metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-3-Ferrocenyl-2-phenyl­acrylo­nitrile

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China.
*Correspondence e-mail: hyye@seu.edu.cn

(Received 6 May 2008; accepted 14 May 2008; online 17 May 2008)

In the structure of the title compound, [Fe(C5H5)(C14H10N)], the unsubstituted cyclo­penta­diene (Cp) ring is disordered over two positions, with site-occupancy factors 0.76 (2) and 0.24 (2). The dihedral angles between the substituted Cp ring and the major and the minor components of the disordered ring are 0.9 (5) and 6(2)°, repectively. The plane of the acrylonitrile unit makes dihedral angles of 6.1 (18) and 6.5 (4)° with the substituted Cp ring and the phenyl ring planes, respectively.

Related literature

For background to the chemistry of ferrocene, see: Long (1995[Long, N. J. (1995). Angew. Chem. Int. Ed. Engl. 34, 21-75.]); Roberto et al. (2000[Roberto, D., Ugo, R., Cariati, S. B. E. & Cariati, F. (2000). Organometallics, 19, 1775-1788.]); Togni & Hayashi (1995[Togni, A. & Hayashi, T. (1995). Editors. Ferrocenes. Weinheim: VCH.]). For the stuctures of ferrocene derivatives, see: Base et al. (2002[Base, T., Cisarova, I. & Stepnicka, P. (2002). Inorg. Chem. Commun. 5, 46-50.]); Hess et al. (1999[Hess, A., Brosch, O., Weyhermuller, T. & Metzler-Nolte, N. (1999). J. Organomet. Chem. 589, 75-84.]). For bond distances in the acrylonitrile unit, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C14H10N)]

  • Mr = 313.17

  • Monoclinic, P 21 /c

  • a = 6.8255 (14) Å

  • b = 11.795 (2) Å

  • c = 19.939 (4) Å

  • β = 106.786 (16)°

  • V = 1536.8 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.97 mm−1

  • T = 293 (2) K

  • 0.18 × 0.06 × 0.05 mm

Data collection
  • Rigaku, SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.892, Tmax = 1.00 (expected range = 0.850–0.953)

  • 15093 measured reflections

  • 3523 independent reflections

  • 2520 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.126

  • S = 1.07

  • 3523 reflections

  • 206 parameters

  • 30 restraints

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The chemistry of ferrocene has received much attention because of its applications in many fields, such as in catalysis, organic or organometallic synthesis and materials (Togni, et al.(1995)). The use of ferrocene and its derivatives as non-linear optical(NLO) materials has also been reported (Long, 1995; Roberto et al., 2000). As part of our on going studies of the chemistry of ferrocene, we present here the structure of the title compound, (Z)-2-Phenyl-3-(ferrocenyl)acrylonitrile (I).

In I, the unsubstituted cyclopentadienyl (Cp) ring is disordered over two positions, the site occupancy factors are 0.76 (2) and 0.24 (2). The major disorder component is nearly parallel to the substituted Cp ring with a dihedral angle of 0.9 (5)° , and the rings are in an eclipsed configuration with the torsion angle C1-Cg1-Cg2-C10, -5.918 (3)°. The minor component of the disordered Cp ring is tilted slightly, making a dihedral of 6(2)° with C1···C5, and the rings are staggered, C1-Cg1-Cg2'-C9' 44.692 (4)° (Cg(1) denotes the centroid of the C1···C5 Cp ring, Cg(2) and Cg(2)' denote the centroids of the C6···C10 and C6'···C10' rings respectively). Fe-C distances to the substituted Cp ring vary from 2.030 (3) to 2.039 (3)Å, and are in the normal ranges (Hess et al., 1999; Base et al., 2002). Those to the unsubstituted Cp ring cover a wider range from 1.92 (3) to 2.084 (7) Å. The iron-ring centroid distances are Fe–Cg(1), 1.6378 (16) Å, Fe-Cg(2) 1.674 (3) Å and Fe–Cg(2)' 1.594 (13) Å. Within the acrylonitrile unit, bond angles and the C11C12 double bond distance, 1.345 (3) Å) and C19N1 distances, 1.142 (4) Å, are normal (Allen et al. (1987). The plane of acrylonitrile unit makes dihedral angles of 6.13 ( 1.81 )° and 6.52 ( 0.39 )° with the C1···C5 ring and the C13···C18 phenyl ring plane, respectively.

Related literature top

For background to the chemistry of ferrocene, see: Long (1995); Roberto et al. (2000); Togni & Hayashi (1995). For the stuctures of ferrocene derivatives, see: Base et al. (2002); Hess et al. (1999). For bond distances and angles in the acrylonitrile unit, see: Allen et al. (1987).

Experimental top

To a mixture of ferrocenecarboxaldehyde and 2-phenyletonitrile in CH2Cl2 was added pyrrolidine and the mixture was heated to reflux temperature for 3 h. The reaction was cooled to room temperature and solvent removed. The crude product was purified by column chromatography on silica gel using ethyl acetate-petroleum ether (v:v, 1:3) as eluent to collect the main yellow band. Red crystals suitable for X-ray analysis were obtained by slow evaporation of a saturated solution of ethyl acetate-petroleum ether (v:v,1:3). BAND YELLOW, CRYSTALS RED. IS THIS CORRECT??

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C-H) = 0.93Å, Uiso=1.2Ueq (C). The unsubstituted Cp ring is disordered over two positions with site occupancy factors 0.76 (2) and 0.24 (2) respectively; corresponding C atoms were restrained to have the same anisotropic displacement parameters.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick,2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick,2008).

Figures top
[Figure 1] Fig. 1. The structure of I showing the atom numbering scheme with displacement ellipsoids drawn at the 30% probability level. For clarity only atoms of the major disorder component of the unsubstituted cyclopentadiene ring are included.
(Z)-3-Ferrocenyl-2-phenylacrylonitrile top
Crystal data top
[Fe(C5H5)(C14H10N)]F(000) = 648
Mr = 313.17Dx = 1.354 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2947 reflections
a = 6.8255 (14) Åθ = 3.1–27.5°
b = 11.795 (2) ŵ = 0.97 mm1
c = 19.939 (4) ÅT = 293 K
β = 106.786 (16)°Block, red
V = 1536.8 (5) Å30.18 × 0.06 × 0.05 mm
Z = 4
Data collection top
Rigaku, SCXmini
diffractometer
3523 independent reflections
Radiation source: fine-focus sealed tube2520 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 88
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1515
Tmin = 0.892, Tmax = 1.00l = 2525
15093 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0496P)2 + 0.4337P]
where P = (Fo2 + 2Fc2)/3
3523 reflections(Δ/σ)max < 0.001
206 parametersΔρmax = 0.22 e Å3
30 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Fe(C5H5)(C14H10N)]V = 1536.8 (5) Å3
Mr = 313.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.8255 (14) ŵ = 0.97 mm1
b = 11.795 (2) ÅT = 293 K
c = 19.939 (4) Å0.18 × 0.06 × 0.05 mm
β = 106.786 (16)°
Data collection top
Rigaku, SCXmini
diffractometer
3523 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2520 reflections with I > 2σ(I)
Tmin = 0.892, Tmax = 1.00Rint = 0.050
15093 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05330 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.07Δρmax = 0.22 e Å3
3523 reflectionsΔρmin = 0.40 e Å3
206 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.27058 (7)0.42653 (4)0.29905 (2)0.06096 (17)
N10.4172 (4)0.4888 (3)0.12481 (18)0.0911 (10)
C10.1205 (4)0.3903 (2)0.19717 (14)0.0537 (6)
C20.2972 (5)0.3198 (3)0.22231 (17)0.0701 (8)
H2A0.41350.31600.20290.084*
C30.2759 (7)0.2573 (3)0.2800 (2)0.0887 (11)
H3A0.37520.20280.30770.106*
C40.0914 (7)0.2867 (3)0.2915 (2)0.0922 (12)
H4A0.03940.25660.32890.111*
C50.0077 (5)0.3694 (3)0.24149 (17)0.0714 (8)
H5A0.14000.40520.23770.086*
C60.2256 (9)0.5813 (5)0.3412 (3)0.0813 (15)0.764 (8)
H6A0.09440.62080.33260.098*0.764 (8)
C70.3062 (13)0.4980 (6)0.3956 (3)0.105 (2)0.764 (8)
H7A0.24600.47290.43220.125*0.764 (8)
C80.4978 (13)0.4657 (7)0.3864 (4)0.113 (2)0.764 (8)
H8A0.59230.41070.41580.136*0.764 (8)
C90.5340 (9)0.5257 (7)0.3301 (4)0.0948 (17)0.764 (8)
H9A0.65480.51890.31330.114*0.764 (8)
C100.3661 (11)0.5945 (6)0.3021 (4)0.0794 (17)0.764 (8)
H10A0.34730.64410.26130.095*0.764 (8)
C6'0.270 (3)0.5375 (19)0.3729 (13)0.0813 (15)0.236 (8)
H6'A0.15020.55590.38850.098*0.236 (8)
C7'0.421 (5)0.452 (2)0.4048 (12)0.105 (2)0.236 (8)
H7'A0.42500.40220.44450.125*0.236 (8)
C8'0.562 (4)0.457 (3)0.3629 (14)0.113 (2)0.236 (8)
H8'A0.67930.40610.36810.136*0.236 (8)
C9'0.488 (4)0.534 (3)0.3082 (11)0.0948 (17)0.236 (8)
H9'A0.55440.55090.27180.114*0.236 (8)
C10'0.315 (4)0.588 (3)0.3162 (16)0.0794 (17)0.236 (8)
H10B0.23950.64960.28720.095*0.236 (8)
C110.1004 (4)0.4723 (2)0.14174 (13)0.0480 (6)
H11A0.21970.48750.12970.058*
C120.0664 (4)0.5297 (2)0.10511 (13)0.0452 (6)
C130.0704 (4)0.6196 (2)0.05293 (13)0.0483 (6)
C140.2528 (5)0.6672 (3)0.01394 (16)0.0699 (8)
H14A0.37520.64050.01970.084*
C150.2574 (6)0.7535 (3)0.03341 (19)0.0869 (11)
H15A0.38200.78440.05890.104*
C160.0805 (7)0.7933 (3)0.04285 (19)0.0854 (11)
H16A0.08380.85240.07400.103*
C170.1036 (6)0.7462 (3)0.00626 (19)0.0788 (10)
H17A0.22440.77210.01360.095*
C180.1093 (5)0.6603 (3)0.04146 (16)0.0636 (7)
H18A0.23450.62930.06630.076*
C190.2607 (4)0.5059 (2)0.11687 (15)0.0588 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0733 (3)0.0567 (3)0.0496 (2)0.0014 (2)0.0125 (2)0.00379 (19)
N10.0504 (16)0.114 (3)0.110 (3)0.0086 (16)0.0258 (16)0.017 (2)
C10.0581 (16)0.0510 (14)0.0512 (15)0.0058 (13)0.0147 (13)0.0008 (12)
C20.083 (2)0.0592 (18)0.0641 (18)0.0146 (16)0.0151 (16)0.0034 (15)
C30.118 (3)0.0534 (19)0.082 (2)0.005 (2)0.009 (2)0.0107 (17)
C40.115 (3)0.081 (2)0.077 (2)0.029 (2)0.023 (2)0.022 (2)
C50.0686 (19)0.082 (2)0.0657 (19)0.0166 (17)0.0221 (16)0.0088 (17)
C60.121 (4)0.063 (3)0.060 (3)0.006 (3)0.026 (3)0.005 (2)
C70.183 (7)0.075 (4)0.046 (3)0.018 (4)0.020 (4)0.001 (2)
C80.133 (6)0.107 (4)0.068 (6)0.021 (4)0.022 (3)0.021 (4)
C90.070 (4)0.107 (4)0.085 (5)0.015 (3)0.013 (3)0.019 (4)
C100.089 (5)0.066 (2)0.082 (4)0.019 (3)0.023 (3)0.008 (2)
C6'0.121 (4)0.063 (3)0.060 (3)0.006 (3)0.026 (3)0.005 (2)
C7'0.183 (7)0.075 (4)0.046 (3)0.018 (4)0.020 (4)0.001 (2)
C8'0.133 (6)0.107 (4)0.068 (6)0.021 (4)0.022 (3)0.021 (4)
C9'0.070 (4)0.107 (4)0.085 (5)0.015 (3)0.013 (3)0.019 (4)
C10'0.089 (5)0.066 (2)0.082 (4)0.019 (3)0.023 (3)0.008 (2)
C110.0455 (14)0.0553 (14)0.0461 (14)0.0003 (12)0.0177 (11)0.0021 (12)
C120.0406 (13)0.0525 (14)0.0433 (13)0.0017 (11)0.0135 (11)0.0073 (11)
C130.0522 (14)0.0519 (14)0.0394 (13)0.0001 (12)0.0108 (11)0.0072 (11)
C140.0583 (17)0.088 (2)0.0609 (18)0.0090 (16)0.0133 (15)0.0151 (16)
C150.082 (2)0.102 (3)0.069 (2)0.023 (2)0.0105 (19)0.025 (2)
C160.114 (3)0.076 (2)0.065 (2)0.004 (2)0.025 (2)0.0182 (18)
C170.082 (2)0.078 (2)0.077 (2)0.0134 (19)0.0245 (19)0.0116 (18)
C180.0584 (17)0.0674 (19)0.0616 (18)0.0044 (15)0.0119 (14)0.0060 (15)
C190.0492 (16)0.0637 (17)0.0605 (17)0.0033 (14)0.0112 (13)0.0009 (14)
Geometric parameters (Å, º) top
Fe1—C9'1.92 (3)C8—H8A0.9800
Fe1—C10'1.94 (3)C9—C101.383 (7)
Fe1—C6'1.970 (19)C9—H9A0.9800
Fe1—C82.023 (7)C10—H10A0.9800
Fe1—C52.029 (3)C6'—C10'1.388 (17)
Fe1—C22.030 (3)C6'—C7'1.451 (18)
Fe1—C42.032 (4)C6'—H6'A0.9800
Fe1—C32.034 (4)C7'—C8'1.445 (19)
Fe1—C12.039 (3)C7'—H7'A0.9800
Fe1—C72.051 (5)C8'—C9'1.396 (18)
Fe1—C8'2.06 (3)C8'—H8'A0.9800
Fe1—C62.069 (5)C9'—C10'1.393 (17)
N1—C191.142 (4)C9'—H9'A0.9800
C1—C21.431 (4)C10'—H10B0.9800
C1—C51.433 (4)C11—C121.345 (3)
C1—C111.445 (4)C11—H11A0.9300
C2—C31.409 (5)C12—C191.439 (4)
C2—H2A0.9800C12—C131.480 (4)
C3—C41.387 (5)C13—C141.382 (4)
C3—H3A0.9800C13—C181.396 (4)
C4—C51.419 (5)C14—C151.383 (5)
C4—H4A0.9800C14—H14A0.9300
C5—H5A0.9800C15—C161.359 (5)
C6—C101.408 (8)C15—H15A0.9300
C6—C71.449 (7)C16—C171.375 (5)
C6—H6A0.9800C16—H16A0.9300
C7—C81.424 (10)C17—C181.382 (4)
C7—H7A0.9800C17—H17A0.9300
C8—C91.408 (10)C18—H18A0.9300
C9'—Fe1—C10'42.3 (7)C4—C5—Fe169.7 (2)
C9'—Fe1—C6'70.2 (8)C1—C5—Fe169.73 (17)
C10'—Fe1—C6'41.5 (6)C4—C5—H5A126.3
C9'—Fe1—C852.3 (7)C1—C5—H5A126.3
C10'—Fe1—C865.3 (9)Fe1—C5—H5A126.3
C6'—Fe1—C851.1 (7)C10—C6—C7108.5 (5)
C9'—Fe1—C5147.7 (7)C10—C6—Fe170.6 (4)
C10'—Fe1—C5119.9 (8)C7—C6—Fe168.8 (3)
C6'—Fe1—C5116.1 (6)C10—C6—H6A125.7
C8—Fe1—C5157.2 (3)C7—C6—H6A125.7
C9'—Fe1—C2104.1 (8)Fe1—C6—H6A125.7
C10'—Fe1—C2134.2 (8)C8—C7—C6104.4 (6)
C6'—Fe1—C2174.3 (6)C8—C7—Fe168.5 (3)
C8—Fe1—C2125.3 (3)C6—C7—Fe170.1 (3)
C5—Fe1—C268.93 (14)C8—C7—H7A127.8
C9'—Fe1—C4166.9 (9)C6—C7—H7A127.8
C10'—Fe1—C4150.3 (8)Fe1—C7—H7A127.8
C6'—Fe1—C4117.6 (7)C9—C8—C7110.3 (7)
C8—Fe1—C4123.0 (3)C9—C8—Fe172.3 (4)
C5—Fe1—C440.89 (14)C7—C8—Fe170.6 (4)
C2—Fe1—C467.89 (17)C9—C8—H8A124.8
C9'—Fe1—C3127.5 (9)C7—C8—H8A124.8
C10'—Fe1—C3169.8 (8)Fe1—C8—H8A124.8
C6'—Fe1—C3142.7 (8)C10—C9—C8107.5 (6)
C8—Fe1—C3109.5 (3)C10—C9—Fe170.5 (4)
C5—Fe1—C368.47 (16)C8—C9—Fe167.7 (4)
C2—Fe1—C340.58 (14)C10—C9—H9A126.2
C4—Fe1—C339.89 (15)C8—C9—H9A126.2
C9'—Fe1—C1112.6 (6)Fe1—C9—H9A126.2
C10'—Fe1—C1112.9 (8)C9—C10—C6109.2 (5)
C6'—Fe1—C1140.8 (8)C9—C10—Fe170.7 (4)
C8—Fe1—C1161.0 (3)C6—C10—Fe169.7 (3)
C5—Fe1—C141.24 (12)C9—C10—H10A125.4
C2—Fe1—C141.19 (12)C6—C10—H10A125.4
C4—Fe1—C168.75 (13)Fe1—C10—H10A125.4
C3—Fe1—C168.87 (13)C10'—C6'—C7'110.9 (15)
C9'—Fe1—C776.2 (7)C10'—C6'—Fe168.1 (16)
C10'—Fe1—C757.4 (8)C7'—C6'—Fe173.2 (14)
C6'—Fe1—C718.4 (6)C10'—C6'—H6'A124.6
C8—Fe1—C740.9 (3)C7'—C6'—H6'A124.6
C5—Fe1—C7120.3 (3)Fe1—C6'—H6'A124.6
C2—Fe1—C7161.9 (3)C8'—C7'—C6'103.2 (14)
C4—Fe1—C7108.0 (2)C8'—C7'—Fe168.6 (16)
C3—Fe1—C7125.1 (2)C6'—C7'—Fe164.9 (13)
C1—Fe1—C7155.6 (3)C8'—C7'—H7'A128.4
C9'—Fe1—C8'40.9 (6)C6'—C7'—H7'A128.4
C10'—Fe1—C8'69.4 (9)Fe1—C7'—H7'A128.4
C6'—Fe1—C8'68.5 (8)C9'—C8'—C7'109.1 (16)
C8—Fe1—C8'20.8 (6)C9'—C8'—Fe164.2 (15)
C5—Fe1—C8'170.4 (8)C7'—C8'—Fe170.5 (16)
C2—Fe1—C8'107.0 (7)C9'—C8'—H8'A125.2
C4—Fe1—C8'129.7 (8)C7'—C8'—H8'A125.2
C3—Fe1—C8'102.6 (8)Fe1—C8'—H8'A125.2
C1—Fe1—C8'140.3 (7)C10'—C9'—C8'109.5 (16)
C7—Fe1—C8'61.1 (7)C10'—C9'—Fe169.7 (17)
C9'—Fe1—C665.3 (9)C8'—C9'—Fe174.9 (16)
C10'—Fe1—C625.6 (7)C10'—C9'—H9'A125.2
C6'—Fe1—C622.8 (6)C8'—C9'—H9'A125.2
C8—Fe1—C667.4 (3)Fe1—C9'—H9'A125.2
C5—Fe1—C6107.3 (2)C6'—C10'—C9'107.1 (15)
C2—Fe1—C6155.4 (2)C6'—C10'—Fe170.3 (14)
C4—Fe1—C6126.1 (2)C9'—C10'—Fe168.0 (17)
C3—Fe1—C6162.6 (2)C6'—C10'—H10B126.5
C1—Fe1—C6119.9 (2)C9'—C10'—H10B126.5
C7—Fe1—C641.2 (2)Fe1—C10'—H10B126.5
C8'—Fe1—C680.0 (7)C12—C11—C1129.1 (2)
C2—C1—C5106.7 (3)C12—C11—H11A115.4
C2—C1—C11122.8 (3)C1—C11—H11A115.4
C5—C1—C11130.3 (3)C11—C12—C19119.3 (2)
C2—C1—Fe169.07 (17)C11—C12—C13125.7 (2)
C5—C1—Fe169.03 (17)C19—C12—C13115.0 (2)
C11—C1—Fe1122.09 (19)C14—C13—C18117.4 (3)
C3—C2—C1108.4 (3)C14—C13—C12121.1 (2)
C3—C2—Fe169.9 (2)C18—C13—C12121.5 (2)
C1—C2—Fe169.74 (17)C13—C14—C15121.5 (3)
C3—C2—H2A125.8C13—C14—H14A119.3
C1—C2—H2A125.8C15—C14—H14A119.3
Fe1—C2—H2A125.8C16—C15—C14120.2 (3)
C4—C3—C2108.4 (3)C16—C15—H15A119.9
C4—C3—Fe170.0 (2)C14—C15—H15A119.9
C2—C3—Fe169.55 (19)C15—C16—C17120.0 (3)
C4—C3—H3A125.8C15—C16—H16A120.0
C2—C3—H3A125.8C17—C16—H16A120.0
Fe1—C3—H3A125.8C16—C17—C18120.1 (3)
C3—C4—C5109.1 (3)C16—C17—H17A120.0
C3—C4—Fe170.1 (2)C18—C17—H17A120.0
C5—C4—Fe169.45 (19)C17—C18—C13120.9 (3)
C3—C4—H4A125.4C17—C18—H18A119.6
C5—C4—H4A125.4C13—C18—H18A119.6
Fe1—C4—H4A125.4N1—C19—C12178.3 (3)
C4—C5—C1107.4 (3)

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C14H10N)]
Mr313.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)6.8255 (14), 11.795 (2), 19.939 (4)
β (°) 106.786 (16)
V3)1536.8 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.97
Crystal size (mm)0.18 × 0.06 × 0.05
Data collection
DiffractometerRigaku, SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.892, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
15093, 3523, 2520
Rint0.050
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.126, 1.07
No. of reflections3523
No. of parameters206
No. of restraints30
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.40

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick,2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBase, T., Cisarova, I. & Stepnicka, P. (2002). Inorg. Chem. Commun. 5, 46–50.  Web of Science CSD CrossRef CAS Google Scholar
First citationHess, A., Brosch, O., Weyhermuller, T. & Metzler-Nolte, N. (1999). J. Organomet. Chem. 589, 75–84.  Web of Science CSD CrossRef CAS Google Scholar
First citationLong, N. J. (1995). Angew. Chem. Int. Ed. Engl. 34, 21–75.  CrossRef CAS Web of Science Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRoberto, D., Ugo, R., Cariati, S. B. E. & Cariati, F. (2000). Organometallics, 19, 1775–1788.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTogni, A. & Hayashi, T. (1995). Editors. Ferrocenes. Weinheim: VCH.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds