organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages o1133-o1134

Di­methyl 2-(methyl­amino­methyl­ene)malonate

aInstitute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and bInstitute of Organic Chemistry, Catalysis and Petrochemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, Bratislava 81237, Slovak Republic
*Correspondence e-mail: martin.grof@stuba.sk

(Received 2 May 2008; accepted 15 May 2008; online 21 May 2008)

In the title compound, C7H11NO4, which is an example of a push–pull alkene, a network of N—H⋯O and C—H⋯O inter­actions helps to establish the crystal structure. The investigated crystal turned out to be a non-merohedral twin with a ratio of twin components of 0.442 (3):0.558 (3). Two pairs of independent mol­ecules (Z′ = 4) are linked by inter­molecular N—H⋯O hydrogen bonds, forming independent chains; the chains are connected via inter­molecular C—H⋯O contacts, building a three-dimensional network.

Related literature

For related literature, see: Bouzard (1990[Bouzard, D. (1990). Recent Progress in the Chemical Synthesis of Antibiotics, p. 249. München: Springer-Verlag.]); Cook (1969[Cook, A. G. (1969). Enamines: Syntheses, Structure and Reactions. New York: Marcel Dekker.]); Dyke (1973[Dyke, S. F. (1973). The Chemistry of Enamines. London: Cambridge University Press.]); Freeman (1981[Freeman, F. (1981). LONZA Reaction of Malononitrile Derivatives, p. 925. Stuttgart: Georg Thieme Verlag.]); Gróf et al. (2008[Gróf, M., Kožíšek, J., Milata, V. & Gatial, A. (2008). Acta Cryst. E64, o998.]); Kálmán & Argay (1998[Kálmán, A. & Argay, Gy. (1998). Acta Cryst. B54, 877-888.]); Bolte (2004[Bolte, M. (2004). J. Appl. Cryst. 37, 162-165.]).

[Scheme 1]

Experimental

Crystal data
  • C7H11NO4

  • Mr = 173.17

  • Triclinic, [P \overline 1]

  • a = 11.165 (2) Å

  • b = 12.073 (2) Å

  • c = 13.211 (3) Å

  • α = 113.70 (3)°

  • β = 93.71 (3)°

  • γ = 94.02 (3)°

  • V = 1618.1 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100 K

  • 0.43 × 0.15 × 0.08 mm

Data collection
  • Oxford Diffraction GEMINI R diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.968, Tmax = 0.996

  • 9295 measured reflections

  • 9295 independent reflections

  • 3920 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.091

  • wR(F2) = 0.257

  • S = 0.90

  • 9295 reflections

  • 446 parameters

  • 96 restraints

  • H-atom parameters constrained

  • Δρmax = 1.13 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 2.08 2.689 (4) 127
N1—H1⋯O10 0.86 2.42 2.990 (4) 125
N2—H2⋯O5 0.86 2.08 2.687 (4) 127
N2—H2⋯O14i 0.86 2.30 2.893 (5) 127
N3—H3⋯O9 0.86 2.06 2.684 (4) 129
N3—H3⋯O2i 0.86 2.32 2.912 (5) 126
N4—H4⋯O13 0.86 2.08 2.698 (5) 128
N4—H4⋯O6 0.86 2.40 2.957 (5) 123
C4—H4A⋯O2 0.93 2.27 2.683 (7) 106
C6—H6A⋯O14 0.96 2.50 3.449 (7) 169
C11—H11A⋯O6 0.93 2.29 2.706 (6) 107
C11—H11A⋯O13 0.93 2.60 3.487 (6) 159
C14—H14A⋯O13 0.96 2.59 3.507 (6) 161
C18—H18A⋯O1 0.93 2.58 3.470 (6) 160
C18—H18A⋯O10 0.93 2.27 2.679 (6) 106
C25—H25A⋯O14 0.93 2.28 2.691 (6) 106
C27—H27A⋯O2i 0.96 2.59 3.340 (7) 135
C28—H28C⋯O6 0.96 2.60 3.024 (6) 107
Symmetry code: (i) x-1, y, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

The title compound, C7 H11 N O4, belongs to the so-called push-pull olefins. Push-pull alkenes are substituted ethylenes containing electron-donor groups (D) at one end and electron-acceptor groups (A) at the other end of the general formula D1D2C=CA1A2. These compounds very often contain alkoxy, amino, alkylamino, dialkylamino or (hetero)aryl groups as electron-donor groups and cyano, acetyl, alkylester, methylsulfonyl or NO2 groups as electron-acceptor groups. They are useful as starting reactants or intermediates for a lot of pharmaceutical, polymer and other syntheses (Cook, 1969; Dyke, 1973). Mainly enamines are frequently used as reactants or intermediates in chemical syntheses of drugs, polymers and dyes (Bouzard, 1990). But also alkoxymethylenes are often used in organic synthesis (Freeman, 1981).

Chemical and physical properties of the title related structures were recently discussed (Gróf et al., 2008 and literature cited therein).

The study of a similar compound, dimethyl 2-(aminomethylene)malonate, (Gróf et al., 2008) revealed that this structure exists in the solid phase as EZ conformer (E denotes away from C=C double bond orientation of the carbonyl oxygen in trans position; Z denotes towards to C=C double bond orientation of the carbonyl oxygen in cis position). The title compound exists in the solid phase as ZZa conformer (a denotes anti orientation of the methylamino group, e.g. away from the C=C double bond orientation).

The molecules I and II, and molecules III and IV of the title compound (Fig.1) show pseudo translation (Kálmán & Argay, (1998).

Related literature top

For related literature, see: Bouzard (1990); Cook (1969); Dyke (1973); Freeman (1981); Gróf et al. (2008); Kálmán & Argay (1998); Bolte (2004).

Experimental top

To dimethyl 3-methoxymethylenemalonate (1.74 g, 10 mmol) in methanol (10 ml), an aqueous solution of methylamine (12 mmol) was added dropwise (amount according to concentration and density) over a period of 30 min with stirring. The slightly warmed mixture was stirred overnight at room temperature. The reaction mixture was then briefly heated to reflux (ca. 20 min). After ensuring that no starting derivative remained (thin-layer chromatography; Silufol 254, Kavalier Czechoslovakia; eluent chloroform-methanol 10:1 v/v, detection UV light 254 nm), the reaction mixture was evaporated on a vacuum evaporator and chromatographed on silica gel (eluent dichloromethane-methanol 10:1 v/v). Obtained product was recrystallized from minimal amount of chloroform and n-hexane mixture in refrigerator.

The solid phase mid-IR vibrational spectrum was recorded with a Nicolet model NEXUS 470 FTIR spectrometer at room temperature. The measurement was performed after mixing the powdered sample with KBr into a pellet.

The mid-IR vibrational frequencies of dimethyl 2-(methylaminomethylene)malonate are (in cm-1): 3301 m; 3199 w, sh, b; 3092 vw; 3052 vw; 3039 vw; 3013 w; 2999 w; 2951 m; 2924 w, sh; 2905 vw, sh; 1701 vw, sh; 1680 v s; 1651 vw, sh; 1631 v s; 1612 w, sh; 1541 vw; 1478 w; 1450 m; 1430 m; 1405 m; 1360 s; 1330 vw, sh; 1322 m; 1281 s; 1225 s; 1187 m; 1151 s; 1082 m; 1042 w; 1018 m; 998 w; 942 vw; 837 vw, sh; 820 s; 808 s; 768 m; 759 vw, sh; 671 m; 579 w, b; 459 vw; 446 vw; 413 m.

Refinement top

Olefinic and amino H atoms were positioned geometrically and allowed to ride on their corresponding parent atoms at distances of 0.93 and 0.86 Å, respectively, with Uiso(H) = 1.2Ueq(C,N). Methyl H atoms were located in a difference Fourier map and included in the model as a rigid rotating group, with C—H distance of 0.96 Å and with Uiso(H) = 1.5Ueq(C).

The investigated crystal was a non-merohedral twin. Two orientation matrices could be determined and the twin law was derived using the program TWINLAW (Bolte, 2004):

h(twin) = (1.00 * h) + (0.00 * k) + (0.00 * l)

k(twin) = (-0.15 * h) + (-1.00 * k) + (0.00 * l)

l(twin) = (-0.16 * h) + (0.00 * k) + (-1.00 *l).

For the refinement the reflection data file was modified using the program HKLF5 (Bolte, 2004). The contribution of the minor twin component refined to 0.442 (3).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The atom-numbering scheme of dimethyl 2-(methylaminomethylene)malonate. Displacement ellipsoids are drawn at the 60% probability level.
[Figure 2] Fig. 2. Packing diagram of dimethyl 2-(methylaminomethylene)malonate. Hydrogen-bond interactions are indicated by dashed lines.
Dimethyl 2-(methylaminomethylene)malonate top
Crystal data top
C7H11NO4Z = 8
Mr = 173.17F(000) = 736
Triclinic, P1Dx = 1.422 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.165 (2) ÅCell parameters from 2135 reflections
b = 12.073 (2) Åθ = 3.3–29.5°
c = 13.211 (3) ŵ = 0.12 mm1
α = 113.70 (3)°T = 100 K
β = 93.71 (3)°Block, yellow
γ = 94.02 (3)°0.43 × 0.15 × 0.08 mm
V = 1618.1 (6) Å3
Data collection top
Oxford Diffraction GEMINI R
diffractometer
9295 independent reflections
Radiation source: fine-focus sealed tube3920 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
Rotation method data acquisition using ω and ϕ scansθmax = 25.4°, θmin = 4.1°
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2006)
h = 1313
Tmin = 0.968, Tmax = 0.996k = 1414
9295 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.092Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.257H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.1527P)2]
where P = (Fo2 + 2Fc2)/3
9295 reflections(Δ/σ)max = 0.067
446 parametersΔρmax = 1.13 e Å3
96 restraintsΔρmin = 0.54 e Å3
Crystal data top
C7H11NO4γ = 94.02 (3)°
Mr = 173.17V = 1618.1 (6) Å3
Triclinic, P1Z = 8
a = 11.165 (2) ÅMo Kα radiation
b = 12.073 (2) ŵ = 0.12 mm1
c = 13.211 (3) ÅT = 100 K
α = 113.70 (3)°0.43 × 0.15 × 0.08 mm
β = 93.71 (3)°
Data collection top
Oxford Diffraction GEMINI R
diffractometer
9295 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2006)
3920 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.996Rint = 0.000
9295 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.09296 restraints
wR(F2) = 0.257H-atom parameters constrained
S = 0.90Δρmax = 1.13 e Å3
9295 reflectionsΔρmin = 0.54 e Å3
446 parameters
Special details top

Experimental. face-indexed (CrysAlis RED; Oxford Diffraction, 2006). 96 rigid bond restaints (DELU) were used in the refinement because the data to parameter ratio is low due to four independent molecules in the twinned structure.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0504 (4)0.1221 (5)0.6433 (4)0.0202 (11)
C21.1715 (5)0.1334 (5)0.6103 (4)0.0234 (11)
C31.2819 (5)0.1043 (5)0.6504 (4)0.0238 (11)
C41.1851 (5)0.1766 (5)0.5297 (4)0.0274 (12)
H4A1.26340.18150.51060.033*
C51.3825 (4)0.0278 (5)0.7690 (4)0.0327 (14)
H5C1.36560.00790.82030.039*
H5B1.43500.10190.80660.039*
H5A1.42100.02790.70900.039*
C60.9264 (4)0.0767 (5)0.7613 (4)0.0241 (12)
H6C0.93110.05280.82240.029*
H6B0.87230.01820.70120.029*
H6A0.89700.15520.78480.029*
C71.1353 (4)0.2577 (5)0.3932 (4)0.0298 (13)
H7C1.11680.34040.41760.036*
H7B1.08890.20870.32360.036*
H7A1.21980.25460.38400.036*
O10.9618 (3)0.1470 (3)0.6036 (3)0.0317 (9)
O21.3803 (3)0.1235 (3)0.6240 (3)0.0294 (9)
O31.0441 (3)0.0828 (3)0.7250 (3)0.0257 (8)
O41.2710 (3)0.0540 (3)0.7254 (3)0.0303 (9)
N11.1056 (4)0.2113 (4)0.4763 (3)0.0290 (11)
H11.03170.20690.49020.035*
C80.0163 (4)0.1936 (5)1.0767 (4)0.0227 (11)
C90.1389 (4)0.2097 (5)1.0475 (4)0.0198 (10)
C100.2442 (4)0.1583 (5)1.0733 (4)0.0234 (11)
C110.1614 (4)0.2782 (5)0.9871 (4)0.0224 (11)
H11A0.24050.28350.96990.027*
C120.3325 (4)0.0431 (6)1.1587 (4)0.0374 (14)
H12C0.30770.01891.18350.045*
H12B0.38550.10611.21650.045*
H12A0.37420.00821.09360.045*
C130.1214 (4)0.1026 (5)1.1526 (4)0.0261 (13)
H13C0.12690.04281.18330.031*
H13B0.17670.07631.08660.031*
H13A0.14150.17881.20610.031*
C140.1222 (4)0.3979 (5)0.8809 (4)0.0231 (12)
H14C0.10540.48120.91460.028*
H14B0.07700.35830.80920.028*
H14A0.20680.39490.87280.028*
O50.0631 (3)0.2510 (3)1.0591 (3)0.0302 (9)
O60.3444 (3)0.1722 (3)1.0442 (3)0.0350 (10)
O70.0002 (3)0.1176 (3)1.1253 (3)0.0272 (9)
O80.2281 (3)0.0937 (3)1.1328 (3)0.0290 (9)
N20.0879 (3)0.3365 (4)0.9506 (3)0.0262 (10)
H20.01530.33860.96900.031*
C150.5457 (4)0.3104 (5)0.4300 (4)0.0228 (11)
C160.6700 (4)0.2928 (5)0.4565 (4)0.0211 (11)
C170.7792 (4)0.3434 (5)0.4301 (4)0.0233 (11)
C180.6930 (4)0.2229 (5)0.5142 (4)0.0205 (11)
H18A0.77340.21250.52710.025*
C190.8722 (4)0.4640 (5)0.3477 (4)0.0289 (13)
H19C0.85300.52190.31780.035*
H19B0.90680.39810.29300.035*
H19A0.92910.50300.41260.035*
C200.4082 (4)0.4033 (5)0.3540 (4)0.0277 (13)
H20C0.40740.46510.32570.033*
H20B0.36760.42780.42030.033*
H20A0.36770.32840.29920.033*
C210.6479 (4)0.1022 (5)0.6200 (4)0.0203 (11)
H21C0.60400.02270.58900.024*
H21B0.62930.14550.69490.024*
H21A0.73290.09470.61970.024*
O90.4592 (3)0.2600 (3)0.4495 (3)0.0293 (9)
O100.8808 (3)0.3234 (3)0.4529 (3)0.0315 (9)
O110.5322 (3)0.3861 (3)0.3795 (3)0.0255 (8)
O120.7640 (3)0.4176 (3)0.3774 (3)0.0276 (9)
N30.6133 (3)0.1691 (4)0.5531 (3)0.0231 (10)
H30.53790.17320.53890.028*
C220.5158 (4)0.3785 (5)0.8567 (4)0.0194 (10)
C230.6390 (5)0.3641 (5)0.8899 (4)0.0239 (11)
C240.7487 (4)0.3923 (5)0.8491 (4)0.0208 (11)
C250.6589 (4)0.3189 (5)0.9702 (4)0.0240 (11)
H25A0.73890.31170.98840.029*
C260.8480 (4)0.4731 (5)0.7386 (4)0.0313 (14)
H26C0.83010.50260.68230.038*
H26B0.88830.40100.70780.038*
H26A0.89920.53440.79930.038*
C270.3829 (4)0.4259 (5)0.7369 (4)0.0283 (13)
H27C0.38400.45110.67670.034*
H27B0.34860.48540.79770.034*
H27A0.33520.34880.71260.034*
C280.6131 (4)0.2394 (5)1.1070 (4)0.0288 (13)
H28C0.57230.15941.08570.035*
H28B0.59010.29281.17760.035*
H28A0.69880.23571.11270.035*
O130.4292 (3)0.3554 (3)0.8977 (3)0.0285 (9)
O140.8494 (3)0.3706 (3)0.8760 (3)0.0303 (9)
O150.5064 (3)0.4145 (3)0.7733 (3)0.0274 (9)
O160.7371 (3)0.4453 (3)0.7781 (3)0.0281 (9)
N40.5799 (3)0.2852 (4)1.0234 (3)0.0279 (11)
H40.50480.29021.00870.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0197 (14)0.022 (3)0.023 (3)0.001 (2)0.0012 (18)0.015 (2)
C20.0238 (14)0.027 (3)0.028 (3)0.004 (2)0.010 (2)0.018 (2)
C30.0194 (13)0.024 (3)0.032 (3)0.005 (2)0.0010 (19)0.016 (2)
C40.025 (2)0.038 (4)0.028 (3)0.001 (2)0.0052 (19)0.021 (2)
C50.017 (2)0.051 (4)0.037 (3)0.010 (3)0.002 (2)0.024 (3)
C60.016 (2)0.029 (3)0.033 (3)0.003 (2)0.010 (2)0.017 (3)
C70.019 (3)0.047 (4)0.039 (3)0.007 (3)0.008 (2)0.032 (3)
O10.0238 (14)0.045 (3)0.039 (2)0.0054 (18)0.0020 (16)0.0304 (19)
O20.0227 (13)0.035 (2)0.037 (2)0.0020 (17)0.0098 (15)0.0208 (19)
O30.0162 (16)0.041 (2)0.033 (2)0.0036 (16)0.0077 (14)0.0271 (17)
O40.0117 (16)0.050 (3)0.043 (2)0.0040 (16)0.0044 (14)0.0333 (18)
N10.022 (2)0.040 (3)0.037 (3)0.000 (2)0.0054 (17)0.028 (2)
C80.0168 (15)0.033 (3)0.030 (3)0.004 (2)0.009 (2)0.023 (2)
C90.0169 (15)0.028 (3)0.021 (3)0.0014 (19)0.009 (2)0.015 (2)
C100.0171 (15)0.039 (3)0.024 (3)0.004 (2)0.009 (2)0.022 (2)
C110.012 (2)0.032 (3)0.032 (3)0.0026 (19)0.0027 (19)0.022 (2)
C120.023 (3)0.056 (4)0.048 (4)0.015 (3)0.005 (3)0.034 (3)
C130.014 (2)0.037 (4)0.038 (3)0.002 (2)0.010 (2)0.026 (3)
C140.023 (3)0.028 (3)0.023 (3)0.002 (2)0.005 (2)0.015 (2)
O50.0174 (15)0.045 (3)0.042 (2)0.0075 (16)0.0068 (16)0.0311 (19)
O60.0161 (14)0.058 (3)0.050 (2)0.0019 (18)0.0111 (17)0.041 (2)
O70.0144 (16)0.043 (2)0.040 (2)0.0013 (15)0.0094 (15)0.0329 (18)
O80.0155 (17)0.049 (3)0.042 (2)0.0103 (16)0.0146 (15)0.0355 (18)
N20.013 (2)0.039 (3)0.039 (3)0.0046 (18)0.0077 (18)0.028 (2)
C150.0119 (11)0.033 (3)0.030 (3)0.0031 (19)0.005 (2)0.022 (2)
C160.0128 (11)0.032 (3)0.027 (3)0.0031 (19)0.001 (2)0.021 (2)
C170.0135 (12)0.040 (3)0.026 (3)0.003 (2)0.003 (2)0.023 (2)
C180.012 (2)0.031 (3)0.025 (3)0.0008 (19)0.0000 (19)0.019 (2)
C190.012 (2)0.040 (4)0.043 (3)0.004 (2)0.005 (2)0.026 (3)
C200.0096 (19)0.041 (4)0.042 (3)0.003 (2)0.003 (2)0.026 (3)
C210.013 (3)0.029 (3)0.025 (3)0.001 (2)0.002 (2)0.017 (2)
O90.0130 (12)0.044 (2)0.042 (2)0.0022 (16)0.0003 (16)0.0305 (19)
O100.0138 (11)0.051 (3)0.044 (2)0.0069 (16)0.0047 (16)0.033 (2)
O110.0089 (15)0.041 (2)0.040 (2)0.0046 (14)0.0015 (14)0.0301 (18)
O120.0089 (16)0.039 (2)0.047 (2)0.0023 (14)0.0013 (15)0.0319 (18)
N30.013 (2)0.030 (3)0.036 (3)0.0008 (17)0.0019 (17)0.022 (2)
C220.0149 (12)0.021 (3)0.028 (3)0.005 (2)0.0005 (17)0.017 (2)
C230.0187 (12)0.033 (4)0.026 (3)0.002 (2)0.0005 (19)0.018 (2)
C240.0151 (13)0.023 (3)0.031 (3)0.002 (2)0.0005 (19)0.018 (2)
C250.017 (2)0.032 (3)0.030 (3)0.002 (2)0.0029 (18)0.019 (2)
C260.020 (2)0.042 (4)0.033 (3)0.007 (3)0.006 (2)0.019 (3)
C270.0096 (19)0.045 (4)0.040 (3)0.000 (2)0.001 (2)0.028 (3)
C280.016 (3)0.044 (4)0.040 (3)0.004 (2)0.009 (2)0.029 (3)
O130.0200 (13)0.040 (2)0.035 (2)0.0019 (17)0.0086 (15)0.0246 (18)
O140.0181 (12)0.040 (3)0.040 (2)0.0072 (17)0.0039 (15)0.0246 (19)
O150.0099 (15)0.048 (3)0.039 (2)0.0001 (16)0.0013 (14)0.0338 (19)
O160.0100 (16)0.047 (3)0.043 (2)0.0014 (16)0.0000 (14)0.0347 (18)
N40.018 (2)0.035 (3)0.041 (3)0.0015 (19)0.0029 (17)0.026 (2)
Geometric parameters (Å, º) top
C1—O11.202 (5)C15—O91.204 (5)
C1—O31.346 (5)C15—O111.341 (6)
C1—C21.461 (6)C15—C161.460 (6)
C2—C41.373 (6)C16—C181.372 (6)
C2—C31.432 (7)C16—C171.450 (7)
C3—O21.208 (5)C17—O101.220 (5)
C3—O41.362 (6)C17—O121.350 (6)
C4—N11.292 (6)C18—N31.313 (6)
C4—H4A0.9300C18—H18A0.9300
C5—O41.447 (5)C19—O121.439 (5)
C5—H5C0.9600C19—H19C0.9600
C5—H5B0.9600C19—H19B0.9600
C5—H5A0.9600C19—H19A0.9600
C6—O31.435 (5)C20—O111.452 (5)
C6—H6C0.9600C20—H20C0.9600
C6—H6B0.9600C20—H20B0.9600
C6—H6A0.9600C20—H20A0.9600
C7—N11.465 (6)C21—N31.467 (6)
C7—H7C0.9600C21—H21C0.9600
C7—H7B0.9600C21—H21B0.9600
C7—H7A0.9600C21—H21A0.9600
N1—H10.8600N3—H30.8600
C8—O51.228 (5)C22—O131.207 (5)
C8—O71.326 (6)C22—O151.338 (5)
C8—C91.466 (6)C22—C231.459 (6)
C9—C111.383 (6)C23—C251.388 (7)
C9—C101.450 (6)C23—C241.443 (7)
C10—O61.228 (5)C24—O141.235 (5)
C10—O81.324 (5)C24—O161.335 (6)
C11—N21.305 (6)C25—N41.302 (6)
C11—H11A0.9300C25—H25A0.9300
C12—O81.438 (5)C26—O161.444 (5)
C12—H12C0.9600C26—H26C0.9600
C12—H12B0.9600C26—H26B0.9600
C12—H12A0.9600C26—H26A0.9600
C13—O71.440 (5)C27—O151.465 (5)
C13—H13C0.9600C27—H27C0.9600
C13—H13B0.9600C27—H27B0.9600
C13—H13A0.9600C27—H27A0.9600
C14—N21.449 (6)C28—N41.460 (6)
C14—H14C0.9600C28—H28C0.9600
C14—H14B0.9600C28—H28B0.9600
C14—H14A0.9600C28—H28A0.9600
N2—H20.8600N4—H40.8600
O1—C1—O3121.1 (4)O9—C15—O11120.7 (4)
O1—C1—C2124.2 (5)O9—C15—C16123.5 (5)
O3—C1—C2114.7 (4)O11—C15—C16115.8 (4)
C4—C2—C3113.4 (5)C18—C16—C17112.7 (4)
C4—C2—C1117.9 (5)C18—C16—C15119.9 (4)
C3—C2—C1128.7 (5)C17—C16—C15127.4 (5)
O2—C3—O4120.0 (5)O10—C17—O12119.6 (4)
O2—C3—C2124.8 (5)O10—C17—C16124.3 (5)
O4—C3—C2115.2 (4)O12—C17—C16116.1 (4)
N1—C4—C2129.8 (5)N3—C18—C16126.8 (4)
N1—C4—H4A115.1N3—C18—H18A116.6
C2—C4—H4A115.1C16—C18—H18A116.6
O4—C5—H5C109.5O12—C19—H19C109.5
O4—C5—H5B109.5O12—C19—H19B109.5
H5C—C5—H5B109.5H19C—C19—H19B109.5
O4—C5—H5A109.5O12—C19—H19A109.5
H5C—C5—H5A109.5H19C—C19—H19A109.5
H5B—C5—H5A109.5H19B—C19—H19A109.5
O3—C6—H6C109.5O11—C20—H20C109.5
O3—C6—H6B109.5O11—C20—H20B109.5
H6C—C6—H6B109.5H20C—C20—H20B109.5
O3—C6—H6A109.5O11—C20—H20A109.5
H6C—C6—H6A109.5H20C—C20—H20A109.5
H6B—C6—H6A109.5H20B—C20—H20A109.5
N1—C7—H7C109.5N3—C21—H21C109.5
N1—C7—H7B109.5N3—C21—H21B109.5
H7C—C7—H7B109.5H21C—C21—H21B109.5
N1—C7—H7A109.5N3—C21—H21A109.5
H7C—C7—H7A109.5H21C—C21—H21A109.5
H7B—C7—H7A109.5H21B—C21—H21A109.5
C1—O3—C6115.1 (4)C15—O11—C20115.3 (4)
C3—O4—C5115.6 (4)C17—O12—C19115.9 (4)
C4—N1—C7123.2 (4)C18—N3—C21122.5 (4)
C4—N1—H1118.4C18—N3—H3118.7
C7—N1—H1118.4C21—N3—H3118.7
O5—C8—O7123.5 (4)O13—C22—O15122.7 (4)
O5—C8—C9120.8 (5)O13—C22—C23123.1 (5)
O7—C8—C9115.7 (4)O15—C22—C23114.2 (4)
C11—C9—C10113.6 (4)C25—C23—C24113.1 (5)
C11—C9—C8119.4 (5)C25—C23—C22119.3 (5)
C10—C9—C8127.0 (4)C24—C23—C22127.6 (5)
O6—C10—O8119.7 (5)O14—C24—O16119.8 (4)
O6—C10—C9124.2 (5)O14—C24—C23124.0 (5)
O8—C10—C9116.1 (4)O16—C24—C23116.2 (4)
N2—C11—C9129.5 (4)N4—C25—C23128.4 (5)
N2—C11—H11A115.3N4—C25—H25A115.8
C9—C11—H11A115.3C23—C25—H25A115.8
O8—C12—H12C109.5O16—C26—H26C109.5
O8—C12—H12B109.5O16—C26—H26B109.5
H12C—C12—H12B109.5H26C—C26—H26B109.5
O8—C12—H12A109.5O16—C26—H26A109.5
H12C—C12—H12A109.5H26C—C26—H26A109.5
H12B—C12—H12A109.5H26B—C26—H26A109.5
O7—C13—H13C109.5O15—C27—H27C109.5
O7—C13—H13B109.5O15—C27—H27B109.5
H13C—C13—H13B109.5H27C—C27—H27B109.5
O7—C13—H13A109.5O15—C27—H27A109.5
H13C—C13—H13A109.5H27C—C27—H27A109.5
H13B—C13—H13A109.5H27B—C27—H27A109.5
N2—C14—H14C109.5N4—C28—H28C109.5
N2—C14—H14B109.5N4—C28—H28B109.5
H14C—C14—H14B109.5H28C—C28—H28B109.5
N2—C14—H14A109.5N4—C28—H28A109.5
H14C—C14—H14A109.5H28C—C28—H28A109.5
H14B—C14—H14A109.5H28B—C28—H28A109.5
C8—O7—C13114.7 (4)C22—O15—C27114.7 (4)
C10—O8—C12116.1 (4)C24—O16—C26115.3 (4)
C11—N2—C14123.4 (4)C25—N4—C28122.9 (4)
C11—N2—H2118.3C25—N4—H4118.6
C14—N2—H2118.3C28—N4—H4118.6
O1—C1—C2—C40.8 (8)O9—C15—C16—C185.1 (8)
O3—C1—C2—C4178.1 (5)O11—C15—C16—C18176.0 (5)
O1—C1—C2—C3178.7 (5)O9—C15—C16—C17175.9 (6)
O3—C1—C2—C32.4 (8)O11—C15—C16—C173.0 (7)
C4—C2—C3—O25.5 (8)C18—C16—C17—O102.3 (8)
C1—C2—C3—O2175.0 (5)C15—C16—C17—O10178.6 (5)
C4—C2—C3—O4176.0 (5)C18—C16—C17—O12177.3 (4)
C1—C2—C3—O43.5 (8)C15—C16—C17—O121.8 (8)
C3—C2—C4—N1179.8 (5)C17—C16—C18—N3177.3 (5)
C1—C2—C4—N10.6 (9)C15—C16—C18—N31.9 (8)
O1—C1—O3—C61.6 (7)O9—C15—O11—C201.4 (7)
C2—C1—O3—C6177.3 (4)C16—C15—O11—C20179.7 (4)
O2—C3—O4—C50.4 (7)O10—C17—O12—C192.6 (7)
C2—C3—O4—C5178.1 (4)C16—C17—O12—C19177.8 (4)
C2—C4—N1—C7178.8 (5)C16—C18—N3—C21176.1 (5)
O5—C8—C9—C118.2 (7)O13—C22—C23—C251.8 (8)
O7—C8—C9—C11173.8 (5)O15—C22—C23—C25175.5 (5)
O5—C8—C9—C10173.2 (5)O13—C22—C23—C24178.0 (5)
O7—C8—C9—C104.7 (7)O15—C22—C23—C244.8 (8)
C11—C9—C10—O60.6 (8)C25—C23—C24—O145.0 (8)
C8—C9—C10—O6178.0 (5)C22—C23—C24—O14175.2 (5)
C11—C9—C10—O8178.8 (4)C25—C23—C24—O16174.8 (4)
C8—C9—C10—O82.6 (8)C22—C23—C24—O164.9 (8)
C10—C9—C11—N2179.9 (5)C24—C23—C25—N4179.9 (5)
C8—C9—C11—N21.3 (8)C22—C23—C25—N40.1 (9)
O5—C8—O7—C132.5 (7)O13—C22—O15—C271.1 (7)
C9—C8—O7—C13179.6 (4)C23—C22—O15—C27178.3 (4)
O6—C10—O8—C120.3 (7)O14—C24—O16—C260.1 (7)
C9—C10—O8—C12179.8 (4)C23—C24—O16—C26179.8 (4)
C9—C11—N2—C14175.4 (5)C23—C25—N4—C28179.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.862.082.689 (4)127
N1—H1···O100.862.422.990 (4)125
N2—H2···O50.862.082.687 (4)127
N2—H2···O14i0.862.302.893 (5)127
N3—H3···O90.862.062.684 (4)129
N3—H3···O2i0.862.322.912 (5)126
N4—H4···O130.862.082.698 (5)128
N4—H4···O60.862.402.957 (5)123
C4—H4A···O20.932.272.683 (7)106
C6—H6A···O140.962.503.449 (7)169
C11—H11A···O60.932.292.706 (6)107
C11—H11A···O130.932.603.487 (6)159
C14—H14A···O130.962.593.507 (6)161
C18—H18A···O10.932.583.470 (6)160
C18—H18A···O100.932.272.679 (6)106
C25—H25A···O140.932.282.691 (6)106
C27—H27A···O2i0.962.593.340 (7)135
C28—H28C···O60.962.603.024 (6)107
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC7H11NO4
Mr173.17
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)11.165 (2), 12.073 (2), 13.211 (3)
α, β, γ (°)113.70 (3), 93.71 (3), 94.02 (3)
V3)1618.1 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.43 × 0.15 × 0.08
Data collection
DiffractometerOxford Diffraction GEMINI R
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.968, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
9295, 9295, 3920
Rint0.000
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.092, 0.257, 0.90
No. of reflections9295
No. of parameters446
No. of restraints96
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.13, 0.54

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1998), enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.862.082.689 (4)127
N1—H1···O100.862.422.990 (4)125
N2—H2···O50.862.082.687 (4)127
N2—H2···O14i0.862.302.893 (5)127
N3—H3···O90.862.062.684 (4)129
N3—H3···O2i0.862.322.912 (5)126
N4—H4···O130.862.082.698 (5)128
N4—H4···O60.862.402.957 (5)123
C4—H4A···O20.932.272.683 (7)106
C6—H6A···O140.962.503.449 (7)169
C11—H11A···O60.932.292.706 (6)107
C11—H11A···O130.932.603.487 (6)159
C14—H14A···O130.962.593.507 (6)161
C18—H18A···O10.932.583.470 (6)160
C18—H18A···O100.932.272.679 (6)106
C25—H25A···O140.932.282.691 (6)106
C27—H27A···O2i0.962.593.340 (7)135
C28—H28C···O60.962.603.024 (6)107
Symmetry code: (i) x1, y, z.
 

Acknowledgements

The authors thank the Grant Agency of the Slovak Republic, grant Nos. APVT-20–007304 and VEGA 1/0817/08.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBolte, M. (2004). J. Appl. Cryst. 37, 162–165.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBouzard, D. (1990). Recent Progress in the Chemical Synthesis of Antibiotics, p. 249. München: Springer-Verlag.  Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCook, A. G. (1969). Enamines: Syntheses, Structure and Reactions. New York: Marcel Dekker.  Google Scholar
First citationDyke, S. F. (1973). The Chemistry of Enamines. London: Cambridge University Press.  Google Scholar
First citationFreeman, F. (1981). LONZA Reaction of Malononitrile Derivatives, p. 925. Stuttgart: Georg Thieme Verlag.  Google Scholar
First citationGróf, M., Kožíšek, J., Milata, V. & Gatial, A. (2008). Acta Cryst. E64, o998.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKálmán, A. & Argay, Gy. (1998). Acta Cryst. B54, 877–888.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages o1133-o1134
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds