metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages m845-m846

Di-μ-acetato-μ-aqua-bis­­[acetatobis(1H-benzimidazole)cobalt(II)]

aDepartement für Chemie und Biochemie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland, and bInstitut de Microtechnique, Jaquet Droz 1, CP 526, CH-2002 Neuchâtel, Switzerland
*Correspondence e-mail: silvio.decurtins@iac.unibe.ch

(Received 14 May 2008; accepted 23 May 2008; online 30 May 2008)

In the title compound, [Co2(C2H3O2)4(C7H6N2)4(H2O)], the half-mol­ecule in the asymmetric unit is completed by a crystallographic twofold rotation axis to give the full mol­ecule. The CoII ions are approximately octahedrally coordinated with a cis-N2O4 coordination sphere. The compound features intra­molecular O—H⋯O hydrogen bonds between the non-bridging acetate groups and the bridging water mol­ecule, and inter­molecular N—H⋯O hydrogen bonds between the acetates and amine H atoms of the benzimidazoles which determine the mol­ecular packing in the crystal structure.

Related literature

For related literature, see: Brown et al. (2004[Brown, D. A., Glass, W. K., Fitzpatrick, N. J., Kemp, T. J., Errington, W., Clarkson, G. J., Haase, W., Karsten, F. & Mahdy, A. H. (2004). Inorg. Chim. Acta, 357, 1411-1436.]); Hagen et al. (1993[Hagen, K. S., Lachicotte, R., Kitaygorodskiy, A. & Elbouadili, A. (1993). Angew. Chem. Int. Ed. Engl. 32, 1321-1324.]); Orpen et al. (1989[Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1-83.]); Turpeinen et al. (1987[Turpeinen, U., Hämäläinen, R. & Reedijk, J. (1987). Polyhedron, 6, 1603-1610.]); Ye et al. (1997[Ye, B.-H., Mak, T., Williams, I. D. & Li, X.-Y. (1997). J. Chem. Soc. Chem. Commun. pp. 1813-1814.]).

[Scheme 1]

Experimental

Crystal data
  • [Co2(C2H3O2)4(C7H6N2)4(H2O)]

  • Mr = 844.6

  • Orthorhombic, A b a 2

  • a = 18.663 (4) Å

  • b = 8.8101 (18) Å

  • c = 22.727 (5) Å

  • V = 3736.7 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.95 mm−1

  • T = 150 (2) K

  • 0.1 × 0.09 × 0.08 mm

Data collection
  • Stoe IPDS diffractometer

  • Absorption correction: multi-scan (MULscanABS in PLATON; Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) Tmin = 0.914, Tmax = 0.956

  • 24157 measured reflections

  • 5048 independent reflections

  • 3698 reflections with I > 2σ(I)

  • Rint = 0.069

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.077

  • S = 0.89

  • 5048 reflections

  • 252 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.57 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 2433 Friedel pairs

  • Flack parameter: 0.006 (12)

Table 1
Selected geometric parameters (Å, °)

Co1—O3 2.0495 (18)
Co1—O4i 2.1044 (19)
Co1—O1 2.1141 (17)
Co1—O1W 2.1315 (15)
Co1—N1 2.139 (2)
Co1—N3 2.147 (2)
O3—Co1—O4i 97.48 (8)
O3—Co1—O1 174.69 (7)
O4i—Co1—O1 86.88 (7)
O3—Co1—O1W 90.09 (6)
O4i—Co1—O1W 90.78 (7)
O1—Co1—O1W 92.89 (6)
O3—Co1—N1 88.66 (8)
O4i—Co1—N1 87.79 (8)
O1—Co1—N1 88.48 (7)
O1W—Co1—N1 177.97 (9)
O3—Co1—N3 88.14 (8)
O4i—Co1—N3 174.38 (8)
O1—Co1—N3 87.50 (8)
O1W—Co1—N3 89.38 (8)
N1—Co1—N3 92.19 (8)
Co1i—O1W—Co1 116.98 (13)
Symmetry code: (i) -x, -y, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O2 0.97 1.71 2.591 (2) 149
N4—H22⋯O2ii 0.86 1.87 2.717 (3) 167
N2—H12⋯O4iii 0.86 2.00 2.812 (2) 157
Symmetry codes: (ii) x, y+1, z; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z].

Data collection: EXPOSE in IPDS Software (Stoe & Cie, 2000[Stoe & Cie (2000). IPDS Software. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: CELL in IPDS Software; data reduction: INTEGRATE in IPDS Software; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenberg, 1999[Brandenberg, K. (1999). DIAMOND. Crystal Impact GbR, Germany.]); software used to prepare material for publication: SHELXL97 and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound belongs to an extensive group of compounds which share the same (µ2-acetato)-(µ2-aquo)-di-M(II) core (see for example Turpeinen et al. 1987; Brown et al. 2004; Hagen et al. 1993), indicating that this motif is favourable under a variety of synthetic conditions and for many different metals. The compound crystallizes from a solution of benzimidazole, cobalt acetate tetrahydrate and oxalic acid dihydrate in methanol which was left to evaporate over five days at room temperature. The title complex, with its bridging water molecule lying on a twofold rotation axis, is isostructural with the previously reported Mn(II) congener (Ye et al., 1997) and the structure comprises two Co(II) ions bridged by two acetate anions and one water molecule with the remainder of each approximately octahedral Co(II) coordination sphere being completed by coordination by the imine N atoms from two benzimidazole molecules and one monodentate acetate group (Fig. 1). All bond lengths and angles are in accordance with literature values (Orpen et al., 1992). The water molecule hydrogen bonds to the uncoordinated oxygen atom of the monodentate acetate groups within the dimer with a short H···O distance of 1.714 (2) Å (Fig. 2, Table 2). The monodentate acetate groups show that there is a large degree of delocalization in the carboxylate group with C—O bonds of 1.250 (3) (C1—O1) and 1.269 (3) Å (C1—O2), (Table 1). The shorter C1—O1 distance implies that this bond has more of a carbonyl character than C1—O2, as seen in the Mn(II) congener, indicating that the hydrogen bond between O2 and H1w affects the delocalization. The amine hydrogen atoms all take part in hydrogen bonds to acetate anions in neighbouring dimer groups to create the crystal packing. All acetates are involved in intermolecular hydrogen bonding, which forms planes of dimers in the ab-plane (Fig. 2, Table 2).

Related literature top

For related literature, see: Brown et al. (2004); Hagen et al. (1993); Orpen et al. (1992); Turpeinen et al. (1987); Ye et al. (1997).

Experimental top

Single crystals of the title compound suitable for X-ray diffraction experiments were obtained by dissolving cobalt(II) acetate tetrahydrate (1 mmol, 249 mg) and oxalic acid dihydrate (1 mmol, 126 mg) in a saturated solution of benzimidazole in methanol (30 ml). The subsequent solution was left to evaporate at room temperature for five days before red crystals formed. IR (KBr disc, transmission, cm-1): 3088 (m), 2982 (m), 2910 (m), 2836 (w), 1629 (s), 1606 (s), 1491 (m), 1420 (s), 1341 (w), 1304 (m), 1273 (m), 1251 (m), 1011 (w), 963 (w), 887 (w), 775 (w), 741 (s), 653 (m), 619 (w), 547 (w), 428 (w).

Refinement top

All hydrogen atoms were fixed in calculated positions and refined in riding mode with Uiso(H) = 1.2 Ueq. O—H, N—H and C—H bond lengths were fixed to 0.97, 0.86 and 0.96 Å, respectively. The number of Friedel pairs was 2433.

Computing details top

Data collection: EXPOSE in IPDS Software (Stoe & Cie, 2000); cell refinement: CELL in IPDS Software (Stoe & Cie, 2000); data reduction: INTEGRATE in IPDS Software (Stoe & Cie, 2000); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenberg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Asymmetric unit and selected symmetry equivalents with thermal ellipsoids at the 50% probability level. Hydrogen atoms (except H1w) and atom labels for the symmetry equivalent atoms (symmetry code: -x, -y, z) omitted for clarity. Hydrogen bonds depicted by dashed lines.
[Figure 2] Fig. 2. View of the hydrogen bonding network (dashed green bonds) and crystal packing, looking down the c-axis.
Di-µ-acetato-µ-aqua-bis[acetatobis(1H-benzimidazole)cobalt(II)] top
Crystal data top
[Co2(C2H3O2)4(C7H6N2)4(H2O)]Dx = 1.501 Mg m3
Mr = 844.6Melting point: N/A K
Orthorhombic, Aba2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: A 2 -2acCell parameters from 15135 reflections
a = 18.663 (4) Åθ = 1.8–29.5°
b = 8.8101 (18) ŵ = 0.95 mm1
c = 22.727 (5) ÅT = 150 K
V = 3736.7 (13) Å3Block, red
Z = 40.1 × 0.09 × 0.08 mm
F(000) = 1744
Data collection top
Stoe IPDS
diffractometer
3698 reflections with I > 2σ(I)
ϕ oscillation scansRint = 0.069
Absorption correction: multi-scan
(MULscanABS in PLATON03; Spek, 2003)
θmax = 29.3°, θmin = 1.8°
Tmin = 0.914, Tmax = 0.956h = 2525
24157 measured reflectionsk = 1211
5048 independent reflectionsl = 3131
Refinement top
Refinement on F2 w = 1/[σ2(Fo2) + (0.0441P)2]
where P = (Fo2 + 2Fc2)/3
Least-squares matrix: full(Δ/σ)max < 0.001
R[F2 > 2σ(F2)] = 0.035Δρmax = 0.36 e Å3
wR(F2) = 0.078Δρmin = 0.57 e Å3
S = 0.89Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
5048 reflectionsExtinction coefficient: 0.00058 (8)
252 parametersAbsolute structure: Flack (1983), 2433 Friedel pairs
1 restraintAbsolute structure parameter: 0.006 (12)
H-atom parameters constrained
Crystal data top
[Co2(C2H3O2)4(C7H6N2)4(H2O)]V = 3736.7 (13) Å3
Mr = 844.6Z = 4
Orthorhombic, Aba2Mo Kα radiation
a = 18.663 (4) ŵ = 0.95 mm1
b = 8.8101 (18) ÅT = 150 K
c = 22.727 (5) Å0.1 × 0.09 × 0.08 mm
Data collection top
Stoe IPDS
diffractometer
5048 independent reflections
Absorption correction: multi-scan
(MULscanABS in PLATON03; Spek, 2003)
3698 reflections with I > 2σ(I)
Tmin = 0.914, Tmax = 0.956Rint = 0.069
24157 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.078Δρmax = 0.36 e Å3
S = 0.89Δρmin = 0.57 e Å3
5048 reflectionsAbsolute structure: Flack (1983), 2433 Friedel pairs
252 parametersAbsolute structure parameter: 0.006 (12)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.081808 (12)0.11188 (3)0.166836 (17)0.02569 (8)
O1W000.21585 (12)0.0248 (5)
H1W0.02270.07450.24120.03*
O20.10002 (8)0.1571 (2)0.26630 (9)0.0362 (4)
O10.16471 (8)0.0148 (2)0.21784 (9)0.0305 (4)
O40.09188 (8)0.0772 (2)0.11088 (9)0.0314 (4)
O30.00530 (9)0.2253 (2)0.11937 (9)0.0365 (4)
N10.16209 (10)0.2216 (2)0.11482 (10)0.0300 (5)
N40.08897 (11)0.5364 (3)0.25660 (14)0.0434 (6)
H220.09240.63350.25370.052*
N30.07962 (10)0.2950 (2)0.22915 (11)0.0318 (5)
N20.26092 (9)0.3580 (3)0.10253 (11)0.0346 (5)
H120.30150.39960.11040.042*
C270.08124 (12)0.3017 (3)0.29057 (13)0.0331 (6)
C260.07634 (14)0.1894 (3)0.33343 (13)0.0389 (6)
H260.07170.08770.32320.047*
C170.16144 (11)0.2838 (3)0.05885 (12)0.0268 (5)
C220.08784 (13)0.4537 (3)0.30791 (15)0.0386 (7)
C120.22350 (12)0.3704 (3)0.05085 (12)0.0298 (5)
C210.08369 (13)0.4376 (3)0.21186 (15)0.0390 (6)
H210.0830.46690.17250.047*
C110.22226 (12)0.2688 (3)0.13860 (12)0.0329 (6)
H110.23670.24310.17650.04*
C30.05615 (12)0.1965 (3)0.10030 (12)0.0286 (5)
C130.23834 (15)0.4491 (3)0.00066 (13)0.0409 (7)
H130.27970.50710.00490.049*
C160.11186 (14)0.2719 (3)0.01321 (13)0.0350 (6)
H160.07060.21360.01730.042*
C20.22415 (14)0.1402 (4)0.28792 (14)0.0439 (7)
H2A0.26630.11470.26580.066*
H2B0.22250.24790.2940.066*
H2C0.22550.08950.32530.066*
C10.15851 (12)0.0905 (3)0.25437 (12)0.0286 (5)
C40.09095 (15)0.3150 (4)0.06247 (15)0.0434 (7)
H4A0.11430.2670.02970.065*
H4B0.05520.38410.04820.065*
H4C0.12570.36980.08530.065*
C250.07865 (17)0.2341 (4)0.39177 (15)0.0514 (8)
H250.07480.16070.4210.062*
C230.09133 (15)0.4981 (4)0.36623 (17)0.0508 (8)
H230.09670.59960.37660.061*
C150.12589 (16)0.3494 (4)0.03822 (14)0.0448 (7)
H150.09320.34390.0690.054*
C240.08657 (17)0.3864 (4)0.40805 (17)0.0573 (9)
H240.08860.41220.44770.069*
C140.18851 (16)0.4367 (4)0.04522 (14)0.0455 (7)
H140.19640.48710.08060.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01518 (10)0.02082 (13)0.04106 (16)0.00018 (11)0.00008 (19)0.00135 (18)
O1W0.0190 (10)0.0170 (12)0.0385 (14)0.0002 (9)00
O20.0257 (7)0.0211 (9)0.0618 (14)0.0010 (7)0.0038 (8)0.0044 (9)
O10.0208 (7)0.0293 (10)0.0413 (11)0.0016 (7)0.0033 (7)0.0022 (8)
O40.0185 (7)0.0307 (10)0.0450 (11)0.0010 (6)0.0023 (7)0.0060 (8)
O30.0191 (7)0.0347 (11)0.0558 (12)0.0030 (7)0.0059 (8)0.0147 (9)
N10.0189 (9)0.0282 (12)0.0429 (13)0.0043 (8)0.0002 (9)0.0011 (9)
N40.0312 (11)0.0187 (11)0.0802 (19)0.0033 (9)0.0069 (12)0.0051 (12)
N30.0253 (9)0.0194 (10)0.0506 (13)0.0005 (9)0.0034 (10)0.0016 (9)
N20.0161 (8)0.0391 (13)0.0486 (14)0.0069 (8)0.0019 (9)0.0006 (11)
C270.0199 (9)0.0234 (13)0.0562 (17)0.0021 (10)0.0002 (11)0.0076 (11)
C260.0376 (13)0.0283 (14)0.0508 (17)0.0062 (11)0.0028 (12)0.0050 (12)
C170.0214 (10)0.0212 (12)0.0377 (14)0.0021 (9)0.0032 (10)0.0046 (10)
C220.0231 (11)0.0221 (13)0.071 (2)0.0000 (10)0.0002 (12)0.0106 (13)
C120.0214 (10)0.0302 (15)0.0380 (14)0.0002 (9)0.0044 (9)0.0027 (11)
C210.0317 (12)0.0214 (12)0.0640 (19)0.0009 (11)0.0095 (13)0.0013 (13)
C110.0202 (10)0.0376 (14)0.0410 (15)0.0032 (10)0.0018 (10)0.0031 (12)
C30.0197 (10)0.0299 (14)0.0364 (14)0.0046 (9)0.0000 (10)0.0001 (11)
C130.0354 (13)0.0378 (16)0.0496 (18)0.0009 (12)0.0130 (12)0.0006 (13)
C160.0276 (11)0.0312 (15)0.0462 (17)0.0012 (11)0.0038 (11)0.0101 (13)
C20.0308 (13)0.055 (2)0.0460 (18)0.0090 (12)0.0084 (12)0.0021 (15)
C10.0240 (10)0.0215 (13)0.0404 (14)0.0048 (9)0.0031 (10)0.0063 (11)
C40.0350 (14)0.0406 (17)0.0545 (19)0.0001 (12)0.0108 (14)0.0165 (15)
C250.0548 (18)0.0489 (19)0.0504 (18)0.0122 (15)0.0070 (16)0.0068 (15)
C230.0376 (14)0.0388 (17)0.076 (2)0.0034 (13)0.0068 (15)0.0244 (18)
C150.0474 (15)0.0504 (19)0.0367 (16)0.0072 (14)0.0048 (12)0.0087 (14)
C240.0567 (18)0.055 (2)0.060 (2)0.0147 (16)0.0184 (18)0.0205 (19)
C140.0523 (16)0.0474 (18)0.0367 (16)0.0046 (14)0.0084 (13)0.0004 (14)
Geometric parameters (Å, º) top
Co1—O32.0495 (18)C17—C161.394 (3)
Co1—O4i2.1044 (19)C17—C121.399 (3)
Co1—O12.1141 (17)C22—C231.383 (5)
Co1—O1W2.1315 (15)C12—C131.389 (4)
Co1—N12.139 (2)C21—H210.93
Co1—N32.147 (2)C11—H110.93
O1W—Co1i2.1315 (15)C3—C41.501 (4)
O1W—H1W0.97C13—C141.379 (4)
O2—C11.269 (3)C13—H130.93
O1—C11.250 (3)C16—C151.379 (4)
O4—C31.267 (3)C16—H160.93
O4—Co1i2.1044 (19)C2—C11.508 (3)
O3—C31.252 (3)C2—H2A0.96
N1—C111.314 (3)C2—H2B0.96
N1—C171.385 (3)C2—H2C0.96
N4—C211.342 (4)C4—H4A0.96
N4—C221.375 (4)C4—H4B0.96
N4—H220.86C4—H4C0.96
N3—C211.319 (4)C25—C241.400 (5)
N3—C271.397 (4)C25—H250.93
N2—C111.346 (3)C23—C241.371 (5)
N2—C121.371 (4)C23—H230.93
N2—H120.86C15—C141.408 (4)
C27—C261.391 (4)C15—H150.93
C27—C221.402 (4)C24—H240.93
C26—C251.384 (4)C14—H140.93
C26—H260.93
O3—Co1—O4i97.48 (8)C13—C12—C17123.2 (3)
O3—Co1—O1174.69 (7)N3—C21—N4113.3 (3)
O4i—Co1—O186.88 (7)N3—C21—H21123.3
O3—Co1—O1W90.09 (6)N4—C21—H21123.3
O4i—Co1—O1W90.78 (7)N1—C11—N2113.1 (2)
O1—Co1—O1W92.89 (6)N1—C11—H11123.4
O3—Co1—N188.66 (8)N2—C11—H11123.4
O4i—Co1—N187.79 (8)O3—C3—O4125.8 (2)
O1—Co1—N188.48 (7)O3—C3—C4117.0 (2)
O1W—Co1—N1177.97 (9)O4—C3—C4117.2 (2)
O3—Co1—N388.14 (8)C14—C13—C12116.4 (3)
O4i—Co1—N3174.38 (8)C14—C13—H13121.8
O1—Co1—N387.50 (8)C12—C13—H13121.8
O1W—Co1—N389.38 (8)C15—C16—C17117.9 (3)
N1—Co1—N392.19 (8)C15—C16—H16121.1
Co1i—O1W—Co1116.98 (13)C17—C16—H16121.1
Co1i—O1W—H1W108.1C1—C2—H2A109.5
Co1—O1W—H1W108.1C1—C2—H2B109.5
C1—O1—Co1126.63 (14)H2A—C2—H2B109.5
C3—O4—Co1i136.38 (16)C1—C2—H2C109.5
C3—O3—Co1136.17 (18)H2A—C2—H2C109.5
C11—N1—C17105.1 (2)H2B—C2—H2C109.5
C11—N1—Co1120.94 (18)O1—C1—O2124.4 (2)
C17—N1—Co1132.86 (15)O1—C1—C2118.4 (2)
C21—N4—C22107.3 (2)O2—C1—C2117.2 (2)
C21—N4—H22126.3C3—C4—H4A109.5
C22—N4—H22126.3C3—C4—H4B109.5
C21—N3—C27104.9 (2)H4A—C4—H4B109.5
C21—N3—Co1121.2 (2)C3—C4—H4C109.5
C27—N3—Co1133.63 (17)H4A—C4—H4C109.5
C11—N2—C12107.17 (19)H4B—C4—H4C109.5
C11—N2—H12126.4C26—C25—C24121.9 (4)
C12—N2—H12126.4C26—C25—H25119
C26—C27—N3131.9 (2)C24—C25—H25119
C26—C27—C22119.2 (3)C24—C23—C22117.3 (3)
N3—C27—C22108.8 (3)C24—C23—H23121.4
C25—C26—C27117.8 (3)C22—C23—H23121.4
C25—C26—H26121.1C16—C15—C14121.6 (3)
C27—C26—H26121.1C16—C15—H15119.2
N1—C17—C16131.3 (2)C14—C15—H15119.2
N1—C17—C12109.1 (2)C23—C24—C25120.8 (3)
C16—C17—C12119.6 (3)C23—C24—H24119.6
N4—C22—C23131.5 (3)C25—C24—H24119.6
N4—C22—C27105.6 (3)C13—C14—C15121.3 (3)
C23—C22—C27122.9 (3)C13—C14—H14119.3
N2—C12—C13131.3 (2)C15—C14—H14119.3
N2—C12—C17105.5 (2)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O20.971.712.591 (2)149
N4—H22···O2ii0.861.872.717 (3)167
N2—H12···O4iii0.862.002.812 (2)157
Symmetry codes: (ii) x, y+1, z; (iii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Co2(C2H3O2)4(C7H6N2)4(H2O)]
Mr844.6
Crystal system, space groupOrthorhombic, Aba2
Temperature (K)150
a, b, c (Å)18.663 (4), 8.8101 (18), 22.727 (5)
V3)3736.7 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.95
Crystal size (mm)0.1 × 0.09 × 0.08
Data collection
DiffractometerStoe IPDS
diffractometer
Absorption correctionMulti-scan
(MULscanABS in PLATON03; Spek, 2003)
Tmin, Tmax0.914, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
24157, 5048, 3698
Rint0.069
(sin θ/λ)max1)0.688
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.078, 0.89
No. of reflections5048
No. of parameters252
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.57
Absolute structureFlack (1983), 2433 Friedel pairs
Absolute structure parameter0.006 (12)

Computer programs: EXPOSE in IPDS Software (Stoe & Cie, 2000), CELL in IPDS Software (Stoe & Cie, 2000), INTEGRATE in IPDS Software (Stoe & Cie, 2000), SIR92 (Altomare et al., 1994), DIAMOND (Brandenberg, 1999), SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Co1—O32.0495 (18)Co1—N32.147 (2)
Co1—O4i2.1044 (19)O2—C11.269 (3)
Co1—O12.1141 (17)O1—C11.250 (3)
Co1—O1W2.1315 (15)O4—C31.267 (3)
Co1—N12.139 (2)O3—C31.252 (3)
O3—Co1—O4i97.48 (8)O1—Co1—N188.48 (7)
O3—Co1—O1174.69 (7)O1W—Co1—N1177.97 (9)
O4i—Co1—O186.88 (7)O3—Co1—N388.14 (8)
O3—Co1—O1W90.09 (6)O4i—Co1—N3174.38 (8)
O4i—Co1—O1W90.78 (7)O1—Co1—N387.50 (8)
O1—Co1—O1W92.89 (6)O1W—Co1—N389.38 (8)
O3—Co1—N188.66 (8)N1—Co1—N392.19 (8)
O4i—Co1—N187.79 (8)Co1i—O1W—Co1116.98 (13)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O20.971.7142.591 (2)148.5
N4—H22···O2ii0.861.872.717 (3)167
N2—H12···O4iii0.862.002.812 (2)157
Symmetry codes: (ii) x, y+1, z; (iii) x+1/2, y+1/2, z.
 

Acknowledgements

This work was supported by the Swiss National Science Foundation (grant No. 200020-116003).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBrandenberg, K. (1999). DIAMOND. Crystal Impact GbR, Germany.  Google Scholar
First citationBrown, D. A., Glass, W. K., Fitzpatrick, N. J., Kemp, T. J., Errington, W., Clarkson, G. J., Haase, W., Karsten, F. & Mahdy, A. H. (2004). Inorg. Chim. Acta, 357, 1411–1436.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHagen, K. S., Lachicotte, R., Kitaygorodskiy, A. & Elbouadili, A. (1993). Angew. Chem. Int. Ed. Engl. 32, 1321–1324.  CSD CrossRef Web of Science Google Scholar
First citationOrpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1–83.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2000). IPDS Software. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationTurpeinen, U., Hämäläinen, R. & Reedijk, J. (1987). Polyhedron, 6, 1603–1610.  CSD CrossRef CAS Web of Science Google Scholar
First citationYe, B.-H., Mak, T., Williams, I. D. & Li, X.-Y. (1997). J. Chem. Soc. Chem. Commun. pp. 1813–1814.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages m845-m846
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds