd1—Nd2vi | 37.87 (14) | W1xiii—O9—Nd1xi | 100.3 (3) |
O6—Nd1—Nd2vi | 115.25 (18) | W2—O9—Nd1xi | 120.4 (3) |
O7ii—Nd1—Nd2vi | 87.96 (15) |
Symmetry codes: (i) x+1, −y+3/2, z−1/2; (ii) −x+1, −y+2, −z; (iii) −x+1, −y+1, −z; (iv) −x, y+1/2, −z+1/2; (v) x−1, y, z; (vi) x, −y+3/2, z−1/2; (vii) x, −y+3/2, z+1/2; (viii) −x+1, y+1/2, −z+1/2; (ix) −x, −y+1, −z; (x) −x+1, y−1/2, −z+1/2; (xi) −x, y−1/2, −z+1/2; (xii) x+1, y, z; (xiii) x−1, −y+3/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | Nd2W2O9 |
Mr | 800.17 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 290 |
a, b, c (Å) | 7.6501 (11), 9.8547 (10), 9.2326 (13) |
β (°) | 107.538 (11) |
V (Å3) | 663.69 (15) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 49.96 |
Crystal size (mm) | 0.25 × 0.15 × 0.13 |
Data collection | |
Diffractometer | Stoe IPDSII diffractometer |
Absorption correction | Numerical [X-SHAPE (Stoe & Cie, 1999) and X-RED (Stoe & Cie, 2001)] |
Tmin, Tmax | 0.080, 0.469 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15723, 2330, 2072 |
Rint | 0.088 |
(sin θ/λ)max (Å−1) | 0.749 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.093, 1.09 |
No. of reflections | 2330 |
No. of parameters | 119 |
w = 1/[σ2(Fo2) + (0.0439P)2 + 16.1611P] where P = (Fo2 + 2Fc2)/3 | |
Δρmax, Δρmin (e Å−3) | 2.34, −1.62 |
Computer programs: X-AREA (Stoe & Cie, 2001), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ATOMS (Dowty, 2002).
Acknowledgements
This work was supported by the Deutsche Forschungsgemeinschaft (DFG) (grant No. BE 2147/6-1). The authors thank G. Meyer and I. Pantenburg from the Institute of Inorganic Chemistry of the University of Cologne for help with data collection.
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Aruga, A., Matsuda, T., Hasegawa, T. & Shioi, K. (2005). Nippon Kagakkai Koen Yokoshu (Preprints of the Conference of the Chemical Society of Japan), 85, 689. Google Scholar
Borisov, S. V. & Klevtsova, R. F. (1970). Sov. Phys. Crystallogr. 15, 28–31. Google Scholar
Dowty, E. (2002). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA. Google Scholar
Evans, I. R., Howard, J. A. K. & Evans, J. S. O. (2005). Chem. Mater. 17, 4074–4077. Web of Science CrossRef CAS Google Scholar
Goutenoire, F., Isnard, O., Retoux, R. & Lacorre, P. (2000). Chem. Mater. 12, 2575–2580. Web of Science CrossRef CAS Google Scholar
Lacorre, P., Goutenoire, F., Bohnke, O., Retoux, R. & Laligant, Y. (2000). Nature, 404, 856–858. Web of Science CrossRef PubMed CAS Google Scholar
Laligant, Y., Le Bail, A. & Goutenoire, F. (2001). J. Solid State Chem. 159, 223–227. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (1999). X-SHAPE. Stoe & Cie, Darmstadt, Germany. Google Scholar
Stoe & Cie (2001). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany. Google Scholar
Yoshimura, M., Sibieude, F., Rouanet, A. & Foex, M. (1976). J. Solid State Chem. 16, 219–232. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The crystal structure of the title compound consists of two symmetrically non-equivalent Nd atoms that both are ninefold coordinated by oxygen. Nd - O bond lengths range from 2.377 (6) Å to 3.096 (7) Å for Nd1 and from 2.447 (7) Å to 2.743 (8) Å for Nd2. (The distance to the next nearest cation, W1 in case of Nd1 with distance Nd1 - W1 = 3.3885 (7) Å, W2 in case of Nd2 with distance Nd2 - W2 = 3.3800 (7) Å, is taken as the limit of the first oxygen coordination surrounding of Nd). The [NdO9] polyhedra can be described as distorted capped square antiprisms for both Nd atoms. The polyhedra of Nd1 are sharing edges, thus forming chains that run along the a-axis of the structure (Fig. 1). Parallel to the a-c plane of the structure these chains are linked by dimers of edge-sharing coordination polyhedra of Nd2 (groups [Nd2O16]). The polyhedra dimers of Nd2 and the polyhedra chains of Nd1 are connected via common faces (i.e. three common oxygen ligands) between a Nd2 polyhedron and a Nd1 polyhedron, and a common edge of the Nd2 polyhedron and an adjacent Nd1 polyhedron (for the atomic numbering scheme see Fig. 3). From this linkage sheets of [NdO9] polyhedra parallel to the a-c plane result (Fig. 1). Along the b-axis the sheets are stacked in parallel with a translation of c/2, and are connected by common edges of Nd1 and Nd2 polyhedra alternatingly to neighbouring polyhedra sheets on both sides. This connection scheme results in a three-dimensional framework of [NdO9] polyhedra with narrow channels along the c-axis, where tungsten atoms are located. Within the [NdO9] polyhedra sheets Nd1 - Nd2 distances as short as 3.7787 (9) Å occur (face sharing of [NdO9] polyhedra).
Between the [NdO9] polyhedra sheets chains of distorted [WO6] octahedra are running along the c-axis (see Fig. 1 and Fig. 2). The octahedra chains consist of pairs of edge-sharing [WO6] units, each pair combining an octahedron [W1 O6] and an octahedron [W2 O6]. The octahedra pairs are connected via common corners O9 to infinite chains. W—O bonds to bridging oxygen atoms are elongated with bond lengths ranging from 1.855 (7) Å to 2.202 (7) Å. All oxygen atoms are simultaneously ligands of neodymium and of tungsten.
Borisov & Klevtsova (1970) published the structure of Pr2W2O9, however, with rather large uncertainty of the oxygen positions. Nd2W2O9 turns out to be isomorphous to this compound, but it should be noted that in Pr2W2O9 the coordination of one of the Pr atoms was regarded as eightfold, only, while the other is ninefold coordinated, as both Nd atoms are in Nd2W2O9. Due to this, in Pr2W2O9 the Pr coordination polyhedra are not connected to sheets but only to stripes parallel to the a-c plane of the structure. The inclusion of nine oxygen atoms to the coordination surrounding of Nd1 in Nd2W2O9 is meaningful, both, with respect to the connection scheme of Nd coordination polyhedra and regarding the Nd - O distances, where a distinct gap between distances of the nine oxygen atoms included in the coordination polyhedron and distances of further oxygen atoms is seen. All further oxygen atoms have distances Nd1 - O equal or larger than 3.4694 Å, which is more than the shortest Nd—W distance.
After the discovery of fast oxygen ion conduction in La2Mo2O9 by Lacorre et al. (2000) interest in RE2M2O9 (RE = rare earth element, M = Mo, W) compounds renewed. For La compounds La2M2O9 (M = Mo, W) evidence for the occurrence of a high-temperature (space group P213) and a low-temperature modification (space group P21 for La2Mo2O9, space group P1 for La2W2O9), together with their structure determination was given by Goutenoire et al. (2000), Laligant et al. (2001) and Evans et al. (2005); a similar polymorphy had been already presumed earlier for Ce2W2O9 by Yoshimura et al. (1976). Recently, the compound Eu2W2O9 was mentioned to be isomorphous to Pr2W2O9 (and hence to Nd2W2O9) by Aruga et al. (2005).