organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages o958-o959

(E)-3-(2-Chloro­phen­yl)-1-(4-nitro­phen­yl)prop-2-en-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cDepartment of Studies in Physics, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 24 April 2008; accepted 27 April 2008; online 3 May 2008)

In the title compound, C15H10ClNO3, a substituted chalcone, the 2-chloro­phenyl and 4-nitro­phenyl rings make a dihedral angle of 26.48 (6)°. The nitro group makes a dihedral angle of 11.64 (7)° with the plane of the benzene ring to which it is bound. Weak intra­molecular C—H⋯O and C—H⋯Cl inter­actions involving the enone groups generate S(5) ring motifs, which help to stabilize the planarity of the 3-(2-chloro­phen­yl)prop-2-en-1-one segment of the mol­ecule. In the crystal structure, adjacent mol­ecules are stacked in a head-to-tail fashion into columns along the a axis by ππ inter­actions [centroid–centroid distance = 3.6955 (8) Å]. Neighbouring columns are linked by weak C—H⋯O inter­actions.

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For related structures, see, for example: Fun et al. (2007[Fun, H.-K., Patil, P. S., Dharmaprakash, S. M. & Chantrapromma, S. (2007). Acta Cryst. E63, o561-o562.]); Patil et al. (2006b[Patil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006b). Acta Cryst. E62, o896-o898.]; 2007a[Patil, P. S., Chantrapromma, S., Fun, H.-K. & Dharmaprakash, S. M. (2007a). Acta Cryst. E63, o1738-o1740.],b[Patil, P. S., Fun, H.-K., Chantrapromma, S. & Dharmaprakash, S. M. (2007b). Acta Cryst. E63, o2497-o2498.],c[Patil, P. S., Dharmaprakash, S. M., Ramakrishna, K., Fun, H.-K., Sai Santosh Kumar, R. & Rao, D. N. (2007c). J. Cryst. Growth, 303, 520-524.]). For background to the applications of substituted chalcones, see, for example: Agrinskaya et al. (1999[Agrinskaya, N. V., Lukoshkin, V. A., Kudryavtsev, V. V., Nosova, G. I., Solovskaya, N. A. & Yakimanski, A. V. (1999). Phys. Solid State, 41, 1914-1917.]); Gu et al. (2008[Gu, B., Ji, W., Patil, P. S., Dharmaprakash, S. M. & Wang, H. T. (2008). Appl. Phys. Lett. 92, 091118-091121.]); Patil et al. (2006a[Patil, P. S., Dharmaprakash, S. M., Fun, H.-K. & Karthikeyan, M. S. (2006a). J. Cryst. Growth, 297, 111-116.], 2007c[Patil, P. S., Dharmaprakash, S. M., Ramakrishna, K., Fun, H.-K., Sai Santosh Kumar, R. & Rao, D. N. (2007c). J. Cryst. Growth, 303, 520-524.],d[Patil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2007d). Acta Cryst. E63, o2122-o2123.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10ClNO3

  • Mr = 287.69

  • Monoclinic, C 2/c

  • a = 13.7003 (2) Å

  • b = 7.3659 (1) Å

  • c = 25.9954 (4) Å

  • β = 102.290 (1)°

  • V = 2563.21 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 100.0 (1) K

  • 0.36 × 0.22 × 0.14 mm

Data collection
  • Bruker SMART APEX2 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.899, Tmax = 0.957

  • 27534 measured reflections

  • 3736 independent reflections

  • 3008 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.103

  • S = 1.07

  • 3736 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2i 0.93 2.58 3.4284 (18) 152
C5—H5⋯O1ii 0.93 2.59 3.2996 (17) 134
C7—H7⋯Cl1 0.93 2.60 3.0531 (14) 110
C7—H7⋯O1 0.93 2.47 2.7981 (16) 101
C12—H12⋯O1iii 0.93 2.56 3.3298 (17) 141
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y-1, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Chalcone derivatives have been extensively studied in attempts to obtain non-linear optical (NLO) materials (Agrinskaya et al., 1999; Patil et al., 2006a, 2007c, 2007d). We have previously synthesized and crystallized several chalcone derivatives to study their non-linear optical properties (Agrinskaya et al., 1999; Fun et al., 2007; Patil et al., 2006a, 2007a, 2007b, 2007c, 2007d). As part of our studies on structure-property relationships of chalcones and the importance of substituted chalcones in nonlinear optics (Agrinskaya et al., 1999; Patil et al., 2006a, 2007c, 2007d), the title compound was synthesized and its crystal structure is reported here. Unfortunately this crystal does not have second-order NLO properties because it crystallizes in the centrosymmetric C2/c space group.

The molecular structure of the title compound (Fig. 1) is not planar as indicated by the dihedral angle between the 4-nitrobenzene and 2-chlorobenzene rings being 26.48 (6)°. The propene unit (C7/C8/C9) is co-planar with the 2-chlorobenzene ring with the torsion angle C6–C7–C8–C9 = -178.41 (12)°. Atoms O1, C8, C9 and C10 lie on a plane and the least-squares plane through this moiety makes dihedral angles of 8.69 (7)° and 26.48 (6)° with the 4-nitrobenzene and 2-chlorolbenzene rings, repectively. The nitro group makes a dihedral angle of 11.64 (7)° with the plane of the benzene ring to which it is bound. Bond lengths and angles shown normal values (Allen et al., 1987) and are comparable to those in related structures (Fun et al., 2007; Patil et al., 2006b; 2007a; 2007b; 2007c; 2007d). In the structure of the title compound, weak intramolecular C7—H7···O1 and C7—H7···Cl1 interactions generate S(5) ring motifs (Bernstein et al., 1995) (Fig. 1 and Table 1) which help to stabilize the planarity of the (2-chlorophenyl)prop-2-en-1-one segment of the molecule.

In the crystal structure (Fig. 2), adjacent molecules are stacked in a head to tail fashion into columns along the a-axis by π···π interactions with the distances of Cg1···Cg2 = 3.6955 (8) Å: symmetry code 1/2 - x, 1/2 + y, 1/2 - z Cg1 and Cg2 are the centroids of C1–C6 and C10–C15, respectively. The neighbouring columns are linked by weak C—H···O interactions (Table 1).

Related literature top

For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For related structures, see, for example: Fun et al. (2007); Patil et al. (2006b; 2007a,b,c). For background to the applications of substituted chalcones, see, for example: Agrinskaya et al. (1999); Gu et al. (2008); Patil et al. (2006a, 2007c,d).

Experimental top

The title compound was synthesized by the condensation of 2-chlorobenzaldehyde (0.01 mol) with 4-nitroacetophenone (0.01 mol) in methanol (60 ml) in the presence of a catalytic amount of sodium hydroxide solution (5 ml, 30%). After stirring for 4 hr, the contents of the flask were poured into ice-cold water (500 ml) and left to stand for 5 hr. The resulting crude solid was filtered and dried. Colorless single crystals of the title compound suitable for x-ray structure determination were recrystallized from N,N-dimethylformamide (DMF).

Refinement top

All H atoms were placed in calculated positions with d(C—H) = 0.93 Å, Uiso=1.2Ueq(C) for CH and aromatic atoms. The highest residual electron density peak is located at 0.70 Å from C8 and the deepest hole is located at 0.56 Å from N1.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atomic numbering. Weak intramolecular C—H···O and C—H···Cl interactions are drawn as dashed lines.
[Figure 2] Fig. 2. The crystal packing of (I), viewed along the b axis showing the stacking of the molecules along the a axis. Hydrogen bonds are drawn as dashed lines.
(E)-3-(2-Chlorophenyl)-1-(4-nitrophenyl)prop-2-en-1-one top
Crystal data top
C15H10ClNO3F(000) = 1184
Mr = 287.69Dx = 1.491 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3736 reflections
a = 13.7003 (2) Åθ = 1.6–30.0°
b = 7.3659 (1) ŵ = 0.30 mm1
c = 25.9954 (4) ÅT = 100 K
β = 102.290 (1)°Block, colorless
V = 2563.21 (7) Å30.36 × 0.22 × 0.14 mm
Z = 8
Data collection top
Bruker SMART APEX2 CCD area-detector
diffractometer
3736 independent reflections
Radiation source: fine-focus sealed tube3008 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 8.33 pixels mm-1θmax = 30.0°, θmin = 1.6°
ω scansh = 1919
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1010
Tmin = 0.899, Tmax = 0.957l = 3636
27534 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0472P)2 + 1.7337P]
where P = (Fo2 + 2Fc2)/3
3736 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C15H10ClNO3V = 2563.21 (7) Å3
Mr = 287.69Z = 8
Monoclinic, C2/cMo Kα radiation
a = 13.7003 (2) ŵ = 0.30 mm1
b = 7.3659 (1) ÅT = 100 K
c = 25.9954 (4) Å0.36 × 0.22 × 0.14 mm
β = 102.290 (1)°
Data collection top
Bruker SMART APEX2 CCD area-detector
diffractometer
3736 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3008 reflections with I > 2σ(I)
Tmin = 0.899, Tmax = 0.957Rint = 0.043
27534 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.07Δρmax = 0.42 e Å3
3736 reflectionsΔρmin = 0.26 e Å3
181 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.51146 (3)1.13027 (5)0.327931 (14)0.02471 (10)
O10.26191 (7)0.90593 (14)0.17879 (4)0.0253 (2)
O20.07873 (8)0.27115 (15)0.01091 (4)0.0305 (3)
O30.18728 (9)0.07688 (15)0.02905 (4)0.0321 (3)
N10.14644 (9)0.22581 (17)0.02587 (4)0.0224 (2)
C10.51251 (10)0.91188 (19)0.35378 (5)0.0193 (3)
C20.57265 (10)0.8810 (2)0.40322 (5)0.0227 (3)
H20.61060.97470.42130.027*
C30.57562 (10)0.7097 (2)0.42526 (5)0.0235 (3)
H30.61570.68810.45830.028*
C40.51884 (10)0.5699 (2)0.39809 (6)0.0228 (3)
H40.52070.45480.41300.027*
C50.45951 (10)0.60253 (19)0.34883 (5)0.0210 (3)
H50.42180.50800.33100.025*
C60.45467 (9)0.77387 (18)0.32502 (5)0.0181 (3)
C70.39252 (9)0.80876 (19)0.27284 (5)0.0191 (3)
H70.39180.92720.26040.023*
C80.33667 (10)0.68819 (19)0.24123 (5)0.0211 (3)
H80.33340.56850.25210.025*
C90.28008 (9)0.74551 (18)0.18885 (5)0.0183 (3)
C100.24532 (9)0.60468 (18)0.14738 (5)0.0173 (3)
C110.27549 (9)0.42431 (19)0.15364 (5)0.0192 (3)
H110.31740.38760.18490.023*
C120.24381 (10)0.29833 (19)0.11385 (5)0.0198 (3)
H120.26420.17780.11780.024*
C130.18098 (9)0.35820 (18)0.06821 (5)0.0181 (3)
C140.14839 (10)0.53630 (19)0.06062 (5)0.0206 (3)
H140.10510.57150.02960.025*
C150.18190 (10)0.65985 (19)0.10033 (5)0.0203 (3)
H150.16220.78070.09580.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02953 (18)0.01723 (17)0.02609 (18)0.00492 (13)0.00304 (13)0.00086 (13)
O10.0278 (5)0.0189 (5)0.0263 (5)0.0027 (4)0.0008 (4)0.0011 (4)
O20.0343 (6)0.0307 (6)0.0211 (5)0.0001 (5)0.0059 (4)0.0018 (5)
O30.0397 (6)0.0234 (5)0.0297 (6)0.0052 (5)0.0002 (5)0.0072 (5)
N10.0254 (6)0.0224 (6)0.0188 (5)0.0022 (5)0.0034 (4)0.0015 (5)
C10.0208 (6)0.0175 (6)0.0202 (6)0.0004 (5)0.0056 (5)0.0017 (5)
C20.0230 (6)0.0246 (7)0.0195 (6)0.0026 (5)0.0025 (5)0.0050 (5)
C30.0221 (6)0.0297 (8)0.0181 (6)0.0043 (6)0.0028 (5)0.0015 (6)
C40.0242 (6)0.0214 (7)0.0227 (7)0.0031 (5)0.0049 (5)0.0026 (5)
C50.0223 (6)0.0185 (6)0.0215 (6)0.0013 (5)0.0032 (5)0.0005 (5)
C60.0175 (5)0.0183 (6)0.0188 (6)0.0002 (5)0.0043 (5)0.0016 (5)
C70.0199 (6)0.0165 (6)0.0209 (6)0.0003 (5)0.0042 (5)0.0006 (5)
C80.0271 (6)0.0170 (6)0.0179 (6)0.0020 (5)0.0019 (5)0.0006 (5)
C90.0179 (5)0.0180 (6)0.0191 (6)0.0005 (5)0.0042 (5)0.0000 (5)
C100.0162 (5)0.0184 (6)0.0171 (6)0.0004 (5)0.0034 (4)0.0010 (5)
C110.0188 (6)0.0205 (6)0.0166 (6)0.0006 (5)0.0000 (5)0.0018 (5)
C120.0218 (6)0.0171 (6)0.0197 (6)0.0020 (5)0.0026 (5)0.0007 (5)
C130.0188 (6)0.0193 (6)0.0159 (6)0.0018 (5)0.0032 (4)0.0015 (5)
C140.0219 (6)0.0205 (7)0.0175 (6)0.0021 (5)0.0003 (5)0.0031 (5)
C150.0218 (6)0.0182 (6)0.0195 (6)0.0013 (5)0.0017 (5)0.0029 (5)
Geometric parameters (Å, º) top
Cl1—C11.7422 (14)C7—C81.3348 (19)
O1—C91.2243 (16)C7—H70.9300
O2—N11.2283 (15)C8—C91.4777 (18)
O3—N11.2263 (16)C8—H80.9300
N1—C131.4712 (17)C9—C101.4989 (18)
C1—C21.3898 (19)C10—C111.3906 (19)
C1—C61.4029 (18)C10—C151.4012 (18)
C2—C31.382 (2)C11—C121.3886 (19)
C2—H20.9300C11—H110.9300
C3—C41.389 (2)C12—C131.3814 (18)
C3—H30.9300C12—H120.9300
C4—C51.3839 (19)C13—C141.3863 (19)
C4—H40.9300C14—C151.3795 (19)
C5—C61.4010 (19)C14—H140.9300
C5—H50.9300C15—H150.9300
C6—C71.4627 (18)
O3—N1—O2123.63 (12)C7—C8—C9119.78 (13)
O3—N1—C13118.24 (11)C7—C8—H8120.1
O2—N1—C13118.13 (12)C9—C8—H8120.1
C2—C1—C6122.04 (13)O1—C9—C8121.04 (12)
C2—C1—Cl1117.55 (11)O1—C9—C10119.69 (12)
C6—C1—Cl1120.41 (10)C8—C9—C10119.28 (12)
C3—C2—C1119.48 (13)C11—C10—C15119.53 (12)
C3—C2—H2120.3C11—C10—C9122.41 (11)
C1—C2—H2120.3C15—C10—C9118.04 (12)
C2—C3—C4120.10 (13)C12—C11—C10120.88 (12)
C2—C3—H3119.9C12—C11—H11119.6
C4—C3—H3119.9C10—C11—H11119.6
C5—C4—C3119.79 (14)C13—C12—C11117.72 (13)
C5—C4—H4120.1C13—C12—H12121.1
C3—C4—H4120.1C11—C12—H12121.1
C4—C5—C6121.89 (13)C12—C13—C14123.19 (13)
C4—C5—H5119.1C12—C13—N1118.25 (12)
C6—C5—H5119.1C14—C13—N1118.56 (12)
C5—C6—C1116.69 (12)C15—C14—C13118.16 (12)
C5—C6—C7122.10 (12)C15—C14—H14120.9
C1—C6—C7121.21 (12)C13—C14—H14120.9
C8—C7—C6126.75 (13)C14—C15—C10120.51 (13)
C8—C7—H7116.6C14—C15—H15119.7
C6—C7—H7116.6C10—C15—H15119.7
C6—C1—C2—C30.4 (2)C8—C9—C10—C118.89 (19)
Cl1—C1—C2—C3179.90 (10)O1—C9—C10—C157.99 (19)
C1—C2—C3—C40.0 (2)C8—C9—C10—C15172.55 (12)
C2—C3—C4—C50.2 (2)C15—C10—C11—C120.2 (2)
C3—C4—C5—C60.1 (2)C9—C10—C11—C12178.36 (12)
C4—C5—C6—C10.5 (2)C10—C11—C12—C130.5 (2)
C4—C5—C6—C7179.65 (13)C11—C12—C13—C140.2 (2)
C2—C1—C6—C50.67 (19)C11—C12—C13—N1179.66 (12)
Cl1—C1—C6—C5179.69 (10)O3—N1—C13—C1211.92 (19)
C2—C1—C6—C7179.46 (12)O2—N1—C13—C12168.59 (12)
Cl1—C1—C6—C70.19 (18)O3—N1—C13—C14168.59 (13)
C5—C6—C7—C82.1 (2)O2—N1—C13—C1410.89 (19)
C1—C6—C7—C8178.04 (13)C12—C13—C14—C151.1 (2)
C6—C7—C8—C9178.41 (12)N1—C13—C14—C15179.41 (12)
C7—C8—C9—O119.1 (2)C13—C14—C15—C101.4 (2)
C7—C8—C9—C10160.38 (12)C11—C10—C15—C140.8 (2)
O1—C9—C10—C11170.56 (13)C9—C10—C15—C14179.38 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.932.583.4284 (18)152
C5—H5···O1ii0.932.593.2996 (17)134
C7—H7···Cl10.932.603.0531 (14)110
C7—H7···O10.932.472.7981 (16)101
C12—H12···O1iii0.932.563.3298 (17)141
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC15H10ClNO3
Mr287.69
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)13.7003 (2), 7.3659 (1), 25.9954 (4)
β (°) 102.290 (1)
V3)2563.21 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.36 × 0.22 × 0.14
Data collection
DiffractometerBruker SMART APEX2 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.899, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
27534, 3736, 3008
Rint0.043
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.103, 1.07
No. of reflections3736
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.26

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2i0.932.583.4284 (18)152
C5—H5···O1ii0.932.593.2996 (17)134
C7—H7···Cl10.932.603.0531 (14)110
C7—H7···O10.932.472.7981 (16)101
C12—H12···O1iii0.932.563.3298 (17)141
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x, y1, z.
 

Footnotes

Additional correspondence author, e-mail: suchada.c@psu.ac.th.

Acknowledgements

PSP thanks the DRDO, Government of India, for a Senior Research Fellowship (SRF). This work is supported by the Department of Science and Technology (DST), Government of India, under grant No. SR/S2/LOP-17/2006. The authors also thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAgrinskaya, N. V., Lukoshkin, V. A., Kudryavtsev, V. V., Nosova, G. I., Solovskaya, N. A. & Yakimanski, A. V. (1999). Phys. Solid State, 41, 1914–1917.  Web of Science CrossRef CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Patil, P. S., Dharmaprakash, S. M. & Chantrapromma, S. (2007). Acta Cryst. E63, o561–o562.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGu, B., Ji, W., Patil, P. S., Dharmaprakash, S. M. & Wang, H. T. (2008). Appl. Phys. Lett. 92, 091118–091121.  Web of Science CrossRef Google Scholar
First citationPatil, P. S., Chantrapromma, S., Fun, H.-K. & Dharmaprakash, S. M. (2007a). Acta Cryst. E63, o1738–o1740.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPatil, P. S., Dharmaprakash, S. M., Fun, H.-K. & Karthikeyan, M. S. (2006a). J. Cryst. Growth, 297, 111–116.  Web of Science CrossRef CAS Google Scholar
First citationPatil, P. S., Dharmaprakash, S. M., Ramakrishna, K., Fun, H.-K., Sai Santosh Kumar, R. & Rao, D. N. (2007c). J. Cryst. Growth, 303, 520–524.  Web of Science CrossRef CAS Google Scholar
First citationPatil, P. S., Fun, H.-K., Chantrapromma, S. & Dharmaprakash, S. M. (2007b). Acta Cryst. E63, o2497–o2498.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPatil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006b). Acta Cryst. E62, o896–o898.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPatil, P. S., Teh, J. B.-J., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2007d). Acta Cryst. E63, o2122–o2123.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages o958-o959
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds