organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages o988-o989

(E)-4-(Benz­yl­oxy)benzaldehyde thio­semicarbazone

aDepartment of Chemistry, Rajshahi University, Rajshahi 6205, Bangladesh, bDepartment of Chemistry, Rajshahi University of Engineering and Technology, Rajshahi 6205, Bangladesh, cDepartment of Chemistry, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia, dDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and eX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: ttofazzal@yahoo.com

(Received 28 April 2008; accepted 30 April 2008; online 3 May 2008)

In the title compound, C15H15N3OS, the thio­semicarbazone group adopts an E configuration with respect to the C=N bond. The benzaldehyde thio­semicarbazone fragment is almost planar [maximum deviation = 0.012 (1) Å], while the dihedral angle between the benz­yloxy and phenyl rings is 72.48 (5)°. In the crystal structure, mol­ecules are inter­connected by N—H⋯N and N—H⋯S hydrogen bonds, forming a two-dimensional network parallel to the bc plane and are further stacked along the a axis by ππ inter­actions [centroid–centroid separation 3.9043 (7) Å]. The crystal structure is also stabilized by C—H⋯π inter­actions.

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For related structures of thio­semicarbazones, see, for example: John et al. (2003[John, R. P., Sreekanth, A., Kurup, M. R. P., Usman, A., Razak, I. A. & Fun, H. K. (2003). Spectrochim. Acta A, 59, 1349-1358.]); Joseph et al. (2004[Joseph, M., Suni, V., Nayar, C. R., Kurup, M. R. P. & Fun, H. K. (2004). J. Mol. Struct. 705, 63-70.]). For applications and bioactivities of thio­semicarbazones, see, for example: Al-Awadi et al. (2008[Al-Awadi, N. A., Shuaib, N. A., Abbas, A., EI-Sherif, A. A., EI-Dissouky, A. & Al-Saleh, E. (2008). Bioinorg. Chem. Appl. doi:10.1155/2008/479897.]); Amoedo et al. (2006[Amoedo, A., Adrio, L. A., Antelo, J. M., Martinez, J., Pereira, M. T., Fernandez, A. & Vila, J. M. (2006). Eur. J. Inorg. Chem. pp. 3016-3021.]); Chandra et al., (2001[Chandra, S., Sangeetika & Rathi, A. (2001). J. Saudi Chem. Soc. 5, 175-182.]); Demertzi et al. (2007[Demertzi, D. K., Varadinova, T., Genova, P., Souza, P. & Demertzi, M. A. (2007). Bioinorg. Chem. Appl. doi:10.1155/2007/56165. ]); Kizilcikli et al. (2004[Kizilcikli, I., Ulkuseven, B., Dasdemir, Y. & Akkurt, B. (2004). Synth. React. Inorg. Met.-Org. Chem., 34, 653-665.]); Mirsha et al. (2006[Mirsha, D., Nasker, S., Drew, M. G. B. & Chattopadhay, S. K. (2006). Inorg. Chim. Acta, 359, 585-592.]); Offiong & Martelli (1997[Offiong, O. E. & Martelli, S. (1997). Transition Met. Chem. 22, 263-269.]); Sing et al. (2001[Sing, N. K., Sing, S. B., Shrivastav, A. & Sing, S. M. (2001). Proc. Indian Acad. Sci. Chem. Sess. 113, 257-273.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15N3OS

  • Mr = 285.37

  • Monoclinic, P 21 /c

  • a = 11.0269 (1) Å

  • b = 12.6668 (2) Å

  • c = 10.8774 (1) Å

  • β = 116.099 (1)°

  • V = 1364.39 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 100.0 (1) K

  • 0.42 × 0.31 × 0.23 mm

Data collection
  • Bruker SMART APEX2 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.792, Tmax = 0.947

  • 20710 measured reflections

  • 3983 independent reflections

  • 3517 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.096

  • S = 1.03

  • 3983 reflections

  • 193 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯S1i 0.880 (16) 2.467 (16) 3.3403 (10) 171.9 (14)
N3—H1N3⋯N1 0.895 (19) 2.229 (18) 2.6104 (16) 105.2 (13)
N3—H1N3⋯S1ii 0.895 (19) 2.815 (17) 3.5285 (11) 137.7 (14)
C10—H10ACg1iii 0.93 2.97 3.8325 (13) 154
Symmetry codes: (i) -x, -y, -z+2; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y, -z+1. Cg1 is the centroid of the the C1–C6 ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 ; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The chemistry of thiosemicarbazones have been of immense interest because these compounds provide intriguing chelating patterns, profound biomedical properties, structural diversity and ion-sensing abilities (Al-Awadi et al., 2008; Amoedo et al., 2006; Demertzi et al., 2007; Mirsha et al., 2006; Kizilcikli et al., 2004). Compounds of this type have been used as antibacterial, antifungal and antitumor agents (Sing et al., 2001; Offiong et al., 1997). Due to their long chain structure, they are very flexible and form linkages with a variety of metal ions (Chandra et al., 2001). It was advocated that their flexibility and bioactivity arise because of the presence of the imino group (–N=CH–) in addition to thioamino moities present in the skeleton of the molecule. The title thiosemicarbazone derivative (I) was synthesized and its crystal structure is reported here. (I) is likely to have biomedical properties similar to other nitrogen-sulfur donor ligands studied by our group.

In the title compound (Fig. 1), the thiosemicarbazone adopts an E conformation with a trans configuration observed about the CN bond. The benzaldehydethiosemicarbazone fragment is almost planar, maximum deviation 0.012 (1) Å, with the dihedral angle between the hydrazinecarbothioamide unit (S1/N1/N2/N3/C15) and the C8–C13 phenyl ring being 6.59 (5)°. The orientation of the 4-benzyloxy group is indicated by the dihedral angle between the 4-benzyloxy and the C8–C13 phenyl rings being 72.48 (5)Å and the torsion angle C8–O1–C7–C6 of 165.49 (9)°. The C15S1 and C15—N2 bond distances are typical of a C/db S double bond and a C—N single bond, respectively. The bond lengths and angles in (I) are within normal ranges (Allen et al., 1987) and show similar trends to those of previously reported thiosemicarbazones (John et al., 2003; Joseph et al., 2004). An intramolecular N3-H1N3···N1 hydrogen bond forms a five-membered N3-H1N3-N1—N2—C15 ring, producing an S(5) ring motif (Bernstein et al., 1995).

In the crystal packing (Fig. 2), molecules are interconnected by N—H···N and N—H···S hydrogen bonds (Table 1) into a two-dimensional network parallel to the bc plane and are further stacked along the a-axis by π···π interactions with the distances of Cg1···Cg2 = 3.9043 (7) Å: symmetry code x, 1/2 - y, -1/2 + z; Cg1 and Cg2 are the centroids of the C1–C6 and C8–C13 phenyl rings, respectively. The crystal also stabilized by C—H···π interactions (Table 1) involving the C1–C6 phenyl ring (centroid Cg1).

Related literature top

For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For related structures of thiosemicarbazones, see, for example: John et al. (2003); Joseph et al. (2004). For applications and bioactivities of thiosemicarbazones, see, for example: Al-Awadi et al. (2008); Amoedo et al. (2006); Chandra et al., (2001); Demertzi et al. (2007); Kizilcikli et al. (2004); Mirsha et al. (2006); Offiong & Martelli (1997); Sing et al. (2001).

Experimental top

The title compound was synthesized by adding a solution of 4-benzyloxybenzaldehyde (2.12 g, 10 mmol) in ethanol (30 ml) to a hot solution of thiosemicarbazide (0.91 g, 10 mmol) in ethanol (100 ml). The mixture was refluxed for 2 hrs and subsequently cooled to room temperature. The light yellow precipitate of the title compound was separated by filtration, washed with ethanol and dried in vacuo over anhydrous CaCl2. (Yield: 1.75 g, 61%), and was then dissolved in chloroform (0.11 g in 50 ml) and allowed to stand at room temperature (288–293 K) for 20 days. Yellow single crystals of the title compound were obtained after recrystallization from a solution of chloroform/toluene (30:7 v/v) after 12 days at room temperature, M.p 446 K.

Refinement top

H atoms bound to N atoms were located from a difference Fourier map and refined freely with isotropic displacement parameters. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.93 Å, for aromatic, 0.97 Å, for CH2 and Uiso = 1.2Ueq(C). The highest residual electron density peak is located at 0.69 Å from C8 and the deepest hole is located at 1.19 Å from C12.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering. The N—H···N intramolecular hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis, showing two-dimensional network parallel to the bc plane. Hydrogen bonds are shown as dashed lines.
(E)-4-(Benzyloxy)benzaldehyde thiosemicarbazone top
Crystal data top
C15H15N3OSF(000) = 600
Mr = 285.37Dx = 1.389 Mg m3
Monoclinic, P21/cMelting point: 446 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.0269 (1) ÅCell parameters from 3983 reflections
b = 12.6668 (2) Åθ = 2.1–30.0°
c = 10.8774 (1) ŵ = 0.24 mm1
β = 116.099 (1)°T = 100 K
V = 1364.39 (3) Å3Block, colorless
Z = 40.42 × 0.31 × 0.23 mm
Data collection top
Bruker SMART APEX2 CCD area-detector
diffractometer
3983 independent reflections
Radiation source: fine-focus sealed tube3517 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 8.33 pixels mm-1θmax = 30.0°, θmin = 2.1°
ω scansh = 1514
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1717
Tmin = 0.792, Tmax = 0.947l = 1514
20710 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0529P)2 + 0.4873P]
where P = (Fo2 + 2Fc2)/3
3983 reflections(Δ/σ)max = 0.001
193 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C15H15N3OSV = 1364.39 (3) Å3
Mr = 285.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.0269 (1) ŵ = 0.24 mm1
b = 12.6668 (2) ÅT = 100 K
c = 10.8774 (1) Å0.42 × 0.31 × 0.23 mm
β = 116.099 (1)°
Data collection top
Bruker SMART APEX2 CCD area-detector
diffractometer
3983 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3517 reflections with I > 2σ(I)
Tmin = 0.792, Tmax = 0.947Rint = 0.027
20710 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.48 e Å3
3983 reflectionsΔρmin = 0.19 e Å3
193 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.13297 (3)0.13427 (2)0.97645 (3)0.01819 (8)
O10.32553 (8)0.07638 (6)0.33345 (8)0.01820 (17)
N10.04289 (10)0.10009 (8)0.73443 (9)0.01734 (18)
N20.00675 (10)0.08433 (8)0.83961 (9)0.01797 (19)
N30.13647 (10)0.22436 (8)0.75438 (10)0.01930 (19)
C10.44624 (11)0.26954 (9)0.20175 (11)0.0185 (2)
H1A0.43990.31770.26320.022*
C20.53207 (12)0.29079 (9)0.14214 (11)0.0190 (2)
H2A0.58350.35220.16450.023*
C30.54055 (12)0.21970 (9)0.04895 (11)0.0196 (2)
H3A0.59730.23340.00810.024*
C40.46359 (13)0.12808 (9)0.01727 (12)0.0214 (2)
H4A0.46850.08080.04580.026*
C50.37939 (12)0.10629 (9)0.07858 (11)0.0206 (2)
H5A0.32950.04410.05770.025*
C60.36955 (11)0.17766 (9)0.17140 (11)0.0174 (2)
C70.27374 (12)0.16007 (10)0.23367 (11)0.0203 (2)
H7A0.26470.22440.27740.024*
H7B0.18530.14100.16300.024*
C80.26799 (11)0.06651 (8)0.42162 (10)0.0158 (2)
C90.32639 (11)0.00843 (9)0.52540 (11)0.0178 (2)
H9A0.39680.05070.52880.021*
C100.27868 (12)0.01940 (9)0.62342 (11)0.0177 (2)
H10A0.31730.06960.69220.021*
C110.17333 (11)0.04386 (8)0.62022 (10)0.0160 (2)
C120.11361 (11)0.11615 (9)0.51313 (11)0.0168 (2)
H12A0.04190.15740.50840.020*
C130.15942 (11)0.12737 (9)0.41392 (11)0.0170 (2)
H13A0.11810.17520.34260.020*
C140.12869 (11)0.03475 (9)0.72786 (11)0.0175 (2)
H14A0.16290.01900.79230.021*
C150.08583 (11)0.14858 (8)0.84847 (11)0.0156 (2)
H1N20.0392 (16)0.0301 (13)0.8951 (16)0.025 (4)*
H1N30.1132 (17)0.2256 (13)0.6853 (18)0.031 (4)*
H2N30.1995 (18)0.2624 (14)0.7562 (17)0.030 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02249 (15)0.01892 (14)0.01894 (14)0.00132 (10)0.01441 (11)0.00114 (9)
O10.0202 (4)0.0215 (4)0.0181 (3)0.0037 (3)0.0132 (3)0.0039 (3)
N10.0192 (5)0.0209 (4)0.0157 (4)0.0012 (3)0.0111 (4)0.0006 (3)
N20.0217 (5)0.0200 (4)0.0176 (4)0.0032 (4)0.0136 (4)0.0035 (3)
N30.0189 (5)0.0224 (5)0.0197 (4)0.0039 (4)0.0114 (4)0.0045 (4)
C10.0198 (5)0.0211 (5)0.0152 (4)0.0028 (4)0.0082 (4)0.0004 (4)
C20.0184 (5)0.0208 (5)0.0170 (5)0.0012 (4)0.0070 (4)0.0012 (4)
C30.0204 (5)0.0239 (5)0.0176 (5)0.0023 (4)0.0112 (4)0.0042 (4)
C40.0292 (6)0.0210 (5)0.0186 (5)0.0021 (4)0.0147 (5)0.0004 (4)
C50.0253 (6)0.0196 (5)0.0191 (5)0.0028 (4)0.0118 (4)0.0004 (4)
C60.0167 (5)0.0224 (5)0.0144 (4)0.0029 (4)0.0079 (4)0.0038 (4)
C70.0182 (5)0.0272 (6)0.0185 (5)0.0041 (4)0.0107 (4)0.0064 (4)
C80.0163 (5)0.0182 (5)0.0155 (4)0.0017 (4)0.0095 (4)0.0013 (4)
C90.0194 (5)0.0174 (5)0.0202 (5)0.0021 (4)0.0121 (4)0.0007 (4)
C100.0205 (5)0.0170 (5)0.0185 (5)0.0014 (4)0.0111 (4)0.0021 (4)
C110.0177 (5)0.0170 (5)0.0158 (4)0.0014 (4)0.0097 (4)0.0011 (4)
C120.0151 (5)0.0206 (5)0.0163 (5)0.0010 (4)0.0083 (4)0.0001 (4)
C130.0157 (5)0.0210 (5)0.0152 (4)0.0017 (4)0.0077 (4)0.0021 (4)
C140.0200 (5)0.0181 (5)0.0171 (4)0.0004 (4)0.0106 (4)0.0011 (4)
C150.0146 (5)0.0173 (5)0.0160 (4)0.0024 (4)0.0078 (4)0.0010 (4)
Geometric parameters (Å, º) top
S1—C151.6964 (11)C4—H4A0.9300
O1—C81.3688 (12)C5—C61.3946 (15)
O1—C71.4430 (13)C5—H5A0.9300
N1—C141.2826 (14)C6—C71.5014 (15)
N1—N21.3815 (12)C7—H7A0.9700
N2—C151.3417 (14)C7—H7B0.9700
N2—H1N20.880 (17)C8—C131.3950 (15)
N3—C151.3335 (14)C8—C91.3966 (15)
N3—H1N30.894 (17)C9—C101.3879 (14)
N3—H2N30.853 (18)C9—H9A0.9300
C1—C21.3886 (15)C10—C111.3990 (15)
C1—C61.3903 (16)C10—H10A0.9300
C1—H1A0.9300C11—C121.3979 (15)
C2—C31.3894 (15)C11—C141.4606 (14)
C2—H2A0.9300C12—C131.3856 (14)
C3—C41.3887 (16)C12—H12A0.9300
C3—H3A0.9300C13—H13A0.9300
C4—C51.3884 (16)C14—H14A0.9300
C8—O1—C7116.23 (8)C6—C7—H7A109.9
C14—N1—N2116.20 (9)O1—C7—H7B109.9
C15—N2—N1118.53 (9)C6—C7—H7B109.9
C15—N2—H1N2121.1 (10)H7A—C7—H7B108.3
N1—N2—H1N2120.2 (10)O1—C8—C13123.89 (9)
C15—N3—H1N3118.6 (11)O1—C8—C9115.94 (9)
C15—N3—H2N3117.4 (11)C13—C8—C9120.16 (9)
H1N3—N3—H2N3123.1 (15)C10—C9—C8119.55 (10)
C2—C1—C6121.31 (10)C10—C9—H9A120.2
C2—C1—H1A119.3C8—C9—H9A120.2
C6—C1—H1A119.3C9—C10—C11120.98 (10)
C1—C2—C3119.57 (11)C9—C10—H10A119.5
C1—C2—H2A120.2C11—C10—H10A119.5
C3—C2—H2A120.2C12—C11—C10118.52 (9)
C4—C3—C2119.52 (10)C12—C11—C14121.22 (10)
C4—C3—H3A120.2C10—C11—C14120.25 (10)
C2—C3—H3A120.2C13—C12—C11121.11 (10)
C5—C4—C3120.78 (10)C13—C12—H12A119.4
C5—C4—H4A119.6C11—C12—H12A119.4
C3—C4—H4A119.6C12—C13—C8119.60 (10)
C4—C5—C6120.02 (11)C12—C13—H13A120.2
C4—C5—H5A120.0C8—C13—H13A120.2
C6—C5—H5A120.0N1—C14—C11120.71 (10)
C1—C6—C5118.79 (10)N1—C14—H14A119.6
C1—C6—C7119.49 (10)C11—C14—H14A119.6
C5—C6—C7121.65 (10)N3—C15—N2117.16 (9)
O1—C7—C6108.91 (9)N3—C15—S1122.05 (8)
O1—C7—H7A109.9N2—C15—S1120.78 (8)
C14—N1—N2—C15177.98 (10)C13—C8—C9—C102.17 (16)
C6—C1—C2—C30.83 (17)C8—C9—C10—C110.31 (17)
C1—C2—C3—C40.35 (17)C9—C10—C11—C122.21 (16)
C2—C3—C4—C50.62 (18)C9—C10—C11—C14177.07 (10)
C3—C4—C5—C61.13 (18)C10—C11—C12—C131.66 (16)
C2—C1—C6—C50.32 (16)C14—C11—C12—C13177.61 (10)
C2—C1—C6—C7177.44 (10)C11—C12—C13—C80.77 (17)
C4—C5—C6—C10.65 (17)O1—C8—C13—C12175.94 (10)
C4—C5—C6—C7176.40 (11)C9—C8—C13—C122.71 (16)
C8—O1—C7—C6165.49 (9)N2—N1—C14—C11179.67 (9)
C1—C6—C7—O1109.78 (11)C12—C11—C14—N17.05 (17)
C5—C6—C7—O173.19 (13)C10—C11—C14—N1172.21 (10)
C7—O1—C8—C134.11 (15)N1—N2—C15—N30.34 (15)
C7—O1—C8—C9174.59 (10)N1—N2—C15—S1179.21 (8)
O1—C8—C9—C10176.58 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···S1i0.880 (16)2.467 (16)3.3403 (10)171.9 (14)
N3—H1N3···N10.895 (19)2.229 (18)2.6104 (16)105.2 (13)
N3—H1N3···S1ii0.895 (19)2.815 (17)3.5285 (11)137.7 (14)
C10—H10A···Cg1iii0.932.973.8325 (13)154
Symmetry codes: (i) x, y, z+2; (ii) x, y+1/2, z1/2; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC15H15N3OS
Mr285.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)11.0269 (1), 12.6668 (2), 10.8774 (1)
β (°) 116.099 (1)
V3)1364.39 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.42 × 0.31 × 0.23
Data collection
DiffractometerBruker SMART APEX2 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.792, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
20710, 3983, 3517
Rint0.027
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.096, 1.04
No. of reflections3983
No. of parameters193
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.19

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···S1i0.880 (16)2.467 (16)3.3403 (10)171.9 (14)
N3—H1N3···N10.895 (19)2.229 (18)2.6104 (16)105.2 (13)
N3—H1N3···S1ii0.895 (19)2.815 (17)3.5285 (11)137.7 (14)
C10—H10A···Cg1iii0.932.973.8325 (13)154
Symmetry codes: (i) x, y, z+2; (ii) x, y+1/2, z1/2; (iii) x+1, y, z+1.
 

Footnotes

Additional correspondence author, e-mail: suchada.c@psu.ac.th.

§Additional correspondence author, e-mail: hkfun@usm.my.

Acknowledgements

KAC thanks Universiti Putra Malaysia for financial help. MTHT thanks the University of Rajshahi for the provision of laboratory facilities. The authors also thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAl-Awadi, N. A., Shuaib, N. A., Abbas, A., EI-Sherif, A. A., EI-Dissouky, A. & Al-Saleh, E. (2008). Bioinorg. Chem. Appl. doi:10.1155/2008/479897.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationAmoedo, A., Adrio, L. A., Antelo, J. M., Martinez, J., Pereira, M. T., Fernandez, A. & Vila, J. M. (2006). Eur. J. Inorg. Chem. pp. 3016–3021.  Web of Science CSD CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChandra, S., Sangeetika & Rathi, A. (2001). J. Saudi Chem. Soc. 5, 175–182.  CAS Google Scholar
First citationDemertzi, D. K., Varadinova, T., Genova, P., Souza, P. & Demertzi, M. A. (2007). Bioinorg. Chem. Appl. doi:10.1155/2007/56165.  Google Scholar
First citationJohn, R. P., Sreekanth, A., Kurup, M. R. P., Usman, A., Razak, I. A. & Fun, H. K. (2003). Spectrochim. Acta A, 59, 1349–1358.  Web of Science CSD CrossRef Google Scholar
First citationJoseph, M., Suni, V., Nayar, C. R., Kurup, M. R. P. & Fun, H. K. (2004). J. Mol. Struct. 705, 63–70.  Web of Science CSD CrossRef CAS Google Scholar
First citationKizilcikli, I., Ulkuseven, B., Dasdemir, Y. & Akkurt, B. (2004). Synth. React. Inorg. Met.-Org. Chem., 34, 653–665.  Web of Science CrossRef CAS Google Scholar
First citationMirsha, D., Nasker, S., Drew, M. G. B. & Chattopadhay, S. K. (2006). Inorg. Chim. Acta, 359, 585–592.  Google Scholar
First citationOffiong, O. E. & Martelli, S. (1997). Transition Met. Chem. 22, 263–269.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSing, N. K., Sing, S. B., Shrivastav, A. & Sing, S. M. (2001). Proc. Indian Acad. Sci. Chem. Sess. 113, 257–273.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages o988-o989
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds