metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­aqua­hexa­kis(μ2-3,5-di­amino-4H-1,2,4-triazole)trinickel(II) tris­­(hexa­fluoridosilicate) icosa­hydrate

aKey Laboratory of Applied Surface and Colloid Chemistry, Shaanxi Normal University, Ministry of Education, Xi'an 710062, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: wuliping250921@stu.snnu.edu.cn

(Received 7 April 2008; accepted 6 May 2008; online 10 May 2008)

The trinuclear cation of the title compound, [Ni3(C2H5N5)6(H2O)6][SiF6]3·20H2O, has the six 3,5-diamino-1,2,4-triazole ligands each bridging two metal atoms; the metal atom in the middle, which lies on a special position (of 32 site symmetry), is connected to six N atoms in an octa­hedral geometry. The other metal atom, which lies on a special position (of 3 site symmetry), is connected to three N atoms and three O atoms. One hexa­fluroridosilicate anion lies on a site of 3 symmetry and the other lies on a site of [\overline{3}] symmetry. The hexa­cation, dianions and uncoordinated water mol­ecules inter­act through hydrogen bonds to form a three-dimensional network. One uncoordinated water molecule is disordered, with site occupancy 0.3.

Related literature

For the structure of the title hexa­cation as the hydrated sulfate salt, see: Zhang et al. (2007[Zhang, G.-F., Zhao, S.-M., She, J.-B. & Ng, S. W. (2007). Acta Cryst. E63, m1517-m1518.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni3(C2H5N5)6(H2O)6][SiF6]3·20H2O

  • Mr = 1665.48

  • Trigonal, [R \overline 3c ]

  • a = 13.024 (1) Å

  • c = 64.462 (5) Å

  • V = 9469.8 (9) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 1.09 mm−1

  • T = 293 (2) K

  • 0.49 × 0.46 × 0.44 mm

Data collection
  • Bruker APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.560, Tmax = 0.646

  • 25347 measured reflections

  • 2420 independent reflections

  • 2093 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.106

  • S = 1.06

  • 2420 reflections

  • 185 parameters

  • 23 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—N1 2.062 (2)
Ni1—O1 2.104 (2)
Ni2—N2 2.111 (2)

Data collection: SMART (Bruker, 2004[Bruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

A recent study reported the nickel sulfate complex of 3,5-diamino-1,2,4-triazole. The cation is a centrosymmetric trinuclear hexacation [Ni3(C2H5N5)6(H2O)6]6+, whose charge is balanced by the sulfate anions. The N-heterocyclic ligands each bridge two nickel atoms (Zhang et al., 2007). The corresponding synthesis with nickel hexafluoridosilicate in place of nickel sulfate gave the analogous cluster cation (Scheme I, Fig. 1). The cation and anions interact through the coordinated and free water molecules to give rise to a three-dimensional, hydrogen bonded network.

Related literature top

For the structure of the title hexacation as the hydrated sulfate salt, see: Zhang et al. (2007).

Experimental top

Single crystal of the compound were grown by diffusing 3,5-diamino-1,2,4-triazole (0.020 g, 0.2 mmol) dissolved in methanol (5 ml) into nickle(II) hexafluorosilicate (0.027 g, 0.1 mmol) dissolved in water (5 ml).

Refinement top

As one of the five water molecules (O5) lies on a special position of 2 site symmetry, the occupancy would be 0.5. However, the refinement of this atom at the default occupancy lead to a large temperature factor. The refinement of the occupancy factor led to a value of about 0.3; this atom was then allowed to refine off the symmetry element. As the occupancy was nearly 0.3, the occupancy was arbitrarily fixed as 0.3333 so that the formula unit has 20 lattice water molecules.

The N– and O–bound H atoms (other than those of the diordered water molecule) were found in difference maps and were refined with distance restraints of O–H = N–H = O.85±0.01 Å; for the water molecules, an additional H···H = 1.39±0.01 Å restraint was imposed. The Uiso(H) values were tied to those of the parent atoms by a factor of 1.5. The H atoms of the disordered water molecule were placed in chemically sensible positions but were not refined.

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of the title compound. Displacement ellipsoids are drawn at the 25% probability level.
Hexaaquahexakis(µ2-3,5-diamino-4H-1,2,4-triazole)trinickel(II) tris(hexafluoridosilicate) icosahydrate top
Crystal data top
[Ni3(C2H5N5)6(H2O)6][SiF6]3·20H2ODx = 1.752 Mg m3
Mr = 1665.48Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3cCell parameters from 5839 reflections
Hall symbol: -R 3 2"cθ = 3.1–28.2°
a = 13.024 (1) ŵ = 1.09 mm1
c = 64.462 (5) ÅT = 293 K
V = 9469.8 (9) Å3Block, blue
Z = 60.49 × 0.46 × 0.44 mm
F(000) = 5160
Data collection top
Bruker APEX area-detector
diffractometer
2420 independent reflections
Radiation source: fine-focus sealed tube2093 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1616
Tmin = 0.560, Tmax = 0.646k = 1616
25347 measured reflectionsl = 7983
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0612P)2 + 17.0807P]
where P = (Fo2 + 2Fc2)/3
2420 reflections(Δ/σ)max = 0.001
185 parametersΔρmax = 0.40 e Å3
23 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Ni3(C2H5N5)6(H2O)6][SiF6]3·20H2OZ = 6
Mr = 1665.48Mo Kα radiation
Trigonal, R3cµ = 1.09 mm1
a = 13.024 (1) ÅT = 293 K
c = 64.462 (5) Å0.49 × 0.46 × 0.44 mm
V = 9469.8 (9) Å3
Data collection top
Bruker APEX area-detector
diffractometer
2420 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2093 reflections with I > 2σ(I)
Tmin = 0.560, Tmax = 0.646Rint = 0.021
25347 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03323 restraints
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0612P)2 + 17.0807P]
where P = (Fo2 + 2Fc2)/3
2420 reflectionsΔρmax = 0.40 e Å3
185 parametersΔρmin = 0.43 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.66670.33330.140787 (6)0.02689 (14)
Ni20.66670.33330.08330.02377 (16)
Si11.00000.00000.083802 (16)0.0331 (2)
Si20.33330.33330.16670.0552 (5)
F10.89685 (14)0.00226 (15)0.09960 (2)0.0623 (4)
F21.00168 (16)0.10635 (14)0.06943 (3)0.0648 (4)
F30.3983 (3)0.3868 (3)0.15169 (5)0.1399 (12)
O10.72286 (15)0.24063 (14)0.16010 (2)0.0398 (3)
H110.723 (3)0.1843 (18)0.1533 (3)0.060*
H120.699 (3)0.217 (2)0.1724 (2)0.060*
O20.7536 (2)0.0854 (2)0.13625 (4)0.0660 (5)
H210.713 (2)0.0108 (10)0.1358 (6)0.099*
H220.8267 (10)0.108 (3)0.1361 (7)0.099*
O30.65459 (19)0.15616 (17)0.19955 (3)0.0599 (5)
H310.5874 (17)0.094 (2)0.1978 (5)0.090*
H320.650 (3)0.197 (2)0.2092 (4)0.090*
O40.6041 (2)0.1661 (3)0.12859 (4)0.0796 (6)
H410.576 (3)0.184 (4)0.1164 (3)0.119*
H420.551 (3)0.182 (4)0.1374 (4)0.119*
O50.664 (3)0.1549 (17)0.0893 (3)0.185 (7)0.3333
H510.73820.10720.09050.278*0.3333
H520.63380.12390.08160.278*0.3333
N10.61588 (14)0.43372 (14)0.12352 (2)0.0290 (3)
N20.59282 (14)0.41343 (14)0.10195 (2)0.0293 (3)
N30.52872 (17)0.53100 (17)0.11289 (3)0.0381 (4)
H30.500 (2)0.576 (2)0.1117 (4)0.057*
N40.5100 (2)0.4865 (2)0.07683 (3)0.0508 (5)
H4A0.514 (3)0.449 (3)0.0663 (4)0.076*
H4B0.468 (2)0.517 (3)0.0744 (6)0.076*
N50.5810 (2)0.5478 (2)0.14862 (3)0.0556 (6)
H5A0.625 (3)0.540 (3)0.1574 (4)0.083*
H5B0.535 (3)0.575 (3)0.1509 (5)0.083*
C10.57611 (18)0.50413 (18)0.12943 (3)0.0343 (4)
C20.54160 (17)0.47436 (17)0.09630 (3)0.0336 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02997 (17)0.02997 (17)0.0207 (2)0.01499 (9)0.0000.000
Ni20.0253 (2)0.0253 (2)0.0207 (3)0.01265 (10)0.0000.000
Si10.0300 (3)0.0300 (3)0.0394 (5)0.01500 (15)0.0000.000
Si20.0333 (5)0.0333 (5)0.0992 (15)0.0166 (2)0.0000.000
F10.0555 (9)0.0683 (10)0.0701 (10)0.0363 (8)0.0170 (7)0.0016 (8)
F20.0710 (10)0.0574 (9)0.0741 (10)0.0382 (8)0.0004 (8)0.0199 (8)
F30.146 (3)0.176 (3)0.163 (3)0.129 (3)0.0160 (19)0.025 (2)
O10.0497 (8)0.0454 (8)0.0292 (7)0.0274 (7)0.0020 (6)0.0041 (6)
O20.0624 (12)0.0722 (13)0.0750 (13)0.0424 (11)0.0019 (10)0.0133 (11)
O30.0764 (13)0.0541 (11)0.0436 (9)0.0283 (10)0.0132 (9)0.0001 (8)
O40.0709 (15)0.0812 (15)0.0871 (16)0.0383 (13)0.0030 (12)0.0025 (14)
O50.119 (7)0.216 (10)0.178 (13)0.051 (7)0.015 (9)0.010 (8)
N10.0349 (8)0.0329 (8)0.0226 (7)0.0194 (6)0.0006 (6)0.0010 (6)
N20.0352 (8)0.0355 (8)0.0219 (7)0.0213 (7)0.0009 (6)0.0005 (6)
N30.0476 (10)0.0440 (10)0.0366 (9)0.0334 (8)0.0010 (7)0.0015 (7)
N40.0743 (15)0.0720 (14)0.0343 (10)0.0578 (13)0.0109 (9)0.0043 (9)
N50.0821 (16)0.0803 (15)0.0348 (10)0.0635 (14)0.0071 (10)0.0157 (10)
C10.0390 (10)0.0367 (10)0.0319 (9)0.0224 (9)0.0008 (8)0.0023 (8)
C20.0377 (10)0.0374 (10)0.0312 (9)0.0229 (9)0.0009 (7)0.0006 (7)
Geometric parameters (Å, º) top
Ni1—N12.062 (2)Si2—F31.649 (3)
Ni1—N1i2.062 (2)O1—H110.86 (3)
Ni1—N1ii2.062 (2)O1—H120.85 (3)
Ni1—O12.104 (2)O2—H210.84 (3)
Ni1—O1i2.104 (2)O2—H220.84 (3)
Ni1—O1ii2.104 (2)O3—H310.85 (3)
Ni2—N2iii2.111 (2)O3—H320.84 (3)
Ni2—N2iv2.111 (2)O4—H410.85 (3)
Ni2—N2v2.111 (2)O4—H420.84 (3)
Ni2—N2ii2.111 (2)O5—H510.85
Ni2—N2i2.111 (2)O5—H520.85
Ni2—N22.111 (2)N1—C11.315 (2)
Si1—F21.6574 (15)N1—N21.419 (2)
Si1—F2vi1.6574 (15)N2—C21.318 (3)
Si1—F2vii1.6574 (15)N3—C21.356 (3)
Si1—F1vii1.6976 (15)N3—C11.362 (3)
Si1—F1vi1.6976 (15)N3—H30.85 (1)
Si1—F11.6976 (15)N4—C21.354 (3)
Si2—F3viii1.649 (3)N4—H4A0.85 (3)
Si2—F3ix1.649 (3)N4—H4B0.84 (3)
Si2—F3x1.649 (3)N5—C11.350 (3)
Si2—F3xi1.649 (3)N5—H5A0.84 (3)
Si2—F3xii1.649 (3)N5—H5B0.85 (3)
N1ii—Ni1—N1i93.61 (6)F1vi—Si1—F187.74 (9)
N1ii—Ni1—N193.61 (6)F3viii—Si2—F3ix89.21 (17)
N1i—Ni1—N193.61 (6)F3viii—Si2—F3x89.21 (17)
N1ii—Ni1—O187.31 (6)F3ix—Si2—F3x89.21 (17)
N1i—Ni1—O190.45 (6)F3viii—Si2—F3xi90.79 (17)
N1—Ni1—O1175.77 (6)F3ix—Si2—F3xi90.79 (17)
N1ii—Ni1—O1i90.45 (6)F3x—Si2—F3xi179.995 (1)
N1i—Ni1—O1i175.77 (6)F3viii—Si2—F3xii90.79 (17)
N1—Ni1—O1i87.31 (6)F3ix—Si2—F3xii179.995 (1)
O1—Ni1—O1i88.56 (6)F3x—Si2—F3xii90.79 (17)
N1ii—Ni1—O1ii175.78 (6)F3xi—Si2—F3xii89.21 (17)
N1i—Ni1—O1ii87.31 (6)F3viii—Si2—F3179.997 (1)
N1—Ni1—O1ii90.45 (6)F3ix—Si2—F390.79 (17)
O1—Ni1—O1ii88.56 (6)F3x—Si2—F390.79 (17)
O1i—Ni1—O1ii88.56 (6)F3xi—Si2—F389.21 (17)
N2iii—Ni2—N2iv90.87 (6)F3xii—Si2—F389.21 (17)
N2iii—Ni2—N2v90.87 (6)Ni1—O1—H11110 (2)
N2iv—Ni2—N2v90.87 (6)Ni1—O1—H12126 (2)
N2iii—Ni2—N2ii87.57 (8)H11—O1—H12109 (2)
N2iv—Ni2—N2ii177.79 (8)H21—O2—H22111 (2)
N2v—Ni2—N2ii90.72 (8)H31—O3—H32110 (2)
N2iii—Ni2—N2i90.72 (8)H41—O4—H42111 (2)
N2iv—Ni2—N2i87.57 (8)H51—O5—H52109.4
N2v—Ni2—N2i177.79 (8)C1—N1—N2107.04 (15)
N2ii—Ni2—N2i90.88 (6)C1—N1—Ni1130.48 (12)
N2iii—Ni2—N2177.79 (8)N2—N1—Ni1121.05 (11)
N2iv—Ni2—N290.72 (8)C2—N2—N1106.38 (15)
N2v—Ni2—N287.57 (8)C2—N2—Ni2129.31 (13)
N2ii—Ni2—N290.88 (6)N1—N2—Ni2122.87 (12)
N2i—Ni2—N290.88 (6)C2—N3—C1106.38 (16)
F2—Si1—F2vi91.80 (9)C2—N3—H3122 (2)
F2—Si1—F2vii91.80 (9)C1—N3—H3132 (2)
F2vi—Si1—F2vii91.80 (9)C2—N4—H4A125 (2)
F2—Si1—F1vii90.36 (8)C2—N4—H4B122 (3)
F2vi—Si1—F1vii177.12 (10)H4A—N4—H4B111 (3)
F2vii—Si1—F1vii90.03 (8)C1—N5—H5A117 (2)
F2—Si1—F1vi177.12 (10)C1—N5—H5B116 (2)
F2vi—Si1—F1vi90.03 (8)H5A—N5—H5B126 (3)
F2vii—Si1—F1vi90.36 (8)N1—C1—N5127.37 (19)
F1vii—Si1—F1vi87.74 (9)N1—C1—N3109.86 (16)
F2—Si1—F190.03 (8)N5—C1—N3122.76 (18)
F2vi—Si1—F190.36 (8)N2—C2—N4126.92 (19)
F2vii—Si1—F1177.12 (10)N2—C2—N3110.33 (17)
F1vii—Si1—F187.74 (9)N4—C2—N3122.67 (19)
N1ii—Ni1—N1—C1135.1 (2)N2iv—Ni2—N2—N1146.76 (16)
N1i—Ni1—N1—C1131.1 (2)N2v—Ni2—N2—N1122.40 (15)
O1i—Ni1—N1—C144.81 (19)N2ii—Ni2—N2—N131.71 (12)
O1ii—Ni1—N1—C143.72 (19)N2i—Ni2—N2—N159.18 (10)
N1ii—Ni1—N1—N260.39 (10)N2—N1—C1—N5179.0 (2)
N1i—Ni1—N1—N233.46 (12)Ni1—N1—C1—N514.9 (3)
O1i—Ni1—N1—N2150.67 (13)N2—N1—C1—N30.1 (2)
O1ii—Ni1—N1—N2120.79 (13)Ni1—N1—C1—N3166.30 (14)
C1—N1—N2—C20.6 (2)C2—N3—C1—N10.4 (2)
Ni1—N1—N2—C2168.37 (13)C2—N3—C1—N5178.5 (2)
C1—N1—N2—Ni2168.09 (13)N1—N2—C2—N4176.0 (2)
Ni1—N1—N2—Ni224.17 (18)Ni2—N2—C2—N49.6 (3)
N2iv—Ni2—N2—C248.86 (15)N1—N2—C2—N30.9 (2)
N2v—Ni2—N2—C241.98 (14)Ni2—N2—C2—N3167.25 (14)
N2ii—Ni2—N2—C2132.67 (18)C1—N3—C2—N20.8 (2)
N2i—Ni2—N2—C2136.44 (18)C1—N3—C2—N4176.2 (2)
Symmetry codes: (i) y+1, xy, z; (ii) x+y+1, x+1, z; (iii) y+1/3, x1/3, z+1/6; (iv) xy+1/3, y+2/3, z+1/6; (v) x+4/3, x+y+2/3, z+1/6; (vi) y+1, xy1, z; (vii) x+y+2, x+1, z; (viii) x+2/3, y2/3, z+1/3; (ix) xy1/3, x2/3, z+1/3; (x) y+2/3, x+y+1/3, z+1/3; (xi) y, xy1, z; (xii) x+y+1, x, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H11···O20.86 (3)1.88 (3)2.724 (3)168 (3)
O1—H12···O30.85 (3)1.89 (3)2.737 (2)174 (3)
O2—H21···O40.84 (3)2.07 (3)2.896 (4)168 (4)
O2—H22···O3xiii0.84 (3)2.12 (3)2.961 (3)175 (4)
O3—H31···O4ix0.85 (3)2.05 (3)2.861 (3)159 (3)
O3—H32···F1ix0.84 (3)2.13 (3)2.904 (2)153 (3)
O4—H41···F2xiv0.85 (3)2.23 (3)2.950 (3)143 (4)
O4—H42···F3xi0.84 (3)2.16 (3)2.973 (4)162 (4)
O4—H41···O50.85 (3)2.03 (3)2.64 (2)128 (4)
O5—H51···F10.851.922.76 (3)167
N3—H3···F2iii0.85 (3)1.97 (3)2.764 (2)157 (3)
N4—H4b···F1iii0.84 (3)2.14 (3)2.974 (3)170 (3)
N5—H5a···O1i0.84 (3)2.23 (3)2.942 (3)142 (3)
N5—H5b···F3xv0.85 (3)2.08 (3)2.909 (3)167 (3)
Symmetry codes: (i) y+1, xy, z; (iii) y+1/3, x1/3, z+1/6; (ix) xy1/3, x2/3, z+1/3; (xi) y, xy1, z; (xiii) x+5/3, y+1/3, z+1/3; (xiv) y+1/3, x4/3, z+1/6; (xv) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Ni3(C2H5N5)6(H2O)6][SiF6]3·20H2O
Mr1665.48
Crystal system, space groupTrigonal, R3c
Temperature (K)293
a, c (Å)13.024 (1), 64.462 (5)
V3)9469.8 (9)
Z6
Radiation typeMo Kα
µ (mm1)1.09
Crystal size (mm)0.49 × 0.46 × 0.44
Data collection
DiffractometerBruker APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.560, 0.646
No. of measured, independent and
observed [I > 2σ(I)] reflections
25347, 2420, 2093
Rint0.021
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.106, 1.06
No. of reflections2420
No. of parameters185
No. of restraints23
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0612P)2 + 17.0807P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.40, 0.43

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Selected bond lengths (Å) top
Ni1—N12.062 (2)Ni2—N22.111 (2)
Ni1—O12.104 (2)
 

Acknowledgements

We thank Shaanxi Normal University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar
First citationZhang, G.-F., Zhao, S.-M., She, J.-B. & Ng, S. W. (2007). Acta Cryst. E63, m1517–m1518.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds