metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{(E)-2,4-di­iodo-6-[(2-morpholinoeth­yl)imino­meth­yl]phenolato}nickel(II)

aEngineering Research Center for the Clean Production of Textile Printing, Ministry of Education, Wuhan University of Science and Engineering, Wuhan 430073, People's Republic of China
*Correspondence e-mail: qingfu_zeng@163.com

(Received 21 May 2008; accepted 22 May 2008; online 30 May 2008)

In the title mononuclear nickel(II) complex, [Ni(C13H15I2N2O2)2], the NiII atom is four-coordinated in a tetra­hedral geometry by the imine N and phenolate O atoms of the two Schiff base ligands. The O and N atoms of the morpholine substituent in the ligand are not involved in coordination to the Ni atom.

Related literature

For related structures, see: Cheng et al. (2007[Cheng, K., You, Z.-L. & Zhu, H.-L. (2007). Aust. J. Chem. 60, 375-379.]); Li et al. (2007[Li, Y.-G., Shi, D.-H., Zhu, H.-L., Yan, H. & Ng, S. W. (2007). Inorg. Chim. Acta, 360, 2881-2889.]); Qiu et al. (2006[Qiu, X.-Y., Ma, J.-L., Liu, W.-S. & Zhu, H.-L. (2006). Acta Cryst. E62, m1289-m1290.]); Shi et al. (2007[Shi, D.-H., You, Z.-L., Xu, C., Zhang, Q. & Zhu, H.-L. (2007). Inorg. Chem. Commun. 10, 404-406.]); Wang et al. (2005[Wang, S.-F., Xue, J.-Y., Shi, L., Zhu, H.-L. & Ng, S. W. (2005). Acta Cryst. E61, m1481-m1483.]); Zhu et al. (2003[Zhu, H.-L., Zeng, Q.-F., Xia, D.-S., Liu, X.-Y. & Wang, D.-Q. (2003). Acta Cryst. E59, m777-m779.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C13H15I2N2O2)2]

  • Mr = 1028.85

  • Triclinic, [P \overline 1]

  • a = 9.940 (2) Å

  • b = 11.371 (2) Å

  • c = 14.526 (3) Å

  • α = 87.138 (3)°

  • β = 79.028 (4)°

  • γ = 76.197 (4)°

  • V = 1565.3 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.60 mm−1

  • T = 298 (2) K

  • 0.17 × 0.15 × 0.15 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst.A24, 351-359.]) Tmin = 0.465, Tmax = 0.507

  • 6131 measured reflections

  • 6081 independent reflections

  • 4486 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.154

  • S = 1.07

  • 6081 reflections

  • 340 parameters

  • H-atom parameters constrained

  • Δρmax = 1.01 e Å−3

  • Δρmin = −1.19 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni—O4 1.956 (6)
Ni—O2 1.989 (6)
Ni—N2 2.001 (7)
Ni—N4 2.004 (7)
O4—Ni—O2 104.7 (3)
O4—Ni—N2 102.8 (3)
O2—Ni—N2 93.7 (3)
O4—Ni—N4 94.2 (3)
O2—Ni—N4 101.5 (3)
N2—Ni—N4 153.5 (3)

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As part of our ongoing interest in the structure of nickel(II) complexes (Zhu et al., 2003), we report herein the crystal structure of the title compound, a new mononuclear nickel(II) complex, (I), Fig. 1, derived from the Schiff base ligand 2,4-diiodo-6-[(2-morpholin-4-ylethylimino)methyl]phenol.

The NiII atom in (I) is four-coordinate in a tetrahedral geometry, binding to the imine N and phenolate O atoms of the two Schiff base ligands. The O and N atoms of the morpholine substituent in the ligand lie well away from the coordination sphere of the Ni atom. The coordinate bond values (Table 1) are comparable to values observed in other similar nickel(II) complexes (Shi et al., 2007; Li et al., 2007; Cheng et al., 2007; Qiu et al., 2006; Wang et al., 2005).

Related literature top

For related structures, see: Cheng et al. (2007); Li et al. (2007); Qiu et al. (2006); Shi et al. (2007); Wang et al. (2005); Zhu et al. (2003).

Experimental top

3,5-Diiodosalicylaldehyde (74.8 mg, 0.2 mmol), 2-morpholin-4-ylethylamine (26.0 mg, 0.2 mmol), and NiCl2.6H2O (23.8 mg, 0.1 mmol) were dissolved in methanol (30 ml). The mixture was stirred for 30 min at room temperature. The resulting solution was left in air for a few days, yielding green crystals.

Refinement top

H atoms were placed in idealized positions and constrained to ride on their parent atoms with C–H distances in the range 0.93–0.97 Å, and with Uiso(H) set at 1.2Ueq(C).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I) showing 30% probability displacement ellipsoids and the atom-numbering scheme.
Bis{(E)-2,4-diiodo-6-[(2-morpholinoethyl)iminomethyl]phenolato}nickel(II) top
Crystal data top
[Ni(C13H15I2N2O2)2]Z = 2
Mr = 1028.85F(000) = 972
Triclinic, P1Dx = 2.183 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.940 (2) ÅCell parameters from 3273 reflections
b = 11.371 (2) Åθ = 2.4–25.3°
c = 14.526 (3) ŵ = 4.60 mm1
α = 87.138 (3)°T = 298 K
β = 79.028 (4)°Block, green
γ = 76.197 (4)°0.17 × 0.15 × 0.15 mm
V = 1565.3 (5) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
6081 independent reflections
Radiation source: fine-focus sealed tube4486 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω/2θ scansθmax = 26.0°, θmin = 1.4°
Absorption correction: psi scan
(North et al., 1968)
h = 1112
Tmin = 0.465, Tmax = 0.507k = 1314
6131 measured reflectionsl = 1617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0708P)2 + 8.6966P]
where P = (Fo2 + 2Fc2)/3
6081 reflections(Δ/σ)max = 0.001
340 parametersΔρmax = 1.01 e Å3
0 restraintsΔρmin = 1.19 e Å3
Crystal data top
[Ni(C13H15I2N2O2)2]γ = 76.197 (4)°
Mr = 1028.85V = 1565.3 (5) Å3
Triclinic, P1Z = 2
a = 9.940 (2) ÅMo Kα radiation
b = 11.371 (2) ŵ = 4.60 mm1
c = 14.526 (3) ÅT = 298 K
α = 87.138 (3)°0.17 × 0.15 × 0.15 mm
β = 79.028 (4)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
6081 independent reflections
Absorption correction: psi scan
(North et al., 1968)
4486 reflections with I > 2σ(I)
Tmin = 0.465, Tmax = 0.507Rint = 0.039
6131 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.07Δρmax = 1.01 e Å3
6081 reflectionsΔρmin = 1.19 e Å3
340 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.67459 (12)0.74611 (9)0.74968 (7)0.0370 (3)
I11.03986 (8)0.21944 (6)1.02656 (5)0.0587 (2)
I21.08919 (7)0.41240 (6)0.63145 (5)0.0566 (2)
I30.89016 (8)1.25985 (6)0.44905 (5)0.0581 (2)
I40.86000 (8)1.08336 (6)0.84580 (5)0.0544 (2)
O10.2528 (9)1.0772 (9)0.6949 (6)0.088 (3)
O20.8403 (7)0.6056 (5)0.7347 (4)0.0476 (15)
O30.3977 (9)0.4099 (8)0.8193 (6)0.083 (3)
O40.7534 (7)0.8868 (5)0.7567 (4)0.0468 (15)
N10.4262 (9)0.9357 (7)0.8185 (5)0.0509 (19)
N20.6094 (8)0.7093 (7)0.8847 (5)0.0479 (18)
N30.5530 (8)0.5511 (7)0.6897 (5)0.0477 (18)
N40.6484 (8)0.7785 (6)0.6166 (5)0.0416 (16)
C10.8091 (9)0.5352 (7)0.8924 (6)0.0405 (19)
C20.8775 (9)0.5295 (7)0.7959 (6)0.0363 (18)
C30.9936 (9)0.4299 (8)0.7732 (6)0.043 (2)
C41.0432 (9)0.3416 (8)0.8368 (6)0.043 (2)
H41.11950.27740.81700.051*
C50.9773 (10)0.3513 (8)0.9290 (7)0.046 (2)
C60.8621 (10)0.4491 (8)0.9557 (6)0.048 (2)
H60.81930.45661.01860.057*
C70.6868 (10)0.6243 (8)0.9306 (6)0.046 (2)
H70.65790.62250.99530.055*
C80.4785 (12)0.7862 (10)0.9417 (7)0.064 (3)
H8A0.39710.75720.93400.077*
H8B0.48550.77931.00760.077*
C90.4594 (12)0.9162 (10)0.9117 (7)0.061 (3)
H9A0.38400.96560.95600.073*
H9B0.54520.94210.91300.073*
C100.4274 (12)1.0621 (10)0.7914 (9)0.068 (3)
H10A0.52041.07510.79120.081*
H10B0.36081.11590.83760.081*
C110.3903 (16)1.0927 (13)0.6976 (10)0.092 (4)
H11A0.39381.17610.68230.111*
H11B0.45881.04120.65090.111*
C120.2531 (14)0.9555 (13)0.7185 (9)0.080 (4)
H12A0.32350.90360.67300.096*
H12B0.16200.94130.71450.096*
C130.2827 (13)0.9214 (11)0.8133 (7)0.067 (3)
H13A0.27740.83800.82670.080*
H13B0.21300.97260.85970.080*
C140.7537 (9)0.9542 (8)0.5987 (6)0.0408 (19)
C150.7930 (9)1.0375 (8)0.5305 (7)0.044 (2)
H150.78181.02940.46920.053*
C160.8466 (10)1.1292 (8)0.5514 (7)0.045 (2)
C170.8658 (9)1.1437 (8)0.6402 (6)0.043 (2)
H170.90101.20790.65460.052*
C180.8319 (10)1.0611 (8)0.7084 (6)0.045 (2)
C190.7810 (8)0.9604 (7)0.6922 (6)0.0364 (18)
C200.6925 (10)0.8632 (8)0.5680 (6)0.043 (2)
H200.68410.86680.50520.052*
C210.5820 (9)0.7051 (8)0.5668 (6)0.043
H21A0.61210.71320.49970.051*
H21B0.48040.73440.58130.051*
C220.6216 (11)0.5733 (10)0.5948 (7)0.061
H22A0.59540.52460.55130.074*
H22B0.72300.54850.59040.074*
C230.4055 (11)0.5588 (11)0.6960 (8)0.064 (3)
H23A0.39250.50250.65230.077*
H23B0.35910.64000.67910.077*
C240.3403 (14)0.5295 (13)0.7941 (9)0.078 (4)
H24A0.35580.58460.83780.094*
H24B0.23940.54110.79850.094*
C250.6143 (11)0.4272 (9)0.7168 (8)0.061 (3)
H25A0.71430.41790.71520.073*
H25B0.60380.37130.67170.073*
C260.5451 (14)0.3955 (12)0.8137 (10)0.081 (4)
H26A0.58730.31240.82860.098*
H26B0.56120.44750.85950.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0507 (6)0.0302 (5)0.0320 (5)0.0192 (5)0.0025 (5)0.0092 (4)
I10.0742 (5)0.0474 (4)0.0577 (4)0.0181 (3)0.0193 (3)0.0167 (3)
I20.0634 (4)0.0504 (4)0.0501 (4)0.0206 (3)0.0121 (3)0.0055 (3)
I30.0732 (5)0.0503 (4)0.0565 (4)0.0323 (3)0.0088 (3)0.0215 (3)
I40.0700 (4)0.0545 (4)0.0467 (4)0.0290 (3)0.0126 (3)0.0029 (3)
O10.075 (6)0.094 (7)0.072 (6)0.014 (5)0.004 (5)0.017 (5)
O20.061 (4)0.038 (3)0.040 (3)0.014 (3)0.000 (3)0.009 (3)
O30.084 (6)0.088 (6)0.081 (6)0.049 (5)0.003 (5)0.021 (5)
O40.067 (4)0.035 (3)0.040 (3)0.024 (3)0.000 (3)0.008 (3)
N10.059 (5)0.050 (5)0.041 (4)0.012 (4)0.001 (4)0.009 (4)
N20.054 (5)0.041 (4)0.040 (4)0.005 (3)0.002 (3)0.007 (3)
N30.052 (5)0.048 (4)0.046 (4)0.022 (4)0.006 (4)0.010 (3)
N40.053 (4)0.037 (4)0.037 (4)0.025 (3)0.004 (3)0.001 (3)
C10.046 (5)0.032 (4)0.043 (5)0.014 (4)0.003 (4)0.007 (4)
C20.046 (5)0.033 (4)0.039 (4)0.025 (4)0.011 (4)0.010 (3)
C30.049 (5)0.036 (4)0.046 (5)0.027 (4)0.005 (4)0.004 (4)
C40.044 (5)0.035 (4)0.046 (5)0.011 (4)0.002 (4)0.009 (4)
C50.060 (6)0.034 (5)0.050 (5)0.019 (4)0.017 (4)0.012 (4)
C60.060 (6)0.051 (5)0.034 (5)0.022 (5)0.008 (4)0.012 (4)
C70.064 (6)0.047 (5)0.029 (4)0.022 (5)0.003 (4)0.008 (4)
C80.069 (7)0.060 (6)0.045 (6)0.006 (5)0.006 (5)0.006 (5)
C90.071 (7)0.061 (6)0.047 (6)0.011 (5)0.003 (5)0.018 (5)
C100.064 (7)0.052 (6)0.080 (8)0.017 (5)0.010 (6)0.007 (6)
C110.097 (11)0.076 (9)0.086 (10)0.017 (8)0.021 (8)0.012 (7)
C120.074 (8)0.087 (9)0.076 (8)0.010 (7)0.016 (7)0.021 (7)
C130.086 (8)0.074 (8)0.042 (6)0.030 (6)0.001 (5)0.003 (5)
C140.051 (5)0.040 (5)0.037 (4)0.026 (4)0.005 (4)0.008 (4)
C150.045 (5)0.037 (5)0.048 (5)0.011 (4)0.000 (4)0.000 (4)
C160.045 (5)0.034 (4)0.052 (5)0.013 (4)0.006 (4)0.004 (4)
C170.049 (5)0.031 (4)0.050 (5)0.015 (4)0.010 (4)0.011 (4)
C180.055 (5)0.040 (5)0.040 (5)0.020 (4)0.001 (4)0.002 (4)
C190.028 (4)0.036 (4)0.044 (5)0.011 (3)0.001 (3)0.002 (4)
C200.056 (5)0.048 (5)0.032 (4)0.022 (4)0.013 (4)0.009 (4)
C210.0430.0430.0430.0100.0080.000
C220.0610.0610.0610.0140.0110.000
C230.059 (6)0.072 (7)0.057 (6)0.015 (5)0.009 (5)0.023 (6)
C240.079 (8)0.101 (10)0.063 (7)0.055 (8)0.008 (6)0.008 (7)
C250.058 (6)0.051 (6)0.080 (8)0.020 (5)0.019 (6)0.006 (5)
C260.086 (9)0.068 (8)0.095 (10)0.034 (7)0.017 (7)0.029 (7)
Geometric parameters (Å, º) top
Ni—O41.956 (6)C9—H9A0.9700
Ni—O21.989 (6)C9—H9B0.9700
Ni—N22.001 (7)C10—C111.483 (18)
Ni—N42.004 (7)C10—H10A0.9700
I1—C52.079 (8)C10—H10B0.9700
I2—C32.095 (9)C11—H11A0.9700
I3—C162.108 (8)C11—H11B0.9700
I4—C182.103 (9)C12—C131.477 (16)
O1—C121.408 (16)C12—H12A0.9700
O1—C111.427 (17)C12—H12B0.9700
O2—C21.254 (9)C13—H13A0.9700
O3—C241.403 (15)C13—H13B0.9700
O3—C261.422 (15)C14—C151.403 (11)
O4—C191.260 (10)C14—C191.442 (12)
N1—C91.448 (13)C14—C201.446 (12)
N1—C101.473 (13)C15—C161.349 (13)
N1—C131.490 (14)C15—H150.9300
N2—C71.322 (11)C16—C171.363 (13)
N2—C81.504 (12)C17—C181.382 (11)
N3—C231.433 (13)C17—H170.9300
N3—C221.456 (13)C18—C191.403 (12)
N3—C251.462 (12)C20—H200.9300
N4—C201.278 (10)C21—C221.511 (13)
N4—C211.469 (11)C21—H21A0.9700
C1—C61.390 (12)C21—H21B0.9700
C1—C71.422 (13)C22—H22A0.9700
C1—C21.435 (12)C22—H22B0.9700
C2—C31.411 (12)C23—C241.506 (14)
C3—C41.396 (12)C23—H23A0.9700
C4—C51.372 (13)C23—H23B0.9700
C4—H40.9300C24—H24A0.9700
C5—C61.401 (13)C24—H24B0.9700
C6—H60.9300C25—C261.512 (16)
C7—H70.9300C25—H25A0.9700
C8—C91.499 (15)C25—H25B0.9700
C8—H8A0.9700C26—H26A0.9700
C8—H8B0.9700C26—H26B0.9700
O4—Ni—O2104.7 (3)O1—C12—H12A108.9
O4—Ni—N2102.8 (3)C13—C12—H12A108.9
O2—Ni—N293.7 (3)O1—C12—H12B108.9
O4—Ni—N494.2 (3)C13—C12—H12B108.9
O2—Ni—N4101.5 (3)H12A—C12—H12B107.7
N2—Ni—N4153.5 (3)C12—C13—N1109.3 (9)
C12—O1—C11107.0 (9)C12—C13—H13A109.8
C2—O2—Ni127.5 (6)N1—C13—H13A109.8
C24—O3—C26108.3 (9)C12—C13—H13B109.8
C19—O4—Ni127.9 (6)N1—C13—H13B109.8
C9—N1—C10107.9 (9)H13A—C13—H13B108.3
C9—N1—C13113.4 (8)C15—C14—C19119.4 (8)
C10—N1—C13106.0 (8)C15—C14—C20116.3 (8)
C7—N2—C8116.5 (8)C19—C14—C20124.2 (7)
C7—N2—Ni121.5 (6)C16—C15—C14121.8 (9)
C8—N2—Ni121.6 (6)C16—C15—H15119.1
C23—N3—C22112.1 (8)C14—C15—H15119.1
C23—N3—C25106.1 (8)C15—C16—C17120.9 (8)
C22—N3—C25108.7 (8)C15—C16—I3120.5 (7)
C20—N4—C21115.2 (7)C17—C16—I3118.5 (6)
C20—N4—Ni121.8 (6)C16—C17—C18118.7 (8)
C21—N4—Ni123.0 (5)C16—C17—H17120.6
C6—C1—C7115.4 (8)C18—C17—H17120.6
C6—C1—C2119.8 (8)C17—C18—C19124.2 (8)
C7—C1—C2124.8 (7)C17—C18—I4119.0 (7)
O2—C2—C3121.0 (8)C19—C18—I4116.8 (6)
O2—C2—C1124.2 (8)O4—C19—C18121.7 (8)
C3—C2—C1114.8 (7)O4—C19—C14123.5 (7)
C4—C3—C2125.0 (8)C18—C19—C14114.6 (7)
C4—C3—I2119.0 (7)N4—C20—C14128.0 (8)
C2—C3—I2116.0 (6)N4—C20—H20116.0
C5—C4—C3118.8 (8)C14—C20—H20116.0
C5—C4—H4120.6N4—C21—C22110.7 (8)
C3—C4—H4120.6N4—C21—H21A109.5
C4—C5—C6118.8 (8)C22—C21—H21A109.5
C4—C5—I1120.9 (7)N4—C21—H21B109.5
C6—C5—I1120.2 (7)C22—C21—H21B109.5
C1—C6—C5122.9 (8)H21A—C21—H21B108.1
C1—C6—H6118.6N3—C22—C21112.3 (8)
C5—C6—H6118.6N3—C22—H22A109.2
N2—C7—C1127.5 (8)C21—C22—H22A109.2
N2—C7—H7116.3N3—C22—H22B109.2
C1—C7—H7116.3C21—C22—H22B109.2
C9—C8—N2110.8 (8)H22A—C22—H22B107.9
C9—C8—H8A109.5N3—C23—C24110.3 (9)
N2—C8—H8A109.5N3—C23—H23A109.6
C9—C8—H8B109.5C24—C23—H23A109.6
N2—C8—H8B109.5N3—C23—H23B109.6
H8A—C8—H8B108.1C24—C23—H23B109.6
N1—C9—C8112.4 (9)H23A—C23—H23B108.1
N1—C9—H9A109.1O3—C24—C23111.6 (11)
C8—C9—H9A109.1O3—C24—H24A109.3
N1—C9—H9B109.1C23—C24—H24A109.3
C8—C9—H9B109.1O3—C24—H24B109.3
H9A—C9—H9B107.9C23—C24—H24B109.3
N1—C10—C11112.3 (10)H24A—C24—H24B108.0
N1—C10—H10A109.2N3—C25—C26111.9 (9)
C11—C10—H10A109.2N3—C25—H25A109.2
N1—C10—H10B109.2C26—C25—H25A109.2
C11—C10—H10B109.2N3—C25—H25B109.2
H10A—C10—H10B107.9C26—C25—H25B109.2
O1—C11—C10111.2 (10)H25A—C25—H25B107.9
O1—C11—H11A109.4O3—C26—C25111.0 (10)
C10—C11—H11A109.4O3—C26—H26A109.4
O1—C11—H11B109.4C25—C26—H26A109.4
C10—C11—H11B109.4O3—C26—H26B109.4
H11A—C11—H11B108.0C25—C26—H26B109.4
O1—C12—C13113.6 (11)H26A—C26—H26B108.0

Experimental details

Crystal data
Chemical formula[Ni(C13H15I2N2O2)2]
Mr1028.85
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.940 (2), 11.371 (2), 14.526 (3)
α, β, γ (°)87.138 (3), 79.028 (4), 76.197 (4)
V3)1565.3 (5)
Z2
Radiation typeMo Kα
µ (mm1)4.60
Crystal size (mm)0.17 × 0.15 × 0.15
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionPsi scan
(North et al., 1968)
Tmin, Tmax0.465, 0.507
No. of measured, independent and
observed [I > 2σ(I)] reflections
6131, 6081, 4486
Rint0.039
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.154, 1.07
No. of reflections6081
No. of parameters340
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.01, 1.19

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Ni—O41.956 (6)Ni—N22.001 (7)
Ni—O21.989 (6)Ni—N42.004 (7)
O4—Ni—O2104.7 (3)O4—Ni—N494.2 (3)
O4—Ni—N2102.8 (3)O2—Ni—N4101.5 (3)
O2—Ni—N293.7 (3)N2—Ni—N4153.5 (3)
 

Acknowledgements

The authors appreciate the generous financial support of this work by the Chinese Funds for Zhicheng Project (No. 2006BAC02A11) and Wuhan Yindao project (No. 20066009138-07).

References

First citationCheng, K., You, Z.-L. & Zhu, H.-L. (2007). Aust. J. Chem. 60, 375–379.  Web of Science CSD CrossRef CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLi, Y.-G., Shi, D.-H., Zhu, H.-L., Yan, H. & Ng, S. W. (2007). Inorg. Chim. Acta, 360, 2881–2889.  Web of Science CSD CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst.A24, 351–359.  Google Scholar
First citationQiu, X.-Y., Ma, J.-L., Liu, W.-S. & Zhu, H.-L. (2006). Acta Cryst. E62, m1289–m1290.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, D.-H., You, Z.-L., Xu, C., Zhang, Q. & Zhu, H.-L. (2007). Inorg. Chem. Commun. 10, 404–406.  Web of Science CSD CrossRef Google Scholar
First citationWang, S.-F., Xue, J.-Y., Shi, L., Zhu, H.-L. & Ng, S. W. (2005). Acta Cryst. E61, m1481–m1483.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhu, H.-L., Zeng, Q.-F., Xia, D.-S., Liu, X.-Y. & Wang, D.-Q. (2003). Acta Cryst. E59, m777–m779.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds