organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6,6′-Dimeth­­oxy-2,2′,3,3′,5-penta­nitro-1,1′-biphen­yl

aCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China
*Correspondence e-mail: lyhxxjbm@126.com

(Received 8 April 2008; accepted 24 April 2008; online 3 May 2008)

In the axially chiral title compound, C14H9N5O12, the dihedral angle between the two benzene rings is 86.0 (8)°. In the crystal structure, the mol­ecules display a two-dimensional framework formed by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For related literature, see: Chen et al. (2001[Chen, Y. X., Li, Y. M., Lam, K. H. & Chan, A. S. C. (2001). Chin. J. Chem. 19, 794-799.]); Fischer et al. (2007[Fischer, A., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007). Acta Cryst. E63, o1357-o1358.]); Narayanan et al. (2005[Narayanan, R., Tiwari, P., Inoa, D. & Ashok, B. T. (2005). Life Sci. 77, 2312-2323.]); Saito & Koizumi (2005[Saito, S. & Koizumi, Y. (2005). Tetrahedron Lett. 46, 4715-4717.]); Xiao et al. (2007[Xiao, X.-Y., Miao, S.-B., Lan, H.-H., Jiang, Y.-Y. & Ji, B.-M. (2007). Acta Cryst. E63, o4012.]); Yang et al. (2005[Yang, D. S., Ma, H. X., Hu, R. Z., Song, J. R. & Zhao, F. Q. (2005). J. Mol. Struct. 779, 49-54.]).

[Scheme 1]

Experimental

Crystal data
  • C14H9N5O12

  • Mr = 439.26

  • Triclinic, [P \overline 1]

  • a = 10.3765 (13) Å

  • b = 10.4423 (13) Å

  • c = 10.4429 (13) Å

  • α = 82.5650 (10)°

  • β = 62.2850 (10)°

  • γ = 60.5200 (10)°

  • V = 864.73 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 291 (2) K

  • 0.41 × 0.34 × 0.29 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.940, Tmax = 0.958

  • 6598 measured reflections

  • 3194 independent reflections

  • 2686 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.117

  • S = 1.02

  • 3194 reflections

  • 282 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13A⋯O3 0.96 2.45 2.926 (3) 111
C14—H14B⋯O10i 0.96 2.55 3.502 (3) 174
C14—H14C⋯O8ii 0.96 2.58 3.371 (3) 140
Symmetry codes: (i) x+1, y-1, z; (ii) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Nitro compounds, specially aromatic nitro compounds have been widely studied owing to their potential application in, for example, pathology (Narayanan, et al., 2005), materials science (Saito & Koizumi, 2005). On the other hand, in our search for chiral compounds, the title related chiral 6,6'-dimethoxy-2,3,2',5'-tetranitro-1,1'-biphenyl compound was synthesized by Xiao et al., (2007). Herein, as an extension to our previous investigation, we report the synthesis and structural characterization of the title compound.

In contrast to our highly substituted biphenyl compounds, the unsubstituted biphenyl groups in compounds synthesized by Fischer et al., (2007) were found to be approximately planar. The molecular geometry in the title compound displays special behavior, the dihedral angle between the benzene rings is 94.0 (8)°, and all the nitro groups at positions 2,3,5,2',3' are twisted out of the corresponding rings which is 45.5 (3)°, 13.5 (5)°, 98.4 (3)°, 6.6 (4)° and 83.5 (5)°, respectively, as depicted in Fig.1. Bond lengths and angles are in good agreement with the dinitrophenyl group in the structure of 1-(2,4-dinitrophenyl)azo-1-nitrocyclohexane, reported by Yang et al., (2005). One intramolecular C—H···O hydrogen bond is observed in the title molecule, and the two intermolecular C—H···O hydrogen bonding contacts (Table 1) form closed two-dimensional grid motifs (Fig. 2).

Related literature top

For related literature, see: Chen et al. (2001); Fischer et al. (2007); Narayanan et al. (2005); Saito & Koizumi (2005); Xiao et al. (2007); Yang et al. (2005).

Experimental top

All chemicals and solvents purchased were of reagent grade and used without further purification. The precursor 6,6'-Dimethoxy-2,2'-dinitro-1,1'-biphenyl was prepared according to the reported procedure (Chen et al., 2001). However, the title compound was obtained by chance when we tried to prepare the 6,6'-Dimethoxy-2,3,5,2',3',5'-hexanitro-1,1'-biphenyl compound. That is, the title compound was synthesized by the nitration reaction of the precursor (0.5 mmol) in 10 ml of concentrated nitric acid at room temperature for 24 h. The resulting solution was poured into 30 ml of ice water and the resulting precipitate was collected by filtration and recrystallized from ethyl acetate to obtain the title crystals, which were suitable for X-ray diffraction analysis. Cautious, the title compound has potential explosive property.

Refinement top

H atoms were positioned geometrically and treated as riding, with C—H bonding lengths constrained to 0.93 (aromatic H), 0.96 Å (methyl H), and with Uĩso~(H) = 1.2Ueq (aromatic H) or Uĩso~(H) = 1.5Ueq (methyl H).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Atom numbering scheme for the title compound with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. View of the two-dimensional sheet structure. (C—H···O interactions are represented as broken lines).
6,6'-Dimethoxy-2,2',3,3',5-pentanitro-1,1'-biphenyl top
Crystal data top
C14H9N5O12Z = 2
Mr = 439.26F(000) = 448
Triclinic, P1Dx = 1.687 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.3765 (13) ÅCell parameters from 2971 reflections
b = 10.4423 (13) Åθ = 2.4–25.5°
c = 10.4429 (13) ŵ = 0.15 mm1
α = 82.565 (1)°T = 291 K
β = 62.285 (1)°Block, yellow
γ = 60.520 (1)°0.41 × 0.34 × 0.29 mm
V = 864.73 (19) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3194 independent reflections
Radiation source: fine-focus sealed tube2686 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
ϕ and ω scansθmax = 25.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.940, Tmax = 0.958k = 1212
6598 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.059P)2 + 0.3851P]
where P = (Fo2 + 2Fc2)/3
3194 reflections(Δ/σ)max < 0.001
282 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C14H9N5O12γ = 60.520 (1)°
Mr = 439.26V = 864.73 (19) Å3
Triclinic, P1Z = 2
a = 10.3765 (13) ÅMo Kα radiation
b = 10.4423 (13) ŵ = 0.15 mm1
c = 10.4429 (13) ÅT = 291 K
α = 82.565 (1)°0.41 × 0.34 × 0.29 mm
β = 62.285 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3194 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2686 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 0.958Rint = 0.013
6598 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.02Δρmax = 0.25 e Å3
3194 reflectionsΔρmin = 0.22 e Å3
282 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.36354 (18)0.70656 (16)0.19497 (14)0.0448 (3)
O20.69388 (15)0.72440 (14)0.24022 (14)0.0382 (3)
O30.4217 (2)0.40331 (19)0.2500 (2)0.0678 (5)
O40.1905 (2)0.4489 (2)0.4428 (3)0.0852 (6)
O50.2186 (3)0.6187 (2)0.84423 (19)0.0803 (6)
O60.2172 (2)0.8273 (2)0.83302 (16)0.0648 (5)
O70.5003 (2)0.8533 (2)0.57692 (17)0.0582 (4)
O80.2549 (2)1.03379 (17)0.61824 (19)0.0640 (5)
O90.2989 (2)1.33902 (17)0.06894 (18)0.0571 (4)
O100.0962 (2)1.3106 (2)0.2303 (2)0.0846 (7)
O110.0882 (2)1.0384 (2)0.2635 (2)0.0761 (6)
O120.04620 (19)1.1239 (2)0.46358 (18)0.0702 (5)
N10.3036 (2)0.4748 (2)0.3675 (2)0.0507 (5)
N20.2378 (2)0.7181 (2)0.77767 (18)0.0484 (4)
N30.3645 (2)0.90493 (19)0.58132 (16)0.0404 (4)
N40.2444 (2)1.26902 (17)0.15879 (17)0.0391 (4)
N50.1327 (2)1.06936 (18)0.3386 (2)0.0433 (4)
C10.3442 (2)0.69672 (19)0.33107 (19)0.0316 (4)
C20.3056 (2)0.59612 (19)0.4225 (2)0.0351 (4)
C30.2736 (2)0.6019 (2)0.5661 (2)0.0371 (4)
H30.24410.53620.62490.045*
C40.2859 (2)0.7060 (2)0.62141 (19)0.0351 (4)
C50.3359 (2)0.80022 (19)0.52985 (19)0.0314 (4)
C60.3661 (2)0.79704 (18)0.38642 (18)0.0283 (4)
C70.4211 (2)0.89880 (18)0.28967 (17)0.0280 (4)
C80.5928 (2)0.85656 (18)0.21610 (18)0.0287 (4)
C90.6454 (2)0.9505 (2)0.12600 (18)0.0330 (4)
H90.75840.92240.07690.040*
C100.5303 (2)1.08464 (19)0.10979 (18)0.0331 (4)
H100.56601.14710.05070.040*
C110.3623 (2)1.12714 (18)0.18047 (18)0.0308 (4)
C120.3096 (2)1.03275 (19)0.26904 (18)0.0302 (4)
C130.2548 (4)0.6888 (3)0.1570 (3)0.0651 (7)
H13A0.31240.59080.10700.098*
H13B0.22430.76090.09460.098*
H13C0.15590.70280.24420.098*
C140.8715 (2)0.6715 (2)0.1654 (3)0.0536 (6)
H14A0.91020.66450.06190.080*
H14B0.92850.57550.19100.080*
H14C0.89390.73940.19340.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0591 (9)0.0572 (9)0.0359 (7)0.0397 (8)0.0238 (7)0.0089 (6)
O20.0289 (6)0.0334 (7)0.0451 (7)0.0130 (5)0.0157 (6)0.0099 (5)
O30.0824 (13)0.0479 (9)0.0718 (12)0.0313 (9)0.0322 (10)0.0061 (8)
O40.0745 (13)0.0756 (13)0.1234 (17)0.0582 (11)0.0347 (12)0.0068 (12)
O50.1272 (17)0.1048 (15)0.0559 (10)0.0899 (15)0.0508 (11)0.0482 (10)
O60.0882 (13)0.0741 (12)0.0384 (8)0.0475 (10)0.0264 (8)0.0091 (8)
O70.0600 (10)0.0829 (12)0.0526 (9)0.0446 (9)0.0309 (8)0.0070 (8)
O80.0900 (13)0.0396 (9)0.0696 (11)0.0276 (9)0.0460 (10)0.0029 (7)
O90.0681 (10)0.0444 (8)0.0624 (10)0.0317 (8)0.0342 (8)0.0286 (7)
O100.0399 (9)0.0592 (11)0.1113 (16)0.0129 (8)0.0246 (10)0.0458 (11)
O110.0482 (10)0.0769 (12)0.1132 (16)0.0263 (9)0.0453 (10)0.0055 (11)
O120.0383 (8)0.0812 (12)0.0476 (10)0.0124 (8)0.0077 (7)0.0123 (9)
N10.0541 (11)0.0396 (9)0.0703 (13)0.0277 (9)0.0332 (10)0.0094 (9)
N20.0543 (11)0.0646 (12)0.0385 (9)0.0381 (10)0.0243 (8)0.0213 (9)
N30.0540 (10)0.0481 (10)0.0313 (8)0.0321 (9)0.0224 (7)0.0098 (7)
N40.0467 (10)0.0305 (8)0.0402 (9)0.0181 (7)0.0226 (8)0.0103 (7)
N50.0327 (8)0.0344 (9)0.0536 (11)0.0137 (7)0.0189 (8)0.0149 (7)
C10.0280 (8)0.0314 (9)0.0333 (9)0.0139 (7)0.0132 (7)0.0033 (7)
C20.0309 (9)0.0296 (9)0.0464 (10)0.0163 (7)0.0173 (8)0.0042 (8)
C30.0335 (9)0.0347 (10)0.0450 (11)0.0203 (8)0.0185 (8)0.0158 (8)
C40.0338 (9)0.0400 (10)0.0328 (9)0.0198 (8)0.0162 (8)0.0116 (8)
C50.0305 (9)0.0312 (9)0.0340 (9)0.0153 (7)0.0166 (7)0.0064 (7)
C60.0247 (8)0.0257 (8)0.0322 (9)0.0112 (7)0.0132 (7)0.0055 (7)
C70.0317 (9)0.0279 (8)0.0263 (8)0.0158 (7)0.0136 (7)0.0036 (6)
C80.0308 (9)0.0288 (8)0.0281 (8)0.0143 (7)0.0147 (7)0.0022 (7)
C90.0314 (9)0.0375 (9)0.0306 (9)0.0202 (8)0.0109 (7)0.0026 (7)
C100.0427 (10)0.0336 (9)0.0288 (9)0.0250 (8)0.0146 (8)0.0060 (7)
C110.0383 (9)0.0271 (8)0.0288 (8)0.0156 (7)0.0177 (7)0.0048 (7)
C120.0303 (9)0.0311 (9)0.0281 (8)0.0153 (7)0.0127 (7)0.0037 (7)
C130.098 (2)0.0792 (18)0.0680 (15)0.0620 (16)0.0593 (15)0.0260 (13)
C140.0295 (10)0.0445 (12)0.0705 (15)0.0120 (9)0.0182 (10)0.0085 (10)
Geometric parameters (Å, º) top
O1—C11.337 (2)C2—C31.380 (3)
O1—C131.451 (3)C3—C41.379 (3)
O2—C81.341 (2)C3—H30.9300
O2—C141.443 (2)C4—C51.396 (2)
O3—N11.225 (3)C5—C61.382 (2)
O4—N11.211 (2)C6—C71.503 (2)
O5—N21.220 (2)C7—C121.379 (2)
O6—N21.223 (2)C7—C81.414 (2)
O7—N31.215 (2)C8—C91.399 (2)
O8—N31.214 (2)C9—C101.377 (3)
O9—N41.212 (2)C9—H90.9300
O10—N41.212 (2)C10—C111.381 (3)
O11—N51.218 (2)C10—H100.9300
O12—N51.197 (2)C11—C121.396 (2)
N1—C21.470 (2)C13—H13A0.9600
N2—C41.470 (2)C13—H13B0.9600
N3—C51.481 (2)C13—H13C0.9600
N4—C111.459 (2)C14—H14A0.9600
N5—C121.478 (2)C14—H14B0.9600
C1—C21.405 (2)C14—H14C0.9600
C1—C61.413 (2)
C1—O1—C13120.36 (16)C5—C6—C7120.87 (15)
C8—O2—C14118.30 (14)C1—C6—C7119.98 (15)
O4—N1—O3124.87 (19)C12—C7—C8118.36 (15)
O4—N1—C2118.4 (2)C12—C7—C6122.25 (15)
O3—N1—C2116.66 (17)C8—C7—C6119.39 (14)
O5—N2—O6124.23 (18)O2—C8—C9125.08 (15)
O5—N2—C4117.39 (18)O2—C8—C7115.04 (14)
O6—N2—C4118.38 (16)C9—C8—C7119.88 (15)
O8—N3—O7126.09 (18)C10—C9—C8120.20 (16)
O8—N3—C5117.95 (16)C10—C9—H9119.9
O7—N3—C5115.89 (17)C8—C9—H9119.9
O9—N4—O10122.95 (17)C9—C10—C11120.58 (16)
O9—N4—C11118.70 (16)C9—C10—H10119.7
O10—N4—C11118.34 (15)C11—C10—H10119.7
O12—N5—O11125.41 (19)C10—C11—C12119.36 (16)
O12—N5—C12118.04 (18)C10—C11—N4118.98 (15)
O11—N5—C12116.54 (17)C12—C11—N4121.66 (16)
O1—C1—C2126.17 (16)C7—C12—C11121.61 (16)
O1—C1—C6116.23 (15)C7—C12—N5117.27 (15)
C2—C1—C6117.61 (16)C11—C12—N5121.06 (15)
C3—C2—C1122.38 (16)O1—C13—H13A109.5
C3—C2—N1116.34 (16)O1—C13—H13B109.5
C1—C2—N1121.24 (17)H13A—C13—H13B109.5
C2—C3—C4119.28 (16)O1—C13—H13C109.5
C2—C3—H3120.4H13A—C13—H13C109.5
C4—C3—H3120.4H13B—C13—H13C109.5
C3—C4—C5119.40 (16)O2—C14—H14A109.5
C3—C4—N2118.23 (16)O2—C14—H14B109.5
C5—C4—N2122.31 (17)H14A—C14—H14B109.5
C6—C5—C4121.87 (16)O2—C14—H14C109.5
C6—C5—N3116.95 (15)H14A—C14—H14C109.5
C4—C5—N3121.15 (15)H14B—C14—H14C109.5
C5—C6—C1119.15 (15)
C13—O1—C1—C239.2 (3)C2—C1—C6—C7175.07 (15)
C13—O1—C1—C6141.22 (19)C5—C6—C7—C1295.4 (2)
O1—C1—C2—C3174.24 (17)C1—C6—C7—C1284.4 (2)
C6—C1—C2—C36.2 (3)C5—C6—C7—C884.9 (2)
O1—C1—C2—N18.1 (3)C1—C6—C7—C895.26 (19)
C6—C1—C2—N1171.47 (16)C14—O2—C8—C91.7 (3)
O4—N1—C2—C345.1 (3)C14—O2—C8—C7178.11 (16)
O3—N1—C2—C3132.0 (2)C12—C7—C8—O2179.37 (14)
O4—N1—C2—C1137.1 (2)C6—C7—C8—O20.3 (2)
O3—N1—C2—C145.8 (3)C12—C7—C8—C90.4 (2)
C1—C2—C3—C42.5 (3)C6—C7—C8—C9179.88 (15)
N1—C2—C3—C4175.21 (16)O2—C8—C9—C10179.60 (15)
C2—C3—C4—C52.2 (3)C7—C8—C9—C100.6 (2)
C2—C3—C4—N2175.03 (16)C8—C9—C10—C110.9 (3)
O5—N2—C4—C312.9 (3)C9—C10—C11—C120.0 (2)
O6—N2—C4—C3166.04 (19)C9—C10—C11—N4179.06 (15)
O5—N2—C4—C5170.01 (19)O9—N4—C11—C106.8 (2)
O6—N2—C4—C511.1 (3)O10—N4—C11—C10174.16 (19)
C3—C4—C5—C63.1 (3)O9—N4—C11—C12172.27 (17)
N2—C4—C5—C6173.96 (16)O10—N4—C11—C126.8 (3)
C3—C4—C5—N3174.78 (16)C8—C7—C12—C111.3 (2)
N2—C4—C5—N38.2 (3)C6—C7—C12—C11179.06 (15)
O8—N3—C5—C681.7 (2)C8—C7—C12—N5175.72 (15)
O7—N3—C5—C695.50 (19)C6—C7—C12—N53.9 (2)
O8—N3—C5—C4100.3 (2)C10—C11—C12—C71.0 (2)
O7—N3—C5—C482.5 (2)N4—C11—C12—C7179.88 (15)
C4—C5—C6—C10.6 (3)C10—C11—C12—N5175.84 (16)
N3—C5—C6—C1178.61 (15)N4—C11—C12—N53.2 (2)
C4—C5—C6—C7179.53 (15)O12—N5—C12—C784.0 (2)
N3—C5—C6—C71.6 (2)O11—N5—C12—C794.7 (2)
O1—C1—C6—C5175.27 (15)O12—N5—C12—C1199.0 (2)
C2—C1—C6—C55.1 (2)O11—N5—C12—C1182.3 (2)
O1—C1—C6—C74.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···O30.962.452.926 (3)111
C14—H14B···O10i0.962.553.502 (3)174
C14—H14C···O8ii0.962.583.371 (3)140
Symmetry codes: (i) x+1, y1, z; (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC14H9N5O12
Mr439.26
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)10.3765 (13), 10.4423 (13), 10.4429 (13)
α, β, γ (°)82.565 (1), 62.285 (1), 60.520 (1)
V3)864.73 (19)
Z2
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.41 × 0.34 × 0.29
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.940, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
6598, 3194, 2686
Rint0.013
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.117, 1.02
No. of reflections3194
No. of parameters282
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.22

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···O30.962.452.926 (3)110.7
C14—H14B···O10i0.962.553.502 (3)173.9
C14—H14C···O8ii0.962.583.371 (3)140.2
Symmetry codes: (i) x+1, y1, z; (ii) x+1, y+2, z+1.
 

Acknowledgements

This work was supported by the Henan Innovation Project for University Prominent Research Talents (No. 2005 KYCX021), and the Natural Science Foundation of Henan Province.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y. X., Li, Y. M., Lam, K. H. & Chan, A. S. C. (2001). Chin. J. Chem. 19, 794–799.  CrossRef CAS Google Scholar
First citationFischer, A., Yathirajan, H. S., Ashalatha, B. V., Narayana, B. & Sarojini, B. K. (2007). Acta Cryst. E63, o1357–o1358.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNarayanan, R., Tiwari, P., Inoa, D. & Ashok, B. T. (2005). Life Sci. 77, 2312–2323.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSaito, S. & Koizumi, Y. (2005). Tetrahedron Lett. 46, 4715–4717.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, X.-Y., Miao, S.-B., Lan, H.-H., Jiang, Y.-Y. & Ji, B.-M. (2007). Acta Cryst. E63, o4012.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, D. S., Ma, H. X., Hu, R. Z., Song, J. R. & Zhao, F. Q. (2005). J. Mol. Struct. 779, 49–54.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds