organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Iodo­phen­yl)-5-methyl-3-methyl­sulfinyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 6 May 2008; accepted 8 May 2008; online 10 May 2008)

The title compound, C16H13IO2S, was prepared by the oxidation of 2-(4-iodo­phen­yl)-5-methyl-3-methyl­sulfanyl-1-benzofuran with 3-chloro­peroxy­benzoic acid. The 4-iodo­phenyl ring makes a dihedral angle of 37.97 (9)° with the plane of the benzofuran fragment, and the O atom and the methyl group of the methyl­sulfinyl substituent lie on opposite sides of this plane. The mol­ecular packing is stabilized by C—H⋯π inter­actions between H atoms on the 4-iodo­phenyl ring and the benzofuran rings, and by an I⋯O halogen bond of 3.252 (2) Å with a nearly linear C—I⋯O angle of 163.06 (8)°. In addition, the stacked mol­ecules exhibit inversion-related S⋯O contacts [3.209 (2) Å] involving the sulfinyl groups.

Related literature

For the crystal structures of similar 2-aryl-5-methyl-3-methyl­sulfinyl-1-benzofuran compounds, see: Choi et al. (2007a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007a). Acta Cryst. E63, o3295.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007b). Acta Cryst. E63, o4282.]). For a review of halogen bonding, see: Politzer et al. (2007[Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305-311.]). For details of sulfin­yl–sulfinyl inter­actions, see: Choi et al. (2007c[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007c). Acta Cryst. E63, o4811.]). For a review of carbon­yl–carbonyl inter­actions, see: Allen et al. (1998[Allen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320-329.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13IO2S

  • Mr = 396.22

  • Monoclinic, P 21 /n

  • a = 9.258 (2) Å

  • b = 15.939 (3) Å

  • c = 10.299 (2) Å

  • β = 103.471 (3)°

  • V = 1477.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.31 mm−1

  • T = 173 (2) K

  • 0.40 × 0.30 × 0.30 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.443, Tmax = 0.508

  • 8743 measured reflections

  • 3227 independent reflections

  • 2934 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.065

  • S = 1.15

  • 3227 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.94 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯Cg1i 0.95 3.01 3.617 (4) 125
C11—H11⋯Cg2i 0.95 2.77 3.643 (4) 148
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]. Cg1 and Cg2 are the centroids of the C2–C7 benzene ring and the O1/C8/C1/C2/C7 furan ring, respectively.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND, Crystal Impact GbR. Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

This work is related to our preceding communications on the synthesis and structure of 2-aryl-5-methyl-3-methylsulfinyl-1-benzofuran derivatives, viz. 2-(4-bromophenyl)-5-methyl-3-methylsulfinyl-1-benzofuran (Choi et al., 2007a) and 2-(4-bromophenyl)-5,7-dimethyl-3-methylsulfinyl-1-benzofuran (Choi et al., 2007b). Here we report the crystal structure of the title compound, 2-(4-iodophenyl)-5-methyl-3-methylsulfinyl-1-benzofuran (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.008Å from the least-squares plane defined by the nine constituent atoms. The 4-iodophenyl ring (C9—C14) makes a dihedral angle of 37.97 (9)° with the plane of the benzofuran fragment. The molecular packing (Fig. 2) is stabilized by two different C—H···π interactions within each stack of molecules; one between a 4-iodophenyl H atom and the benzene ring (Cg1i), with a C10—H10···Cg1i separation of 3.617 (4) Å, and a second between a 4-iodophenyl H atom and the furan ring (Cg2i), with a C11—H11···Cg2i separation of 3.643 (4) Å, (Fig. 2 and Table 1; Cg1 and Cg2 are the centroids of the C2—C7 benzene ring and the O1/C8/C1/C2/C7 furan ring, respectively, symmetry code as in Fig. 2). The molecular packing is further stabilized by an I···O halogen bond (Politzer et al., 2007) between the iodine atom and the oxygen of a neighbouring SO unit, with a I···O2ii distance of 3.252 (2) Å (symmetry code as Fig. 2). In addition, the crystal packing exhibits a sulfinyl-sulfinyl interaction (Choi et al., 2007c) interpreted as similar to a type-II carbonyl-carbonyl interaction (Allen et al., 1998), with S···O2iii and O2···Siii distance of 3.209 (2)Å (symmetry code as in Fig. 2)

Related literature top

For the crystal structures of similar 2-aryl-5-methyl-3-methylsulfinyl-1-benzofuran compounds, see: Choi et al. (2007a,b). For a review of halogen bonding, see: Politzer et al. (2007). For details of sulfinyl–sulfinyl interactions, see: Choi et al. (2007c). For a review of carbonyl–carbonyl interactions, see: Allen et al. (1998). Cg1 and Cg2 are the centroids of the C2–C7 benzene ring and the O1/C8/C1/C2/C7 furan ring, respectively

Experimental top

3-Chloroperoxybenzoic acid (77%, 247 mg, 1.1 mmol) was added in small portions to a stirred solution of 2-(4-iodophenyl)-5-methyl-3-methylsulanyl-1-benzofuran (380 mg, 1.0 mmol) in dichloromethane (30 ml) at 273 K. After stirring at room temperature for 2 h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (ethyl acetate) to afford the title compound as a colorless solid [yield 84%, m.p. 472–473 K; Rf = 0.61 (ethyl acetate)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of title compound in tetrahydrofuran at room temperature. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 2.48 (s, 3H), 3.11 (s, 3H), 7.22 (d, J = 8.04 Hz, 1H), 7.42 (d, J = 8.44 Hz, 1H), 7.75 (d, J = 6.96 Hz, 2H), 7.85 (d, J = 6.96 Hz, 2H), 7.99 (s, 1H); EI—MS 396 [M+].

Refinement top

All H atoms were geometrically located in ideal positions and refined using a riding model, with C—H = 0.95 Å for aromatic H atoms and 0.98 Å for methyl H atoms, and with Uiso(H) = 1.2Ueq(C) for aromatic H atoms, and 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. C—H···π, I···O halogen bond and S···O interactions (dotted lines) in the title compound. Cg denotes the ring centroids. [Symmetry code: (i) x - 1/2, -y + 3/2, z - 1/2; (ii) x + 1/2, y, z - 1; (iii) -x + 1, -y + 1, -z + 1; (iv) x + 1, y, z + 1; (v) x + 1/2, -y + 3/2, z + 1/2.]
2-(4-Iodophenyl)-5-methyl-3-methylsulfinyl-1-benzofuran top
Crystal data top
C16H13IO2SF(000) = 776
Mr = 396.22Dx = 1.781 Mg m3
Monoclinic, P21/nMelting point = 472–473 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 9.258 (2) ÅCell parameters from 6653 reflections
b = 15.939 (3) Åθ = 2.4–28.2°
c = 10.299 (2) ŵ = 2.31 mm1
β = 103.471 (3)°T = 173 K
V = 1477.9 (5) Å3Block, colorless
Z = 40.40 × 0.30 × 0.30 mm
Data collection top
Bruker SMART CCD
diffractometer
3227 independent reflections
Radiation source: fine-focus sealed tube2934 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 10.0 pixels mm-1θmax = 27.0°, θmin = 2.4°
ϕ and ω scansh = 116
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
k = 2020
Tmin = 0.443, Tmax = 0.508l = 1113
8743 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0226P)2 + 1.1637P]
where P = (Fo2 + 2Fc2)/3
3227 reflections(Δ/σ)max = 0.001
183 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.94 e Å3
Crystal data top
C16H13IO2SV = 1477.9 (5) Å3
Mr = 396.22Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.258 (2) ŵ = 2.31 mm1
b = 15.939 (3) ÅT = 173 K
c = 10.299 (2) Å0.40 × 0.30 × 0.30 mm
β = 103.471 (3)°
Data collection top
Bruker SMART CCD
diffractometer
3227 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
2934 reflections with I > 2σ(I)
Tmin = 0.443, Tmax = 0.508Rint = 0.030
8743 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.15Δρmax = 0.54 e Å3
3227 reflectionsΔρmin = 0.94 e Å3
183 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I0.134684 (19)0.613119 (11)0.281817 (17)0.03372 (7)
S0.51165 (7)0.54138 (4)0.32703 (6)0.02482 (13)
O10.61196 (19)0.66982 (11)0.02820 (17)0.0251 (4)
O20.5977 (2)0.57384 (14)0.45895 (18)0.0389 (5)
C10.5913 (3)0.59181 (15)0.2070 (2)0.0220 (5)
C20.7456 (3)0.61452 (15)0.2246 (2)0.0231 (5)
C30.8760 (3)0.60093 (15)0.3218 (3)0.0262 (5)
H30.87460.56870.39910.031*
C41.0087 (3)0.63528 (17)0.3040 (3)0.0309 (6)
C51.0091 (3)0.68158 (17)0.1884 (3)0.0329 (6)
H51.10060.70380.17710.039*
C60.8810 (3)0.69632 (16)0.0895 (3)0.0308 (6)
H60.88240.72770.01140.037*
C70.7515 (3)0.66243 (15)0.1120 (2)0.0249 (5)
C80.5155 (3)0.62626 (14)0.0892 (2)0.0228 (5)
C90.3610 (3)0.62508 (15)0.0136 (2)0.0217 (5)
C100.3001 (3)0.69536 (16)0.0607 (3)0.0270 (5)
H100.35720.74530.05640.032*
C110.1575 (3)0.69273 (16)0.1403 (3)0.0284 (5)
H110.11620.74100.18930.034*
C120.0746 (3)0.61946 (15)0.1483 (2)0.0235 (5)
C130.1323 (3)0.54923 (15)0.0743 (2)0.0230 (5)
H130.07460.49950.07970.028*
C140.2744 (3)0.55201 (15)0.0075 (2)0.0218 (5)
H140.31340.50440.05950.026*
C151.1498 (3)0.62338 (19)0.4100 (3)0.0417 (7)
H15A1.13450.64250.49620.063*
H15B1.22980.65610.38670.063*
H15C1.17690.56380.41600.063*
C160.5769 (3)0.43689 (17)0.3073 (3)0.0317 (6)
H16A0.68330.43860.30960.048*
H16B0.52270.41390.22160.048*
H16C0.56040.40130.38010.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I0.02443 (11)0.04004 (12)0.03256 (11)0.00188 (7)0.00175 (7)0.00229 (7)
S0.0250 (3)0.0303 (3)0.0206 (3)0.0021 (2)0.0083 (2)0.0031 (2)
O10.0205 (8)0.0272 (9)0.0277 (9)0.0025 (7)0.0057 (7)0.0030 (7)
O20.0418 (12)0.0538 (13)0.0214 (9)0.0143 (10)0.0082 (8)0.0077 (9)
C10.0224 (12)0.0229 (11)0.0215 (11)0.0001 (9)0.0066 (9)0.0038 (9)
C20.0239 (13)0.0225 (11)0.0233 (11)0.0009 (9)0.0062 (10)0.0069 (9)
C30.0251 (13)0.0251 (12)0.0274 (12)0.0031 (9)0.0039 (10)0.0077 (9)
C40.0231 (13)0.0290 (13)0.0382 (14)0.0037 (10)0.0024 (11)0.0142 (11)
C50.0209 (13)0.0293 (13)0.0497 (16)0.0028 (10)0.0108 (11)0.0095 (12)
C60.0257 (13)0.0281 (13)0.0413 (15)0.0005 (10)0.0133 (11)0.0007 (11)
C70.0212 (12)0.0227 (12)0.0313 (12)0.0002 (9)0.0067 (10)0.0042 (10)
C80.0217 (12)0.0216 (11)0.0259 (12)0.0013 (9)0.0076 (10)0.0025 (9)
C90.0208 (12)0.0245 (12)0.0203 (11)0.0006 (9)0.0055 (9)0.0019 (9)
C100.0252 (13)0.0236 (12)0.0319 (13)0.0040 (10)0.0062 (10)0.0030 (10)
C110.0286 (13)0.0250 (12)0.0308 (13)0.0012 (10)0.0051 (11)0.0068 (10)
C120.0190 (11)0.0295 (13)0.0221 (11)0.0002 (9)0.0046 (9)0.0014 (9)
C130.0252 (12)0.0211 (11)0.0245 (11)0.0034 (9)0.0095 (10)0.0024 (9)
C140.0247 (12)0.0209 (11)0.0202 (11)0.0007 (9)0.0062 (9)0.0014 (9)
C150.0240 (14)0.0445 (17)0.0514 (18)0.0020 (12)0.0017 (13)0.0162 (14)
C160.0351 (15)0.0325 (14)0.0296 (13)0.0038 (11)0.0116 (11)0.0046 (11)
Geometric parameters (Å, º) top
I—O2i3.252 (2)C6—H60.9500
I—C122.101 (3)C8—C91.461 (3)
S—O21.4981 (19)C9—C101.399 (3)
S—O2ii3.209 (2)C9—C141.407 (3)
S—C11.773 (2)C10—C111.383 (4)
S—C161.799 (3)C10—H100.9500
O1—C71.381 (3)C11—C121.389 (3)
O1—C81.391 (3)C11—H110.9500
C1—C81.367 (3)C12—C131.389 (3)
C1—C21.444 (3)C13—C141.388 (3)
C2—C31.394 (4)C13—H130.9500
C2—C71.400 (3)C14—H140.9500
C3—C41.395 (4)C15—H15A0.9800
C3—H30.9500C15—H15B0.9800
C4—C51.402 (4)C15—H15C0.9800
C4—C151.507 (4)C16—H16A0.9800
C5—C61.391 (4)C16—H16B0.9800
C5—H50.9500C16—H16C0.9800
C6—C71.383 (4)
C12—I—O2i163.06 (8)C10—C9—C8120.1 (2)
O2—S—C1104.84 (12)C14—C9—C8120.7 (2)
O2—S—C16107.47 (13)C11—C10—C9120.5 (2)
C1—S—C1697.80 (12)C11—C10—H10119.8
C7—O1—C8106.30 (18)C9—C10—H10119.8
C8—C1—C2107.4 (2)C10—C11—C12119.9 (2)
C8—C1—S126.1 (2)C10—C11—H11120.1
C2—C1—S125.89 (18)C12—C11—H11120.1
C3—C2—C7119.1 (2)C13—C12—C11120.6 (2)
C3—C2—C1135.8 (2)C13—C12—I119.88 (18)
C7—C2—C1105.1 (2)C11—C12—I119.44 (18)
C2—C3—C4119.1 (2)C14—C13—C12119.7 (2)
C2—C3—H3120.5C14—C13—H13120.1
C4—C3—H3120.5C12—C13—H13120.1
C3—C4—C5119.7 (2)C13—C14—C9120.2 (2)
C3—C4—C15119.8 (3)C13—C14—H14119.9
C5—C4—C15120.6 (3)C9—C14—H14119.9
C6—C5—C4122.7 (2)C4—C15—H15A109.5
C6—C5—H5118.7C4—C15—H15B109.5
C4—C5—H5118.7H15A—C15—H15B109.5
C7—C6—C5115.9 (3)C4—C15—H15C109.5
C7—C6—H6122.1H15A—C15—H15C109.5
C5—C6—H6122.1H15B—C15—H15C109.5
O1—C7—C6125.7 (2)S—C16—H16A109.5
O1—C7—C2110.7 (2)S—C16—H16B109.5
C6—C7—C2123.6 (2)H16A—C16—H16B109.5
C1—C8—O1110.5 (2)S—C16—H16C109.5
C1—C8—C9134.8 (2)H16A—C16—H16C109.5
O1—C8—C9114.6 (2)H16B—C16—H16C109.5
C10—C9—C14119.1 (2)
O2—S—C1—C8136.9 (2)C1—C2—C7—C6179.6 (2)
C16—S—C1—C8112.7 (2)C2—C1—C8—O10.4 (3)
O2—S—C1—C233.6 (2)S—C1—C8—O1172.33 (17)
C16—S—C1—C276.9 (2)C2—C1—C8—C9178.0 (3)
C8—C1—C2—C3178.7 (3)S—C1—C8—C910.1 (4)
S—C1—C2—C36.8 (4)C7—O1—C8—C10.5 (3)
C8—C1—C2—C70.2 (3)C7—O1—C8—C9178.63 (19)
S—C1—C2—C7172.09 (18)C1—C8—C9—C10146.5 (3)
C7—C2—C3—C40.1 (3)O1—C8—C9—C1036.0 (3)
C1—C2—C3—C4178.9 (3)C1—C8—C9—C1437.5 (4)
C2—C3—C4—C50.9 (4)O1—C8—C9—C14140.0 (2)
C2—C3—C4—C15178.2 (2)C14—C9—C10—C110.8 (4)
C3—C4—C5—C61.0 (4)C8—C9—C10—C11175.3 (2)
C15—C4—C5—C6178.1 (2)C9—C10—C11—C121.0 (4)
C4—C5—C6—C70.1 (4)C10—C11—C12—C131.7 (4)
C8—O1—C7—C6179.8 (2)C10—C11—C12—I174.85 (19)
C8—O1—C7—C20.4 (2)C11—C12—C13—C140.6 (4)
C5—C6—C7—O1179.4 (2)I—C12—C13—C14175.94 (17)
C5—C6—C7—C21.2 (4)C12—C13—C14—C91.2 (3)
C3—C2—C7—O1179.3 (2)C10—C9—C14—C131.9 (3)
C1—C2—C7—O10.2 (3)C8—C9—C14—C13174.2 (2)
C3—C2—C7—C61.3 (4)
Symmetry codes: (i) x1, y, z1; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···Cg1iii0.953.013.617 (4)125
C11—H11···Cg2iii0.952.773.643 (4)148
Symmetry code: (iii) x1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC16H13IO2S
Mr396.22
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)9.258 (2), 15.939 (3), 10.299 (2)
β (°) 103.471 (3)
V3)1477.9 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.31
Crystal size (mm)0.40 × 0.30 × 0.30
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.443, 0.508
No. of measured, independent and
observed [I > 2σ(I)] reflections
8743, 3227, 2934
Rint0.030
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.065, 1.15
No. of reflections3227
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.94

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···Cg1i0.953.013.617 (4)125.0
C11—H11···Cg2i0.952.773.643 (4)148.4
Symmetry code: (i) x1/2, y+3/2, z1/2.
 

References

First citationAllen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320–329.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (1998). DIAMOND, Crystal Impact GbR. Bonn, Germany.  Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007a). Acta Cryst. E63, o3295.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007b). Acta Cryst. E63, o4282.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007c). Acta Cryst. E63, o4811.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationPolitzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305–311.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds