metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-chlorido-bis­­{chlorido[2-(2-furyl­methyl­imino­meth­yl)pyridine-κ2N,N′]nickel(II)}

aEngineering Research Center for Clean Production of Textile Printing, Ministry of Education, Wuhan University of Science & Engineering, Wuhan 430073, People's Republic of China
*Correspondence e-mail: qingfu_zeng@163.com

(Received 19 May 2008; accepted 20 May 2008; online 24 May 2008)

The title dinuclear nickel(II) complex, [Ni2Cl4(C11H10N2O)2], lies on a centre of symmetry located at the centroid of the four-membered ring formed by the two Ni atoms and the bridging chloride ions. The NiII atom is five-coordinated in a square-pyramidal geometry by the imine and pyridine N atoms of the Schiff base ligand, and by one terminal and two bridging Cl atoms. The Ni⋯Ni distance is 3.506 (2) Å. The O atom of the furan substituent in the ligand unit is not involved in coordination to the Ni atom.

Related literature

For related structures, see: Cheng et al. (2007[Cheng, K., You, Z.-L. & Zhu, H.-L. (2007). Aust. J. Chem. 60, 375-379.]); Li et al. (2007[Li, Y.-G., Shi, D.-H., Zhu, H.-L., Yan, H. & Ng, S. W. (2007). Inorg. Chim. Acta, 360, 2881-2889.]); Qiu et al. (2006[Qiu, X.-Y., Ma, J.-L., Liu, W.-S. & Zhu, H.-L. (2006). Acta Cryst. E62, m1289-m1290.]); Shi et al. (2007[Shi, D.-H., You, Z.-L., Xu, C., Zhang, Q. & Zhu, H.-L. (2007). Inorg. Chem. Commun. 10, 404-406.]); Wang et al. (2005[Wang, S.-F., Xue, J.-Y., Shi, L., Zhu, H.-L. & Ng, S. W. (2005). Acta Cryst. E61, m1481-m1483.]); Zhu et al. (2003[Zhu, H.-L., Zeng, Q.-F., Xia, D.-S., Liu, X.-Y. & Wang, D.-Q. (2003). Acta Cryst. E59, m777-m779.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni2Cl4(C11H10N2O)2]

  • Mr = 631.64

  • Triclinic, [P \overline 1]

  • a = 8.0439 (8) Å

  • b = 8.5659 (8) Å

  • c = 10.0610 (9) Å

  • α = 77.522 (8)°

  • β = 72.040 (7)°

  • γ = 70.132 (8)°

  • V = 615.39 (10) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.99 mm−1

  • T = 298 (2) K

  • 0.30 × 0.30 × 0.28 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.554, Tmax = 0.572

  • 2585 measured reflections

  • 2408 independent reflections

  • 1971 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.099

  • S = 1.07

  • 2408 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.58 e Å−3

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As part of our ongoing interest in the structure of nickel(II) complexes (Zhu et al., 2003), we report herein the crystal structure of the title compound, a new centrosymmetric dinuclear nickel(II) complex, (I), Fig. 1, derived from the Schiff base ligand furan-2-ylmethyl-(1-pyridin-2-ylmethylidene)amine.

The NiII atom in (I) is five-coordinate in a square pyramidal geometry, binding to the imine and pyridine N atoms of the Schiff base ligand, and to one terminal Cl and two bridging Cl atoms. The Ni···Ni distance is 3.506 (2) Å. The dihedral angle between the benzene ring and the furan ring is 73.3 (3) °. The O atom of the furan substituent in the ligand lies well away from the coordination sphere of the Ni atom. The coordinate bond values (Table 1) are comparable to values observed in other similar nickel(II) complexes (Shi et al., 2007; Li et al., 2007; Cheng et al., 2007; Qiu et al., 2006; Wang et al., 2005).

Related literature top

For related structures, see: Cheng et al. (2007); Li et al. (2007); Qiu et al. (2006); Shi et al. (2007); Wang et al. (2005); Zhu et al. (2003).

Experimental top

Pyridine-2-carbaldehyde (10.7 mg, 0.1 mmol), furan-2-ylmethylamine (9.7 mg, 0.1 mmol), and NiCl2.6H2O (23.8 mg, 0.1 mmol) were dissolved in methanol (30 ml). The mixture was stirred for 30 min at room temperature. The resulting solution was left in air for a few days, yielding green crystals.

Refinement top

H atoms were placed in idealized positions and constrained to ride on their parent atoms with C–H distances in the range 0.93–0.97 Å, and with Uiso(H) set at 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I) showing 30% probability displacement ellipsoids and the atom-numbering scheme. Numbered atoms are related to un-numbered atoms by the symmetry code 1-x, 2-y, 1-z.
Di-µ-chlorido-bis{chlorido[2-(2-furylmethyliminomethyl)pyridine- κ2N,N']nickel(II)} top
Crystal data top
[Ni2Cl4(C11H10N2O)2]Z = 1
Mr = 631.64F(000) = 320
Triclinic, P1Dx = 1.704 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0439 (8) ÅCell parameters from 1237 reflections
b = 8.5659 (8) Åθ = 2.4–25.3°
c = 10.0610 (9) ŵ = 1.99 mm1
α = 77.522 (8)°T = 298 K
β = 72.040 (7)°Block, green
γ = 70.132 (8)°0.30 × 0.30 × 0.28 mm
V = 615.39 (10) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2408 independent reflections
Radiation source: fine-focus sealed tube1971 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 09
Tmin = 0.554, Tmax = 0.572k = 910
2585 measured reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0486P)2 + 0.2142P]
where P = (Fo2 + 2Fc2)/3
2408 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
[Ni2Cl4(C11H10N2O)2]γ = 70.132 (8)°
Mr = 631.64V = 615.39 (10) Å3
Triclinic, P1Z = 1
a = 8.0439 (8) ÅMo Kα radiation
b = 8.5659 (8) ŵ = 1.99 mm1
c = 10.0610 (9) ÅT = 298 K
α = 77.522 (8)°0.30 × 0.30 × 0.28 mm
β = 72.040 (7)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2408 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1971 reflections with I > 2σ(I)
Tmin = 0.554, Tmax = 0.572Rint = 0.020
2585 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.07Δρmax = 0.51 e Å3
2408 reflectionsΔρmin = 0.58 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.72650 (5)1.00555 (5)0.45738 (4)0.03767 (16)
Cl10.46003 (12)1.19011 (10)0.55654 (10)0.0481 (2)
Cl20.76194 (14)1.16826 (13)0.24879 (11)0.0608 (3)
O10.6666 (5)0.6517 (4)0.9351 (3)0.0729 (9)
N10.9716 (4)0.8340 (4)0.3931 (3)0.0444 (7)
C110.7243 (7)0.5754 (6)1.0541 (5)0.0848 (16)
H110.72560.46701.09550.102*
N30.7676 (4)0.8807 (3)0.6475 (3)0.0418 (7)
C11.0714 (5)0.8105 (5)0.2615 (4)0.0576 (10)
H11.03130.88370.18710.069*
C21.2312 (6)0.6821 (5)0.2320 (5)0.0617 (11)
H21.29620.66830.13920.074*
C31.2941 (5)0.5746 (5)0.3406 (5)0.0608 (11)
H31.40160.48700.32270.073*
C41.1937 (5)0.5998 (5)0.4771 (4)0.0533 (10)
H41.23430.53050.55280.064*
C51.0333 (5)0.7283 (4)0.4998 (4)0.0429 (8)
C60.9147 (4)0.7611 (4)0.6387 (4)0.0428 (8)
H60.94580.69600.71930.051*
C70.6364 (5)0.9170 (5)0.7850 (4)0.0477 (9)
H7A0.61911.03150.79660.057*
H7B0.51960.90990.78270.057*
C80.6882 (5)0.8072 (5)0.9094 (4)0.0479 (9)
C90.7552 (6)0.8277 (6)1.0092 (4)0.0658 (11)
H90.78150.92281.01600.079*
C100.7779 (7)0.6769 (7)1.1019 (5)0.0820 (16)
H100.82230.65371.18130.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0292 (2)0.0323 (2)0.0470 (3)0.00427 (17)0.01482 (18)0.00379 (17)
Cl10.0407 (5)0.0327 (4)0.0685 (6)0.0016 (4)0.0209 (4)0.0061 (4)
Cl20.0525 (6)0.0567 (6)0.0665 (6)0.0179 (5)0.0227 (5)0.0201 (5)
O10.094 (2)0.0557 (18)0.0644 (19)0.0237 (17)0.0199 (17)0.0038 (14)
N10.0373 (16)0.0441 (16)0.0497 (17)0.0115 (13)0.0144 (13)0.0024 (13)
C110.093 (4)0.062 (3)0.058 (3)0.002 (3)0.005 (3)0.015 (2)
N30.0380 (15)0.0382 (15)0.0498 (17)0.0091 (13)0.0171 (13)0.0013 (13)
C10.052 (2)0.061 (2)0.052 (2)0.010 (2)0.0134 (19)0.0004 (19)
C20.050 (2)0.063 (3)0.062 (3)0.011 (2)0.000 (2)0.017 (2)
C30.044 (2)0.048 (2)0.078 (3)0.0007 (18)0.012 (2)0.010 (2)
C40.041 (2)0.043 (2)0.067 (3)0.0028 (16)0.0165 (19)0.0015 (18)
C50.0357 (18)0.0364 (18)0.055 (2)0.0091 (14)0.0146 (16)0.0008 (15)
C60.0351 (18)0.0396 (18)0.052 (2)0.0077 (15)0.0197 (16)0.0043 (15)
C70.0371 (19)0.045 (2)0.054 (2)0.0053 (16)0.0105 (16)0.0041 (16)
C80.042 (2)0.045 (2)0.048 (2)0.0045 (16)0.0093 (16)0.0051 (16)
C90.066 (3)0.076 (3)0.054 (2)0.019 (2)0.016 (2)0.009 (2)
C100.074 (3)0.099 (4)0.049 (3)0.000 (3)0.019 (2)0.004 (3)
Geometric parameters (Å, º) top
Ni1—N12.030 (3)C2—C31.374 (6)
Ni1—N32.044 (3)C2—H20.9300
Ni1—Cl22.2506 (10)C3—C41.382 (5)
Ni1—Cl12.2690 (10)C3—H30.9300
Ni1—Cl1i2.6496 (10)C4—C51.375 (5)
Cl1—Ni1i2.6496 (10)C4—H40.9300
O1—C81.361 (5)C5—C61.452 (5)
O1—C111.369 (5)C6—H60.9300
N1—C11.337 (5)C7—C81.473 (5)
N1—C51.350 (4)C7—H7A0.9700
C11—C101.317 (7)C7—H7B0.9700
C11—H110.9300C8—C91.343 (5)
N3—C61.268 (4)C9—C101.412 (6)
N3—C71.479 (4)C9—H90.9300
C1—C21.377 (5)C10—H100.9300
C1—H10.9300
N1—Ni1—N379.68 (11)C2—C3—C4118.4 (4)
N1—Ni1—Cl292.50 (9)C2—C3—H3120.8
N3—Ni1—Cl2160.74 (8)C4—C3—H3120.8
N1—Ni1—Cl1172.70 (9)C5—C4—C3119.3 (4)
N3—Ni1—Cl193.38 (8)C5—C4—H4120.4
Cl2—Ni1—Cl193.42 (4)C3—C4—H4120.4
N1—Ni1—Cl1i93.04 (8)N1—C5—C4122.3 (3)
N3—Ni1—Cl1i91.84 (8)N1—C5—C6114.2 (3)
Cl2—Ni1—Cl1i106.23 (4)C4—C5—C6123.5 (3)
Cl1—Ni1—Cl1i89.40 (3)N3—C6—C5118.3 (3)
Ni1—Cl1—Ni1i90.60 (3)N3—C6—H6120.8
C8—O1—C11106.2 (4)C5—C6—H6120.8
C1—N1—C5118.0 (3)C8—C7—N3116.0 (3)
C1—N1—Ni1128.3 (3)C8—C7—H7A108.3
C5—N1—Ni1113.7 (2)N3—C7—H7A108.3
C10—C11—O1110.6 (4)C8—C7—H7B108.3
C10—C11—H11124.7N3—C7—H7B108.3
O1—C11—H11124.7H7A—C7—H7B107.4
C6—N3—C7121.3 (3)C9—C8—O1109.5 (4)
C6—N3—Ni1114.1 (2)C9—C8—C7133.0 (4)
C7—N3—Ni1124.5 (2)O1—C8—C7117.5 (3)
N1—C1—C2122.4 (4)C8—C9—C10106.9 (5)
N1—C1—H1118.8C8—C9—H9126.6
C2—C1—H1118.8C10—C9—H9126.6
C3—C2—C1119.6 (4)C11—C10—C9106.8 (4)
C3—C2—H2120.2C11—C10—H10126.6
C1—C2—H2120.2C9—C10—H10126.6
N1—Ni1—Cl1—Ni1i109.6 (7)N1—C1—C2—C31.1 (7)
N3—Ni1—Cl1—Ni1i91.81 (8)C1—C2—C3—C40.2 (6)
Cl2—Ni1—Cl1—Ni1i106.22 (4)C2—C3—C4—C51.4 (6)
Cl1i—Ni1—Cl1—Ni1i0.0C1—N1—C5—C40.2 (5)
N3—Ni1—N1—C1178.4 (3)Ni1—N1—C5—C4177.7 (3)
Cl2—Ni1—N1—C119.4 (3)C1—N1—C5—C6178.9 (3)
Cl1—Ni1—N1—C1163.6 (5)Ni1—N1—C5—C61.4 (4)
Cl1i—Ni1—N1—C187.0 (3)C3—C4—C5—N11.5 (6)
N3—Ni1—N1—C51.3 (2)C3—C4—C5—C6177.5 (4)
Cl2—Ni1—N1—C5163.5 (2)C7—N3—C6—C5177.4 (3)
Cl1—Ni1—N1—C519.3 (8)Ni1—N3—C6—C50.4 (4)
Cl1i—Ni1—N1—C590.1 (2)N1—C5—C6—N30.7 (5)
C8—O1—C11—C100.5 (5)C4—C5—C6—N3178.4 (3)
N1—Ni1—N3—C60.9 (2)C6—N3—C7—C80.5 (5)
Cl2—Ni1—N3—C668.1 (4)Ni1—N3—C7—C8177.2 (2)
Cl1—Ni1—N3—C6178.6 (2)C11—O1—C8—C90.6 (5)
Cl1i—Ni1—N3—C691.9 (2)C11—O1—C8—C7179.7 (3)
N1—Ni1—N3—C7177.8 (3)N3—C7—C8—C9103.2 (5)
Cl2—Ni1—N3—C7114.9 (3)N3—C7—C8—O177.1 (4)
Cl1—Ni1—N3—C74.4 (3)O1—C8—C9—C100.4 (5)
Cl1i—Ni1—N3—C785.1 (3)C7—C8—C9—C10179.9 (4)
C5—N1—C1—C21.0 (6)O1—C11—C10—C90.3 (6)
Ni1—N1—C1—C2175.9 (3)C8—C9—C10—C110.1 (6)
Symmetry code: (i) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Ni2Cl4(C11H10N2O)2]
Mr631.64
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.0439 (8), 8.5659 (8), 10.0610 (9)
α, β, γ (°)77.522 (8), 72.040 (7), 70.132 (8)
V3)615.39 (10)
Z1
Radiation typeMo Kα
µ (mm1)1.99
Crystal size (mm)0.30 × 0.30 × 0.28
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.554, 0.572
No. of measured, independent and
observed [I > 2σ(I)] reflections
2585, 2408, 1971
Rint0.020
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.099, 1.07
No. of reflections2408
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.58

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors appreciate the generous financial support of this work by the Chinese Funds for the Zhicheng Project (2006BAC02A11) and the Wuhan Yindao project (20066009138-07).

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, K., You, Z.-L. & Zhu, H.-L. (2007). Aust. J. Chem. 60, 375–379.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, Y.-G., Shi, D.-H., Zhu, H.-L., Yan, H. & Ng, S. W. (2007). Inorg. Chim. Acta, 360, 2881–2889.  Web of Science CSD CrossRef CAS Google Scholar
First citationQiu, X.-Y., Ma, J.-L., Liu, W.-S. & Zhu, H.-L. (2006). Acta Cryst. E62, m1289–m1290.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, D.-H., You, Z.-L., Xu, C., Zhang, Q. & Zhu, H.-L. (2007). Inorg. Chem. Commun. 10, 404–406.  Web of Science CSD CrossRef Google Scholar
First citationWang, S.-F., Xue, J.-Y., Shi, L., Zhu, H.-L. & Ng, S. W. (2005). Acta Cryst. E61, m1481–m1483.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, H.-L., Zeng, Q.-F., Xia, D.-S., Liu, X.-Y. & Wang, D.-Q. (2003). Acta Cryst. E59, m777–m779.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds