metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[4-(di­methyl­amino)pyridinium] tri­bromido­chloridodi­methyl­stannate(IV)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 14 May 2008; accepted 15 May 2008; online 21 May 2008)

The SnIV atom in the title salt, (C7H11N2)2[SnBr3(CH3)2Cl], lies on a center of inversion in a tetra­gonally compressed octa­hedron; two independent Br atoms share the same site as two independent chlorine atoms so that the anion effectively has one Cl and three Br atoms. The occupancies of the Br atoms are 0.721 (1) and 0.779 (1), and those of the Cl atoms are 0.279 (1) and 0.221 (1). The crystal structure involves N—H⋯halogen hydrogen bonds.

Related literature

For the isostructural bis­(4-dimethyl­amino­pyridinium) dibromido­dichloro­dimethyl­stannate(IV), see: Lo & Ng (2008[Lo, K. M. & Ng, S. W. (2008). Acta Cryst. E64, m800.]).

[Scheme 1]

Experimental

Crystal data
  • (C7H11N2)2[SnBr3(CH3)2Cl]

  • Mr = 670.29

  • Triclinic, [P \overline 1]

  • a = 7.3692 (2) Å

  • b = 8.6303 (1) Å

  • c = 9.5686 (2) Å

  • α = 96.902 (1)°

  • β = 106.546 (1)°

  • γ = 91.628 (1)°

  • V = 577.87 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 6.42 mm−1

  • T = 100 (2) K

  • 0.35 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.212, Tmax = 0.566 (expected range = 0.197–0.527)

  • 7041 measured reflections

  • 2623 independent reflections

  • 2344 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.061

  • S = 1.07

  • 2623 reflections

  • 122 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.89 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Selected geometric parameters (Å, °)

Sn1—C1 2.131 (3)
Sn1—Br1 2.7240 (3)
Sn1—Br2 2.7234 (3)
C1—Sn1—Br1 89.74 (7)
C1—Sn1—Br1i 90.26 (7)
Br1—Sn1—Br2 88.54 (1)
Br1—Sn1—Br2i 91.47 (1)
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯X1 0.88 2.61 3.325 (2) 139
N1—H1⋯X2 0.88 2.83 3.475 (2) 132
Symmetry codes: .

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

We have been investigating the reaction of organotin compounds with 4-dimethylpyridinium hydrobromide perbromide. In the previous study, this compound was reacted with dimethyltin dichloride to afford bis(4-dimethylpyridinium) dibromidodichloridodimethylstannate (Lo & Ng, 2008), whose. The halogens are in the expected 2:2 molar ratio. The bromine atoms are disordered with respect to the chlorine atoms. In the present study, the organotin reactant, chlorodimethyltin dimethyldithiocarbamate contains only one chlorine atom. The resulting stannate (Scheme I, Fig. 1) is the expected tribromidochloridodimethylstannate; the two salts are isostructural. N1—H1···X hydrogen bonds (X is a disordered mixture of Cl and Br; symmetry code: x, y, z) link the anions and cations, Fig 1, Table 2.

Related literature top

For the isostructural bis(4-dimethylaminopyridinium) dibromidodichlorodimethylstannate(IV), see: Lo & Ng (2008).

Experimental top

Chlorodimethyltin dimethyldithiocarbamate (1.54 g, 0.005 mol) and 4-dimethylpyridinium hydrobromide perbromide (1.81 g, 0.005 mol) were dissolved in a mixture of ethanol and chloroform (1:1) and the resulting mixture was refluxed for 15 minutes. Colorless crystals separated from the cool solution after several days.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5Ueq(C). The ammonium H atom was similarly treated (N–H 0.88 Å).

The two indepedent chlorine atoms are disordered with respect to the bromine atoms, so that each halogen site is occupied by both a chlorine and a bromine. Restraints were applied so that at each site; the atoms were restrained to have the same anisotropic temperature factors. Without occupancy restraints, occupancies of the chlorine atoms refined to nearly 0.5 and the total number of bromine atoms to approximately 1.5. The sum of the occupancies were then restrained to these values and, in the final refinement, occupancies refined to Br1 0.721 (1), Br2 0.779 (1), Cl1 0.279 (1) and Cl2 0.221 (1). The final difference Fourier map was featureless.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) plot of [C7H11N2]2 [SnBr3Cl2(CH3)2] at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. The Sn atom lies on a center-of-inversion such that the two independent Br atoms are disordered with respect to the two independent Cl atoms. Symmetry code: i = 1 – x, 1 – y, 1 – z. Dashed lines denote hydrogen bonds.
Bis[4-(dimethylamino)pyridinium] tribromidochloridodimethylstannate(IV) top
Crystal data top
(C7H11N2)2[SnBr3(CH3)2Cl]Z = 1
Mr = 670.29F(000) = 324
Triclinic, P1Dx = 1.926 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3692 (2) ÅCell parameters from 3862 reflections
b = 8.6303 (1) Åθ = 2.4–28.3°
c = 9.5686 (2) ŵ = 6.42 mm1
α = 96.902 (1)°T = 100 K
β = 106.546 (1)°Prism, colorless
γ = 91.628 (1)°0.35 × 0.15 × 0.10 mm
V = 577.87 (2) Å3
Data collection top
Bruker SMART APEX
diffractometer
2623 independent reflections
Radiation source: fine-focus sealed tube2344 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 98
Tmin = 0.212, Tmax = 0.566k = 1111
7041 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0363P)2]
where P = (Fo2 + 2Fc2)/3
2623 reflections(Δ/σ)max = 0.001
122 parametersΔρmax = 0.89 e Å3
4 restraintsΔρmin = 0.63 e Å3
Crystal data top
(C7H11N2)2[SnBr3(CH3)2Cl]γ = 91.628 (1)°
Mr = 670.29V = 577.87 (2) Å3
Triclinic, P1Z = 1
a = 7.3692 (2) ÅMo Kα radiation
b = 8.6303 (1) ŵ = 6.42 mm1
c = 9.5686 (2) ÅT = 100 K
α = 96.902 (1)°0.35 × 0.15 × 0.10 mm
β = 106.546 (1)°
Data collection top
Bruker SMART APEX
diffractometer
2623 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2344 reflections with I > 2σ(I)
Tmin = 0.212, Tmax = 0.566Rint = 0.022
7041 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0214 restraints
wR(F2) = 0.061H-atom parameters constrained
S = 1.07Δρmax = 0.89 e Å3
2623 reflectionsΔρmin = 0.63 e Å3
122 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.50000.50000.50000.01608 (8)
Br10.50013 (5)0.49555 (4)0.78420 (3)0.02259 (11)0.7207 (11)
Br20.64681 (5)0.21397 (3)0.50475 (3)0.02106 (10)0.7793 (11)
Cl10.50013 (5)0.49555 (4)0.78420 (3)0.02259 (11)0.2793 (11)
Cl20.64681 (5)0.21397 (3)0.50475 (3)0.02106 (10)0.2207 (11)
N10.6543 (3)0.1474 (3)0.8573 (2)0.0201 (5)
H10.61580.21220.79210.024*
N20.8485 (3)0.1517 (3)1.1630 (2)0.0221 (5)
C10.2173 (4)0.3966 (3)0.4268 (3)0.0218 (6)
H1A0.14670.43840.49410.033*
H1B0.22010.28290.42500.033*
H1C0.15500.42090.32760.033*
C20.6702 (4)0.1943 (3)1.0009 (3)0.0228 (6)
H20.63680.29621.02970.027*
C30.7329 (4)0.0981 (3)1.1038 (3)0.0207 (5)
H30.74300.13311.20390.025*
C40.7837 (4)0.0549 (3)1.0634 (3)0.0169 (5)
C50.7598 (4)0.0989 (3)0.9112 (3)0.0191 (5)
H50.78830.20080.87740.023*
C60.6970 (4)0.0029 (3)0.8136 (3)0.0215 (6)
H60.68280.02860.71230.026*
C70.8693 (5)0.1024 (4)1.3185 (3)0.0307 (7)
H7A0.94830.00411.35120.046*
H7B0.92970.18321.37640.046*
H7C0.74400.08691.33230.046*
C80.9004 (4)0.3085 (3)1.1218 (3)0.0282 (6)
H8A0.99010.30281.06390.042*
H8B0.78640.37301.06310.042*
H8C0.95970.35541.21080.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01588 (14)0.01489 (13)0.01660 (13)0.00076 (9)0.00352 (10)0.00175 (9)
Br10.0347 (2)0.01817 (17)0.01694 (16)0.00364 (13)0.01007 (14)0.00342 (12)
Br20.02735 (19)0.01599 (15)0.01872 (16)0.00594 (12)0.00403 (13)0.00333 (11)
Cl10.0347 (2)0.01817 (17)0.01694 (16)0.00364 (13)0.01007 (14)0.00342 (12)
Cl20.02735 (19)0.01599 (15)0.01872 (16)0.00594 (12)0.00403 (13)0.00333 (11)
N10.0196 (12)0.0193 (11)0.0212 (11)0.0008 (9)0.0039 (9)0.0067 (9)
N20.0207 (13)0.0257 (12)0.0189 (11)0.0001 (10)0.0034 (9)0.0049 (9)
C10.0208 (14)0.0214 (13)0.0237 (13)0.0021 (11)0.0068 (11)0.0044 (11)
C20.0200 (14)0.0206 (13)0.0273 (14)0.0007 (11)0.0074 (12)0.0001 (11)
C30.0172 (14)0.0259 (14)0.0184 (12)0.0033 (11)0.0060 (11)0.0008 (10)
C40.0112 (12)0.0215 (13)0.0183 (12)0.0013 (10)0.0036 (10)0.0055 (10)
C50.0176 (14)0.0169 (12)0.0214 (13)0.0027 (10)0.0044 (11)0.0010 (10)
C60.0204 (15)0.0257 (14)0.0182 (12)0.0034 (11)0.0063 (11)0.0010 (10)
C70.0287 (17)0.0428 (18)0.0203 (13)0.0058 (14)0.0037 (12)0.0110 (13)
C80.0267 (16)0.0253 (15)0.0320 (15)0.0027 (12)0.0053 (13)0.0095 (12)
Geometric parameters (Å, º) top
Sn1—C12.131 (3)C1—H1A0.9800
Sn1—Br12.7240 (3)C1—H1B0.9800
Sn1—Br22.7234 (3)C1—H1C0.9800
N1—C61.342 (3)C2—H20.9500
N1—C21.356 (3)C3—H30.9500
N2—C41.338 (3)C5—H50.9500
N2—C81.456 (4)C6—H60.9500
N2—C71.460 (3)C7—H7A0.9800
C2—C31.354 (4)C7—H7B0.9800
C3—C41.421 (4)C7—H7C0.9800
C4—C51.419 (3)C8—H8A0.9800
C5—C61.353 (4)C8—H8B0.9800
N1—H10.8800C8—H8C0.9800
C1—Sn1—C1i180.0Sn1—C1—H1C109.5
C1—Sn1—Br189.74 (7)H1A—C1—H1C109.5
C1—Sn1—Br1i90.26 (7)H1B—C1—H1C109.5
Br1—Sn1—Br1i180.0C3—C2—H2119.5
Br1—Sn1—Br288.54 (1)N1—C2—H2119.5
Br1—Sn1—Br2i91.47 (1)C2—C3—H3119.7
Br2—Sn1—Br2i180.0C4—C3—H3119.7
C6—N1—C2120.5 (2)C6—C5—H5119.7
C4—N2—C8121.9 (2)C4—C5—H5119.7
C4—N2—C7120.5 (2)N1—C6—H6119.4
C8—N2—C7117.6 (2)C5—C6—H6119.4
C3—C2—N1120.9 (2)N2—C7—H7A109.5
C2—C3—C4120.6 (2)N2—C7—H7B109.5
N2—C4—C5122.2 (2)H7A—C7—H7B109.5
N2—C4—C3121.8 (2)N2—C7—H7C109.5
C5—C4—C3116.0 (2)H7A—C7—H7C109.5
C6—C5—C4120.6 (2)H7B—C7—H7C109.5
N1—C6—C5121.3 (2)N2—C8—H8A109.5
C6—N1—H1119.7N2—C8—H8B109.5
C2—N1—H1119.7H8A—C8—H8B109.5
Sn1—C1—H1A109.5N2—C8—H8C109.5
Sn1—C1—H1B109.5H8A—C8—H8C109.5
H1A—C1—H1B109.5H8B—C8—H8C109.5
C6—N1—C2—C31.4 (4)C2—C3—C4—N2179.1 (3)
N1—C2—C3—C40.0 (4)C2—C3—C4—C51.5 (4)
C8—N2—C4—C50.5 (4)N2—C4—C5—C6178.8 (3)
C7—N2—C4—C5179.4 (3)C3—C4—C5—C61.7 (4)
C8—N2—C4—C3179.9 (2)C2—N1—C6—C51.2 (4)
C7—N2—C4—C30.0 (4)C4—C5—C6—N10.4 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···X10.882.613.325 (2)139
N1—H1···X20.882.833.475 (2)132

Experimental details

Crystal data
Chemical formula(C7H11N2)2[SnBr3(CH3)2Cl]
Mr670.29
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.3692 (2), 8.6303 (1), 9.5686 (2)
α, β, γ (°)96.902 (1), 106.546 (1), 91.628 (1)
V3)577.87 (2)
Z1
Radiation typeMo Kα
µ (mm1)6.42
Crystal size (mm)0.35 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.212, 0.566
No. of measured, independent and
observed [I > 2σ(I)] reflections
7041, 2623, 2344
Rint0.022
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.061, 1.07
No. of reflections2623
No. of parameters122
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.89, 0.63

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2008).

Selected geometric parameters (Å, º) top
Sn1—C12.131 (3)Sn1—Br22.7234 (3)
Sn1—Br12.7240 (3)
C1—Sn1—Br189.74 (7)Br1—Sn1—Br288.54 (1)
C1—Sn1—Br1i90.26 (7)Br1—Sn1—Br2i91.47 (1)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···X10.882.613.325 (2)139
N1—H1···X20.882.833.475 (2)132
 

Acknowledgements

We thank the University of Malaya for funding this study (SF022155/2007 A) and also for the purchase of the diffractometer.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLo, K. M. & Ng, S. W. (2008). Acta Cryst. E64, m800.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds