organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages o956-o957

(E)-3-(4-Chloro­phen­yl)-1-(2,4-di­chloro-5-fluoro­phen­yl)prop-2-en-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, cDepartment of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, India, and dSyngene International Pvt Limited Plot No. 2 & 3 C, Unit-II Bommansandra Industrial Area, Bangalore 99, India
*Correspondence e-mail: hkfun@usm.my

(Received 23 April 2008; accepted 27 April 2008; online 3 May 2008)

In the title chalcone derivative, C15H8Cl3FO, the dihedral angle between the two benzene rings is 43.35 (8)°. Weak C—H⋯O and C—H⋯Cl intra­molecular inter­actions involving the enone group generate S(5) and S(6) ring motifs, respectively. In the crystal structure, mol­ecules are linked into anti­parallel chains along the a axis. These chains are stacked along the b axis and short Cl⋯F contacts of 3.100 (1) Å link adjacent mol­ecules of the anti­parallel chains into dimers.

Related literature

For hydrogen bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For related structures, see, for example: Fun et al. (2007[Fun, H.-K., Patil, P. S., Dharmaprakash, S. M. & Chantrapromma, S. (2007). Acta Cryst. E63, o561-o562.]); Patil et al. (2007a[Patil, P. S., Chantrapromma, S., Fun, H.-K. & Dharmaprakash, S. M. (2007a). Acta Cryst. E63, o1738-o1740.],b). For background to the applications of substituted chalcones, see, for example: Agrinskaya et al. (1999[Agrinskaya, N. V., Lukoshkin, V. A., Kudryavtsev, V. V., Nosova, G. I., Solovskaya, N. A. & Yakimanski, A. V. (1999). Phys. Solid State, 41, 1914-1917.]); Patil et al. (2006[Patil, P. S., Dharmaprakash, S. M., Fun, H.-K. & Karthikeyan, M. S. (2006). J. Cryst. Growth, 297, 111-116.]); Shivarama Holla et al. (2004[Shivarama Holla, B., Veerendra, B. & Shivananda, M. K. (2004). J. Cryst. Growth, 263, 532-535.]). For related literature, see: Gu et al. (2008[Gu, B., Ji, W., Patil, P. S., Dharmaprakash, S. M. & Wang, H. T. (2008). Appl. Phys. Lett. 92, 091118-091121.]).

[Scheme 1]

Experimental

Crystal data
  • C15H8Cl3FO

  • Mr = 329.56

  • Monoclinic, P 21 /c

  • a = 6.8271 (1) Å

  • b = 3.7832 (1) Å

  • c = 52.0206 (10) Å

  • β = 96.100 (1)°

  • V = 1336.00 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.69 mm−1

  • T = 100.0 (1) K

  • 0.35 × 0.29 × 0.18 mm

Data collection
  • Bruker SMART APEX2 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.794, Tmax = 0.889

  • 42462 measured reflections

  • 5852 independent reflections

  • 5257 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.113

  • S = 1.28

  • 5852 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯Cl2 0.93 2.81 3.1164 (16) 101
C9—H9⋯O1 0.93 2.57 2.878 (2) 100

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

In recent years extensive research has been carried out on organic nonlinear optical materials particularly chalcone derivatives due to their high nonlinearity, varied synthesis, and better laser damage resistance as compared to their inorganic counterparts (Agrinskaya et al., 1999; Shivarama Holla et al., 2004; Patil et al., 2006). In view of the importance of these organic materials, the title compound (I) was synthesized and its crystal structure is reported here.

The total molecular structure of the title compound (Fig. 1) is not planar, the dihedral angles between the two benzene rings is 43.35 (8)°. Atoms O1, C6, C7 and C8 lie on a plane and the least-squares plane through this moiety makes dihedral angles of 47.45 (10)° and 4.16 (10)° with the C1–C6 and C10–C15 benzene rings, repectively. The orientation of the prop-2-en-1-one unit can be indicated by the torsion angles C7–C8–C9–C10 = 177.37 (16)° and O1–C7–C8–C9 = 7.5 (3)°. Bond lengths and angles in (I) are in normal ranges (Allen et al., 1987) and comparable to those in related structures (Fun et al., 2007; Patil et al., 2007a; 2007b).

In the structure, weak C9—H9···O1 and C8—H8···Cl2 intramolecular interactions generate S(5) and S(6) ring motifs (Bernstein et al., 1995) (Table 1). In the crystal structure (Fig. 2), the molecules are linked into anti-parallel chains along the a axis. These chains are stacked along the b-axis and short Cl···F contacts of 3.100 (1) Å link adjacent molecules of the anti-parallel chains into dimers. The crystal is also stabilized by weak C—H···O and C—H···Cl intramolecular interactions (Table 1).

Related literature top

For hydrogen bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For related structures, see, for example: Fun et al. (2007); Patil et al. (2007a,b,c. For background to the applications of substituted chalcones, see, for example: Agrinskaya et al. (1999); Patil et al. (2006); Shivarama Holla et al. (2004). For related literature, see: Gu et al. (2008).

Experimental top

The title compound was synthesized by the condensation of 4-chlorobenzaldehyde (0.01 mol) with 2,4-dichloro-5-fluoroacetophenone (0.01 mol) in methanol (60 ml) in the presence of a catalytic amount of sodium hydroxide solution (10 ml, 10%). After stirring for 8 hr, the contents of the flask were poured into ice-cold water (500 ml) and left to stand for 5 hr. The resulting crude solid was filtered and dried. Colorless block-shaped single crystals of the title compound suitable for x-ray structure determination were recrystallized from acetone.

Refinement top

All H atoms were placed in calculated positions with d(C—H) = 0.93 Å, Uiso=1.2Ueq(C) for CH and aromatic atoms. The highest residual electron density peak is located at 0.67 Å from C4 and the deepest hole is located at 0.54 Å from Cl1.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atomic numbering. Weak intramolecular C—H···O and C—H···Cl interactions are drawn as dashed lines.
[Figure 2] Fig. 2. The crystal packing of (I), viewed along the b axis showing stacking of anti-parallel chains of molecules approximately along the b axis. Cl···F short contacts and weak C—H···O and C—H···Cl interactions are drawn as dashed lines.
(E)-3-(4-Chlorophenyl)-1-(2,4-dichloro-5-fluorophenyl)prop-2-en-1-one top
Crystal data top
C15H8Cl3FOF(000) = 664
Mr = 329.56Dx = 1.638 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5852 reflections
a = 6.8271 (1) Åθ = 0.8–35.0°
b = 3.7832 (1) ŵ = 0.69 mm1
c = 52.0206 (10) ÅT = 100 K
β = 96.100 (1)°Block, colorless
V = 1336.00 (5) Å30.35 × 0.29 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEX2 CCD area-detector
diffractometer
5852 independent reflections
Radiation source: fine-focus sealed tube5257 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 8.33 pixels mm-1θmax = 35.0°, θmin = 0.8°
ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 66
Tmin = 0.794, Tmax = 0.889l = 8372
42462 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.29 w = 1/[σ2(Fo2) + (0.0246P)2 + 1.777P]
where P = (Fo2 + 2Fc2)/3
5852 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C15H8Cl3FOV = 1336.00 (5) Å3
Mr = 329.56Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.8271 (1) ŵ = 0.69 mm1
b = 3.7832 (1) ÅT = 100 K
c = 52.0206 (10) Å0.35 × 0.29 × 0.18 mm
β = 96.100 (1)°
Data collection top
Bruker SMART APEX2 CCD area-detector
diffractometer
5852 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5257 reflections with I > 2σ(I)
Tmin = 0.794, Tmax = 0.889Rint = 0.036
42462 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.29Δρmax = 0.47 e Å3
5852 reflectionsΔρmin = 0.31 e Å3
181 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.75834 (7)0.29526 (14)0.494133 (8)0.02272 (10)
Cl20.27758 (6)0.21297 (12)0.414214 (9)0.01926 (9)
Cl30.33602 (6)0.43796 (13)0.273464 (9)0.02136 (9)
F11.03386 (16)0.3790 (4)0.45548 (2)0.0240 (2)
O10.75361 (19)0.1864 (4)0.37069 (3)0.0211 (3)
C10.8267 (2)0.1756 (5)0.41951 (3)0.0159 (3)
H10.92600.21700.40900.019*
C20.8591 (2)0.2477 (5)0.44562 (3)0.0164 (3)
C30.7139 (3)0.1882 (5)0.46193 (3)0.0163 (3)
C40.5343 (2)0.0489 (5)0.45181 (3)0.0169 (3)
H40.43630.00440.46250.020*
C50.5022 (2)0.0237 (4)0.42545 (3)0.0147 (3)
C60.6458 (2)0.0408 (4)0.40887 (3)0.0144 (3)
C70.6216 (2)0.0317 (5)0.38025 (3)0.0153 (3)
C80.4414 (2)0.0999 (5)0.36537 (3)0.0163 (3)
H80.35520.23900.37370.020*
C90.3966 (2)0.0265 (5)0.34022 (3)0.0160 (3)
H90.48780.10480.33220.019*
C100.2173 (2)0.1348 (4)0.32437 (3)0.0142 (3)
C110.1999 (2)0.0697 (5)0.29770 (3)0.0160 (3)
H110.30360.03700.29040.019*
C120.0306 (3)0.1616 (5)0.28197 (3)0.0163 (3)
H120.02050.11870.26430.020*
C130.1239 (2)0.3191 (5)0.29314 (3)0.0161 (3)
C140.1123 (2)0.3856 (5)0.31941 (3)0.0166 (3)
H140.21710.49030.32660.020*
C150.0583 (2)0.2938 (5)0.33493 (3)0.0167 (3)
H150.06720.33830.35260.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0267 (2)0.0276 (2)0.01395 (17)0.00233 (17)0.00251 (14)0.00137 (16)
Cl20.01366 (16)0.02036 (19)0.02387 (19)0.00204 (14)0.00256 (13)0.00089 (15)
Cl30.01787 (17)0.0229 (2)0.0221 (2)0.00123 (15)0.00347 (14)0.00159 (16)
F10.0177 (5)0.0353 (7)0.0186 (5)0.0072 (5)0.0003 (4)0.0023 (5)
O10.0187 (6)0.0267 (7)0.0183 (6)0.0044 (5)0.0036 (4)0.0029 (5)
C10.0135 (6)0.0179 (7)0.0163 (7)0.0005 (5)0.0023 (5)0.0005 (6)
C20.0139 (6)0.0184 (7)0.0167 (7)0.0008 (5)0.0008 (5)0.0006 (6)
C30.0187 (7)0.0173 (7)0.0132 (6)0.0012 (6)0.0027 (5)0.0010 (6)
C40.0160 (7)0.0190 (7)0.0163 (7)0.0008 (6)0.0046 (5)0.0022 (6)
C50.0123 (6)0.0139 (7)0.0178 (7)0.0008 (5)0.0015 (5)0.0007 (5)
C60.0139 (6)0.0142 (7)0.0149 (7)0.0022 (5)0.0013 (5)0.0012 (5)
C70.0160 (6)0.0151 (7)0.0148 (7)0.0002 (5)0.0015 (5)0.0004 (5)
C80.0160 (7)0.0159 (7)0.0167 (7)0.0022 (6)0.0006 (5)0.0008 (6)
C90.0156 (6)0.0156 (7)0.0166 (7)0.0001 (5)0.0014 (5)0.0001 (6)
C100.0152 (6)0.0126 (6)0.0148 (6)0.0005 (5)0.0017 (5)0.0001 (5)
C110.0177 (7)0.0158 (7)0.0148 (7)0.0004 (6)0.0036 (5)0.0008 (6)
C120.0201 (7)0.0145 (7)0.0141 (7)0.0005 (6)0.0010 (5)0.0001 (5)
C130.0156 (6)0.0154 (7)0.0166 (7)0.0013 (6)0.0009 (5)0.0016 (6)
C140.0157 (6)0.0168 (7)0.0175 (7)0.0017 (6)0.0028 (5)0.0003 (6)
C150.0169 (7)0.0190 (7)0.0143 (6)0.0007 (6)0.0023 (5)0.0006 (6)
Geometric parameters (Å, º) top
Cl1—C31.7190 (17)C8—C91.341 (2)
Cl2—C51.7366 (17)C8—H80.9300
Cl3—C131.7412 (17)C9—C101.460 (2)
F1—C21.343 (2)C9—H90.9300
O1—C71.224 (2)C10—C111.402 (2)
C1—C21.380 (2)C10—C151.403 (2)
C1—C61.395 (2)C11—C121.388 (2)
C1—H10.9300C11—H110.9300
C2—C31.390 (2)C12—C131.391 (2)
C3—C41.386 (2)C12—H120.9300
C4—C51.392 (2)C13—C141.383 (2)
C4—H40.9300C14—C151.389 (2)
C5—C61.394 (2)C14—H140.9300
C6—C71.505 (2)C15—H150.9300
C7—C81.469 (2)
C2—C1—C6120.37 (15)C7—C8—H8118.8
C2—C1—H1119.8C8—C9—C10125.68 (16)
C6—C1—H1119.8C8—C9—H9117.2
F1—C2—C1119.49 (15)C10—C9—H9117.2
F1—C2—C3119.28 (15)C11—C10—C15118.36 (15)
C1—C2—C3121.23 (16)C11—C10—C9119.16 (15)
C4—C3—C2119.29 (15)C15—C10—C9122.45 (15)
C4—C3—Cl1121.14 (13)C12—C11—C10121.15 (16)
C2—C3—Cl1119.55 (13)C12—C11—H11119.4
C3—C4—C5119.29 (15)C10—C11—H11119.4
C3—C4—H4120.4C11—C12—C13118.82 (15)
C5—C4—H4120.4C11—C12—H12120.6
C4—C5—C6121.82 (15)C13—C12—H12120.6
C4—C5—Cl2116.97 (13)C14—C13—C12121.60 (15)
C6—C5—Cl2121.17 (13)C14—C13—Cl3119.38 (13)
C5—C6—C1117.98 (15)C12—C13—Cl3119.02 (13)
C5—C6—C7124.71 (15)C13—C14—C15119.06 (16)
C1—C6—C7117.29 (15)C13—C14—H14120.5
O1—C7—C8124.03 (16)C15—C14—H14120.5
O1—C7—C6118.75 (15)C14—C15—C10121.01 (16)
C8—C7—C6117.19 (14)C14—C15—H15119.5
C9—C8—C7122.36 (16)C10—C15—H15119.5
C9—C8—H8118.8
C6—C1—C2—F1179.66 (16)C5—C6—C7—C849.0 (2)
C6—C1—C2—C30.1 (3)C1—C6—C7—C8132.33 (17)
F1—C2—C3—C4179.28 (16)O1—C7—C8—C97.5 (3)
C1—C2—C3—C40.9 (3)C6—C7—C8—C9174.50 (16)
F1—C2—C3—Cl11.8 (2)C7—C8—C9—C10177.37 (16)
C1—C2—C3—Cl1177.94 (14)C8—C9—C10—C11173.51 (18)
C2—C3—C4—C50.9 (3)C8—C9—C10—C158.3 (3)
Cl1—C3—C4—C5177.97 (14)C15—C10—C11—C120.4 (3)
C3—C4—C5—C60.2 (3)C9—C10—C11—C12178.70 (16)
C3—C4—C5—Cl2177.69 (14)C10—C11—C12—C130.4 (3)
C4—C5—C6—C11.2 (3)C11—C12—C13—C140.0 (3)
Cl2—C5—C6—C1176.57 (13)C11—C12—C13—Cl3179.54 (14)
C4—C5—C6—C7179.86 (16)C12—C13—C14—C150.2 (3)
Cl2—C5—C6—C72.1 (2)Cl3—C13—C14—C15179.27 (14)
C2—C1—C6—C51.2 (3)C13—C14—C15—C100.2 (3)
C2—C1—C6—C7179.91 (16)C11—C10—C15—C140.2 (3)
C5—C6—C7—O1132.87 (19)C9—C10—C15—C14178.37 (17)
C1—C6—C7—O145.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···Cl20.932.813.1164 (16)101
C9—H9···O10.932.572.878 (2)100

Experimental details

Crystal data
Chemical formulaC15H8Cl3FO
Mr329.56
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)6.8271 (1), 3.7832 (1), 52.0206 (10)
β (°) 96.100 (1)
V3)1336.00 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.69
Crystal size (mm)0.35 × 0.29 × 0.18
Data collection
DiffractometerBruker SMART APEX2 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.794, 0.889
No. of measured, independent and
observed [I > 2σ(I)] reflections
42462, 5852, 5257
Rint0.036
(sin θ/λ)max1)0.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.113, 1.29
No. of reflections5852
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.31

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···Cl20.932.813.1164 (16)101
C9—H9···O10.932.572.878 (2)100
 

Footnotes

Additional correspondence author, e-mail: suchada.c@psu.ac.th.

Acknowledgements

This work is supported by Department of Science and Technology (DST), Government of India, under grant No. SR/S2/LOP-17/2006. The authors also thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAgrinskaya, N. V., Lukoshkin, V. A., Kudryavtsev, V. V., Nosova, G. I., Solovskaya, N. A. & Yakimanski, A. V. (1999). Phys. Solid State, 41, 1914–1917.  Web of Science CrossRef CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Patil, P. S., Dharmaprakash, S. M. & Chantrapromma, S. (2007). Acta Cryst. E63, o561–o562.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGu, B., Ji, W., Patil, P. S., Dharmaprakash, S. M. & Wang, H. T. (2008). Appl. Phys. Lett. 92, 091118–091121.  Web of Science CrossRef Google Scholar
First citationPatil, P. S., Chantrapromma, S., Fun, H.-K. & Dharmaprakash, S. M. (2007a). Acta Cryst. E63, o1738–o1740.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPatil, P. S., Dharmaprakash, S. M., Fun, H.-K. & Karthikeyan, M. S. (2006). J. Cryst. Growth, 297, 111–116.  Web of Science CrossRef CAS Google Scholar
First citationPatil, P. S., Fun, H.-K., Chantrapromma, S. & Dharmaprakash, S. M. (2007b). Acta Cryst. E63, o2497–o2498.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShivarama Holla, B., Veerendra, B. & Shivananda, M. K. (2004). J. Cryst. Growth, 263, 532–535.  Web of Science CrossRef Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages o956-o957
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds