organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8-Bromo­naphthalen-1-amine

aDepartment of Chemistry, University of St Andrews, St Andrews KY16 9ST, Scotland
*Correspondence e-mail: amzs@st-and.ac.uk

(Received 22 April 2008; accepted 29 April 2008; online 3 May 2008)

The title compound, C10H8BrN, was obtained by slow addition of sodium azide to 8-bromo-1-naphthoic acid, followed by addition of aqueous ammonia. The crude product was crystallized from petroleum ether to give pink crystals. Compared to other 1,8-disubstituted naphthalene compounds, this compound exhibits less strain between the 1 and 8 substituents. Additionally, the NH protons form both intra- and inter­molecular hydrogen bonds. The naphthalene units are arranged in a herring-bone stacking motif.

Related literature

For examples of sterically crowded 1,8 dichalcogen naphthalenes, see: Aucott et al. (2004[Aucott, S. M., Milton, H. M., Robertson, S. D., Slawin, A. M. Z. & Woollins, J. D. (2004). Heteroatom. Chem. 15, 531-542.]). For the synthesis, see: Herbert et al. (1987[Herbert, J. M., Woodgate, P. D. & Denny, W. A. (1987). Heterocycles, 26, 1037-1041.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8BrN

  • Mr = 222.08

  • Monoclinic, P 21 /n

  • a = 13.6692 (14) Å

  • b = 4.1579 (4) Å

  • c = 15.8256 (16) Å

  • β = 109.941 (3)°

  • V = 845.52 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.81 mm−1

  • T = 125.1 K

  • 0.35 × 0.13 × 0.09 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku, Tokyo, Japan.]) Tmin = 0.381, Tmax = 0.649

  • 6823 measured reflections

  • 1527 independent reflections

  • 1281 reflections with F2 > 2σ(F2)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.116

  • S = 1.10

  • 1527 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 1.76 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1a⋯Br1 0.98 2.27 3.070 (3) 138
N1—H1b⋯N1i 0.98 2.20 3.073 (5) 148
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SCXmini (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalStructure and SCXmini Benchtop Crystallography System Software. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalStructure and SCXmini Benchtop Crystallography System Software. Rigaku/MSC, The Woodlands, Texas, USA.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Contrary to the formally bonded (and sterically strained) S—S or Te—Te atoms in positions 1 and 8 in previous naphthalene compounds (Aucott et al., 2004), the title compound C10H8BrN exhibits a somewhat unstrained, intramolecular non-bonded Br1···N1 distance of 3.070 (3) Å. The molecular structure of the title compound is shown in Figure 1. An intramolecular hydrogen bonding interaction between the N1—H1a···Br1 enables a close nonbonding Br1···N1 distance and at the same time leaves the molecule relatively unstrained.

The other NH proton is involved in the intermolecular hydrogen bond (Table 1) N1—H1b···N1 and forms an infinite zigzag chain. These chains have normal hydrophobic contact to each other (Figure 2). The naphthalene units are arranged in a herringbone stacking motif.

Related literature top

For examples of sterically crowded 1,8 dichalcogen naphthalenes, see: Aucott et al. (2004). For the synthesis, see: Herbert et al. (1987).

Experimental top

The title compound was prepared by a method previously described (Herbert et al., 1987). Sodium azide (3.10 g, 0.048 mol) was added over a 10 minute period to a stirred suspension of 8-bromo-1-naphthoic acid (2.0 g, 0.008 mol) in concentrated sulfuric acid (7 ml) and chloroform (7 ml) at 45° C. Each successive portion of sodium azide being added after the effervescence resulting from the previous addition had subsided. The mixture was stirred for 90 minutes at 45°C and added to water (140 ml), and it was made alkaline with aqueous ammonia and extracted with chloroform (3 x 140 ml). The combined extracts were dried with magnesium sulfate and evaporated to give the desired product. Yield 1.30 g (73%). The black crude product was recrystallized from 60–80 petroleum ether to give pink crystals.

Refinement top

C7 was refined subject to an ISOR constraint. All H atoms were included in calculated positions (C—H distances are 0.95 Å, N—H distances are 0.98 Å) and were refined as riding atoms with Uiso(H) = 1.2 Ueq(parent carbon atom) The N—H protons were refined subject to a distance constraint but with a riding thermal parameter.

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Computing details top

Data collection: SCXmini (Rigaku/MSC, 2006); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku/MSC, 2006); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2006).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with labelled atoms and with displacement ellipsoids for non-H atoms drawn at the 50% probability level. The intramolecular hydrogen bond is indicated by a dashed line.
[Figure 2] Fig. 2. Packing diagram illustrating the intermolecular hydrogen bonding.
8-Bromonaphthalen-1-amine top
Crystal data top
C10H8BrNF(000) = 440.00
Mr = 222.08Dx = 1.744 Mg m3
Monoclinic, P21/nMelting point: 359 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71075 Å
a = 13.6692 (14) ÅCell parameters from 7235 reflections
b = 4.1579 (4) Åθ = 3.0–27.6°
c = 15.8256 (16) ŵ = 4.81 mm1
β = 109.941 (3)°T = 125 K
V = 845.52 (15) Å3Prism, pink
Z = 40.35 × 0.13 × 0.09 mm
Data collection top
Rigaku SCXmini
diffractometer
1281 reflections with F2 > 2σ(F2)
Detector resolution: 6.85 pixels mm-1Rint = 0.061
ω scansθmax = 25.4°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1616
Tmin = 0.381, Tmax = 0.649k = 55
6823 measured reflectionsl = 1919
1527 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.051 w = 1/[σ2(Fo2) + (0.0516P)2 + 2.4354P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.116(Δ/σ)max = 0.002
S = 1.10Δρmax = 1.76 e Å3
1527 reflectionsΔρmin = 0.39 e Å3
110 parameters
Crystal data top
C10H8BrNV = 845.52 (15) Å3
Mr = 222.08Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.6692 (14) ŵ = 4.81 mm1
b = 4.1579 (4) ÅT = 125 K
c = 15.8256 (16) Å0.35 × 0.13 × 0.09 mm
β = 109.941 (3)°
Data collection top
Rigaku SCXmini
diffractometer
1527 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1281 reflections with F2 > 2σ(F2)
Tmin = 0.381, Tmax = 0.649Rint = 0.061
6823 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.10Δρmax = 1.76 e Å3
1527 reflectionsΔρmin = 0.39 e Å3
110 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br(1)0.31174 (4)0.55948 (14)0.53932 (4)0.0293 (2)
N(1)0.3079 (3)0.8778 (7)0.71320 (17)0.0237 (10)
C(1)0.4427 (3)0.4617 (12)0.6330 (3)0.0198 (11)
C(2)0.5076 (4)0.2842 (13)0.6015 (3)0.0257 (12)
C(3)0.6037 (4)0.1842 (14)0.6610 (4)0.0304 (13)
C(4)0.6321 (4)0.2554 (12)0.7494 (4)0.0274 (13)
C(5)0.5666 (4)0.4409 (12)0.7842 (3)0.0224 (11)
C(6)0.5988 (4)0.5102 (13)0.8776 (4)0.0349 (15)
C(7)0.5414 (4)0.6701 (14)0.9140 (3)0.0263 (12)
C(8)0.4419 (4)0.8017 (14)0.8560 (3)0.0314 (13)
C(9)0.4054 (3)0.7493 (12)0.7623 (3)0.0206 (11)
C(10)0.4667 (3)0.5569 (11)0.7240 (3)0.0157 (10)
H(1a)0.29550.88860.64860.020*
H(2a)0.48720.22980.53960.031*
H(3a)0.64950.06510.63930.037*
H(4a)0.69710.18040.78920.033*
H(1b)0.29911.06810.74640.057*
H(6a)0.66520.43670.91520.042*
H(7a)0.56380.70060.97720.032*
H(8a)0.40100.92530.88200.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br(1)0.0265 (3)0.0337 (3)0.0210 (3)0.0021 (2)0.0007 (2)0.0014 (2)
N(1)0.023 (2)0.020 (2)0.029 (2)0.0018 (19)0.011 (2)0.0008 (18)
C(1)0.018 (2)0.025 (2)0.014 (2)0.003 (2)0.003 (2)0.003 (2)
C(2)0.034 (3)0.021 (2)0.025 (3)0.001 (2)0.014 (2)0.001 (2)
C(3)0.027 (3)0.025 (3)0.046 (3)0.000 (2)0.021 (2)0.001 (2)
C(4)0.016 (2)0.016 (3)0.045 (3)0.000 (2)0.004 (2)0.010 (2)
C(5)0.020 (2)0.016 (2)0.026 (2)0.005 (2)0.001 (2)0.005 (2)
C(6)0.021 (2)0.022 (3)0.043 (3)0.009 (2)0.013 (2)0.016 (2)
C(7)0.0278 (14)0.0273 (15)0.0247 (14)0.0040 (9)0.0100 (9)0.0020 (9)
C(8)0.035 (3)0.026 (3)0.038 (3)0.012 (2)0.019 (2)0.010 (2)
C(9)0.024 (2)0.014 (3)0.026 (2)0.009 (2)0.011 (2)0.003 (2)
C(10)0.015 (2)0.014 (2)0.019 (2)0.005 (2)0.007 (2)0.0002 (19)
Geometric parameters (Å, º) top
Br(1)—C(1)1.939 (4)C(8)—C(9)1.410 (7)
N(1)—C(9)1.400 (5)C(9)—C(10)1.435 (8)
C(1)—C(2)1.372 (8)N(1)—H(1a)0.98
C(1)—C(10)1.420 (7)N(1)—H(1b)0.98
C(2)—C(3)1.393 (7)C(2)—H(2a)0.95
C(3)—C(4)1.350 (8)C(3)—H(3a)0.95
C(4)—C(5)1.428 (8)C(4)—H(4a)0.95
C(5)—C(6)1.420 (8)C(6)—H(6a)0.95
C(5)—C(10)1.455 (6)C(7)—H(7a)0.95
C(6)—C(7)1.304 (9)C(8)—H(8a)0.95
C(7)—C(8)1.462 (7)
Br(1)—C(1)—C(2)112.2 (3)C(5)—C(10)—C(9)117.4 (4)
Br(1)—C(1)—C(10)123.4 (4)C(9)—N(1)—H(1a)113.0
C(2)—C(1)—C(10)124.4 (4)C(9)—N(1)—H(1b)106.2
C(1)—C(2)—C(3)119.4 (5)H(1a)—N(1)—H(1b)120.9
C(2)—C(3)—C(4)120.5 (6)C(1)—C(2)—H(2a)120.3
C(3)—C(4)—C(5)121.4 (4)C(3)—C(2)—H(2a)120.3
C(4)—C(5)—C(6)119.9 (4)C(2)—C(3)—H(3a)119.8
C(4)—C(5)—C(10)119.9 (4)C(4)—C(3)—H(3a)119.8
C(6)—C(5)—C(10)120.2 (5)C(3)—C(4)—H(4a)119.3
C(5)—C(6)—C(7)123.0 (4)C(5)—C(4)—H(4a)119.3
C(6)—C(7)—C(8)118.9 (5)C(5)—C(6)—H(6a)118.5
C(7)—C(8)—C(9)121.5 (5)C(7)—C(6)—H(6a)118.5
N(1)—C(9)—C(8)117.0 (5)C(6)—C(7)—H(7a)120.5
N(1)—C(9)—C(10)124.1 (4)C(8)—C(7)—H(7a)120.5
C(8)—C(9)—C(10)118.8 (4)C(7)—C(8)—H(8a)119.3
C(1)—C(10)—C(5)114.4 (4)C(9)—C(8)—H(8a)119.3
C(1)—C(10)—C(9)128.2 (4)
Br(1)—C(1)—C(2)—C(3)177.8 (4)C(4)—C(5)—C(10)—C(9)178.4 (5)
Br(1)—C(1)—C(10)—C(5)176.3 (3)C(6)—C(5)—C(10)—C(1)178.0 (5)
Br(1)—C(1)—C(10)—C(9)3.7 (8)C(6)—C(5)—C(10)—C(9)2.0 (7)
C(2)—C(1)—C(10)—C(5)2.0 (8)C(10)—C(5)—C(6)—C(7)1.7 (9)
C(2)—C(1)—C(10)—C(9)178.0 (5)C(5)—C(6)—C(7)—C(8)3.8 (9)
C(10)—C(1)—C(2)—C(3)0.6 (9)C(6)—C(7)—C(8)—C(9)2.4 (9)
C(1)—C(2)—C(3)—C(4)1.3 (9)C(7)—C(8)—C(9)—N(1)178.2 (5)
C(2)—C(3)—C(4)—C(5)1.6 (9)C(7)—C(8)—C(9)—C(10)1.2 (8)
C(3)—C(4)—C(5)—C(6)179.7 (5)N(1)—C(9)—C(10)—C(1)0.0 (8)
C(3)—C(4)—C(5)—C(10)0.1 (6)N(1)—C(9)—C(10)—C(5)180.0 (4)
C(4)—C(5)—C(6)—C(7)177.9 (5)C(8)—C(9)—C(10)—C(1)176.8 (5)
C(4)—C(5)—C(10)—C(1)1.6 (7)C(8)—C(9)—C(10)—C(5)3.2 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1a···Br10.982.273.070 (3)138
N1—H1b···N1i0.982.203.073 (5)148
Symmetry code: (i) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC10H8BrN
Mr222.08
Crystal system, space groupMonoclinic, P21/n
Temperature (K)125
a, b, c (Å)13.6692 (14), 4.1579 (4), 15.8256 (16)
β (°) 109.941 (3)
V3)845.52 (15)
Z4
Radiation typeMo Kα
µ (mm1)4.81
Crystal size (mm)0.35 × 0.13 × 0.09
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.381, 0.649
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
6823, 1527, 1281
Rint0.061
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.116, 1.10
No. of reflections1527
No. of parameters110
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.76, 0.39

Computer programs: SCXmini (Rigaku/MSC, 2006), PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku/MSC, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1a···Br10.982.273.070 (3)138
N1—H1b···N1i0.982.203.073 (5)148
Symmetry code: (i) x+1/2, y+1/2, z+3/2.
 

References

First citationAucott, S. M., Milton, H. M., Robertson, S. D., Slawin, A. M. Z. & Woollins, J. D. (2004). Heteroatom. Chem. 15, 531–542.  Web of Science CSD CrossRef Google Scholar
First citationHerbert, J. M., Woodgate, P. D. & Denny, W. A. (1987). Heterocycles, 26, 1037–1041.  CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2006). CrystalStructure and SCXmini Benchtop Crystallography System Software. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds