organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 6-eth­oxy­carbonyl­methyl-4-(2-hy­droxy­phen­yl)-2-oxo-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate

aFaculty of Pharmacy, Comenius University, Odbojarov 10, SK-83232 Bratislava, Slovakia
*Correspondence e-mail: kettmann@fpharm.uniba.sk

(Received 2 April 2008; accepted 30 April 2008; online 17 May 2008)

The title compound, C17H20N2O6, belongs to the monastrol-type of anti­cancer agents and was selected for crystal structure determination in order to confirm its mol­ecular structure and explore some aspects of its structure–activity relationships. The central tetra­hydro­pyrimidine ring has a flat-envelope conformation. The 4-hydroxy­phenyl group occupies a pseudo-axial position and is inclined at an angle of 87.7 (2)° to the mean plane of the heterocyclic ring. Of the two ethyl ester groups, one (in the 5-position) is in a coplanar and the other (in the 6-position) is in a perpendicular orientation with respect to the heterocyclic plane. There is a three-dimensional hydrogen-bonding network in which all hydrogen-bond donors and acceptors are involved.

Related literature

For related literature, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]); Azizian et al. (2007[Azizian, J., Mohammadi, A. A., Kohshari, M., Karimi, A. R. & Mohammadizadeh, M. R. (2007). J. Heterocycl. Chem. 44, 455-458.]); Qing-Fang et al. (2007[Qing-Fang, C., Xu, X.-Y., Bao, J.-Y. & Zhang, C.-F. (2007). Acta Cryst. E63, o2391-o2392.]); Endow & Baker (2003[Endow, S. A. & Baker, D. S. (2003). Annu. Rev. Physiol. 65, 161-180.]); Kettmann & Svetlík (1997[Kettmann, V. & Svetlík, J. (1997). Acta Cryst. C53, 1493-1495.]); Světlík et al. (1991[Světlík, J., Hanus, V. & Bella, J. (1991). J. Chem. Res. (S), pp. 4-5.]); Wood & Bergnes (2004[Wood, K. W. & Bergnes, G. (2004). Annu. Rep. Med. Chem. 39, 173-183.]).

[Scheme 1]

Experimental

Crystal data
  • C17H20N2O6

  • Mr = 348.35

  • Triclinic, [P \overline 1]

  • a = 8.783 (2) Å

  • b = 9.336 (3) Å

  • c = 11.415 (4) Å

  • α = 71.47 (4)°

  • β = 82.78 (5)°

  • γ = 75.05 (4)°

  • V = 856.5 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 (2) K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Siemens P4 diffractometer

  • Absorption correction: none

  • 5849 measured reflections

  • 4950 independent reflections

  • 3935 reflections with I > 2σ(I)

  • Rint = 0.040

  • 3 standard reflections every 97 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.174

  • S = 1.04

  • 4950 reflections

  • 229 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 1.97 2.788 (2) 159
O2—H2⋯O3ii 0.82 1.95 2.772 (2) 177
N3—H3⋯O5iii 0.86 2.20 3.0014 (18) 155
Symmetry codes: (i) -x, -y+1, -z; (ii) -x+1, -y, -z+1; (iii) x, y-1, z.

Data collection: XSCANS (Siemens, 1991[Siemens (1991). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, while we have been continuing in our programme aimed at synthesis of monastrol (1) analogues as valuable antitumour drugs (Wood & Bergnes, 2004), a related tetrahydropyrimidine compound (2) has been described by another group (Azizian et al., 2007). As we had reported earlier (Světlík et al., 1991; Kettmann & Svetlík, 1997) that classical Biginelli condensation with salicylaldehyde gives oxygen-bridged pyrimidine (3) rather than the 'open' molecule (4), the formation of (2) was accordingly unexpected. Thus, to verify the correctness of the title structure (2), an X-ray analysis was undertaken. As the cytotoxic activity of these derivatives is related to inhibition of the kinesin Eg5 protein (Endow & Baker, 2003), another purpose of this work was to determine detailed molecular conformation which is indispensable for an analysis of structure-activity relationships.

The structure determination has confirmed (Fig. 1) that the compound studied here has indeed the structure (2) (Fig. 2). As retrieved from the Cambridge Structural Database (Version of 2007; Allen, 2002), the bond lengths and angles (Table 1) within the tetrahydropyrimidine ring are equal within experimental error to those previously reported for a number of structures incorporating this molecular fragment (see, e.g., Qing-Fang et al., 2007). Bonding characteristics in other parts of the molecule also agree with those generally expected.

As noted above, from the biological standpoint, the conformational properties of the molecule are of prime interest here. First, the conformation of the central heterocycle can best be described as a flat envelope with atom C4 (at the flap) deviating by 0.433 (2) Å from the mean plane of the remaining atoms. As to the ring substituents, the 4-hydroxyphenyl group occupies the pseudoaxial position and is in a perpendicular orientation with respect to the tetrahydropyrimidine ring [dihedral angle 87.7 (2)°]; the conformation of the substituent on the exocyclic C4—C7 bond is synperiplanar, i.e. the hydroxy group is on the same side as the H atom on C4 (Fig.1). The ester group on C5 lies approximately in the plane of the C5=C6 double bond, with the carbonyl function oriented cis relative to this double bond. By contrast, the ethoxycarbonyl moiety of the 6-substituent is oriented, due to rather free rotation about the two C16 methylenic bonds, perpendicularly with respect to the mean plane of the heterocycle.

The crystal packing is dominated by hydrogen bonding. As shown in Table 2 and Fig. 3, each molecule forms two pairs of hydrogen bonds (N1-H···O1 and O2-H···O3) across centres of symmetry, which results in formation of chains of hydrogen-bonded molecules. The chains are interconnected by another independent hydrogen bond, N3-H···O5.

Related literature top

For related literature, see: Allen (2002); Azizian et al. (2007); Qing-Fang et al. (2007); Endow & Baker (2003); Kettmann & Svetlík (1997); Světlík et al. (1991); Wood & Bergnes (2004).

Experimental top

Synthesis of the title compound, (2), has been described (Azizian et al., 2007). In short, heating of salicylaldehyde (0.52 ml, 5 mmol) with diethyl acetone-1,3-dicarboxylate (0.91 ml, 5 mmol) and urea (0.36 g, 6 mmol) under p-toluenesulfonic acid (0.04 g, 0.2 mmol) catalysis without solvent at 353–363 K for 3 h gave the desired product (50% yield; m.p. 488–490 K). Crystalssuitable for the X-ray analysis were obtained by a slow crystallization from ethanol.

Refinement top

H atoms were visible in difference maps and were subsequently treated as riding atoms with distances C—H = 0.93 Å (CHarom), 0.97 (CH2) or 0.98 Å (CH), 0.96 Å (CH3) and N—H = 0.86 Å and O—H = 0.82 Å; Uiso of the H atoms were set to 1.2 (1.5 for the methyl and hydroxy H atoms) times Ueq of the parent atom.

Computing details top

Data collection: XSCANS (Siemens, 1991); cell refinement: XSCANS (Siemens, 1991); data reduction: XSCANS (Siemens, 1991); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot of (2) with the labelling scheme for the non-H atoms, which are drawn as 35% probability ellipsoids.
[Figure 2] Fig. 2. The structure of compounds (1)–(4).
[Figure 3] Fig. 3. View of the crystal packing along the a axis, showing system of hydrogen bonds (dashed lines).
Ethyl 6-ethoxycarbonylmethyl-4-(2-hydroxyphenyl)-2-oxo-1,2,3,4- tetrahydropyrimidine-5-carboxylate top
Crystal data top
C17H20N2O6Z = 2
Mr = 348.35F(000) = 368
Triclinic, P1Dx = 1.351 Mg m3
Hall symbol: -P 1Melting point: 489 K
a = 8.783 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.336 (3) ÅCell parameters from 20 reflections
c = 11.415 (4) Åθ = 7–18°
α = 71.47 (4)°µ = 0.10 mm1
β = 82.78 (5)°T = 296 K
γ = 75.05 (4)°Prism, colourless
V = 856.5 (5) Å30.30 × 0.25 × 0.20 mm
Data collection top
Siemens P4
diffractometer
Rint = 0.040
Radiation source: fine-focus sealed tubeθmax = 30.0°, θmin = 1.9°
Graphite monochromatorh = 112
ω/2θ scansk = 1212
5849 measured reflectionsl = 1616
4950 independent reflections3 standard reflections every 97 reflections
3935 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0972P)2 + 0.1877P]
where P = (Fo2 + 2Fc2)/3
4950 reflections(Δ/σ)max = 0.001
229 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C17H20N2O6γ = 75.05 (4)°
Mr = 348.35V = 856.5 (5) Å3
Triclinic, P1Z = 2
a = 8.783 (2) ÅMo Kα radiation
b = 9.336 (3) ŵ = 0.10 mm1
c = 11.415 (4) ÅT = 296 K
α = 71.47 (4)°0.30 × 0.25 × 0.20 mm
β = 82.78 (5)°
Data collection top
Siemens P4
diffractometer
Rint = 0.040
5849 measured reflections3 standard reflections every 97 reflections
4950 independent reflections intensity decay: none
3935 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.174H-atom parameters constrained
S = 1.04Δρmax = 0.31 e Å3
4950 reflectionsΔρmin = 0.32 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.10214 (15)0.47412 (12)0.13671 (11)0.0350 (3)
H10.07490.54650.06920.042*
C20.11515 (15)0.32189 (14)0.13967 (13)0.0315 (3)
O10.06497 (13)0.29448 (11)0.05495 (10)0.0408 (3)
N30.17844 (14)0.21317 (12)0.24052 (11)0.0344 (3)
H30.16150.12180.25840.041*
C40.27587 (15)0.24302 (13)0.32230 (12)0.0304 (3)
H40.26690.17040.40510.037*
C50.21064 (15)0.40660 (14)0.33107 (12)0.0307 (3)
C60.13046 (15)0.51589 (13)0.23577 (12)0.0302 (3)
C70.44794 (15)0.21163 (14)0.27695 (12)0.0315 (3)
C80.51674 (18)0.32744 (17)0.19754 (16)0.0431 (3)
H80.45840.42970.17530.052*
C90.6717 (2)0.2929 (2)0.15072 (18)0.0521 (4)
H90.71610.37150.09750.063*
C100.75860 (19)0.1417 (2)0.18372 (18)0.0519 (4)
H100.86170.11820.15190.062*
C110.69370 (19)0.02481 (19)0.26383 (17)0.0469 (4)
H110.75360.07680.28670.056*
C120.53881 (16)0.05890 (15)0.31031 (14)0.0353 (3)
O20.46665 (14)0.05252 (12)0.38635 (12)0.0489 (3)
H20.53280.13410.41060.073*
C130.24784 (17)0.43413 (15)0.44190 (13)0.0367 (3)
O30.31840 (19)0.33335 (14)0.52678 (12)0.0602 (4)
O40.19773 (16)0.58055 (12)0.44378 (11)0.0485 (3)
C140.2312 (3)0.6194 (2)0.55027 (18)0.0582 (5)
H14A0.34410.60370.55510.070*
H14B0.19120.55420.62600.070*
C150.1516 (3)0.7858 (2)0.5332 (2)0.0668 (6)
H15A0.19920.84970.46240.100*
H15B0.16270.81310.60550.100*
H15C0.04170.80160.52080.100*
C160.06044 (17)0.68574 (14)0.22359 (14)0.0363 (3)
H16A0.01090.72740.15620.044*
H16B0.00220.69250.29880.044*
C170.17511 (19)0.78803 (15)0.20076 (15)0.0403 (3)
O50.13786 (18)0.91436 (13)0.21651 (16)0.0651 (4)
O60.31602 (15)0.72710 (13)0.15956 (13)0.0521 (3)
C180.4286 (3)0.8264 (3)0.1244 (3)0.0778 (7)
H18A0.40170.90490.04600.093*
H18B0.42400.87860.18640.093*
C190.5842 (3)0.7343 (3)0.1139 (4)0.0954 (9)
H19A0.61290.66130.19310.143*
H19B0.65720.80040.08640.143*
H19C0.58700.67920.05530.143*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0449 (6)0.0191 (5)0.0410 (6)0.0060 (4)0.0108 (5)0.0068 (4)
C20.0302 (6)0.0220 (5)0.0430 (7)0.0070 (4)0.0017 (5)0.0100 (5)
O10.0490 (6)0.0278 (5)0.0503 (6)0.0086 (4)0.0120 (5)0.0145 (4)
N30.0371 (6)0.0183 (4)0.0485 (6)0.0078 (4)0.0076 (5)0.0076 (4)
C40.0316 (6)0.0192 (5)0.0374 (6)0.0034 (4)0.0032 (5)0.0057 (4)
C50.0309 (6)0.0208 (5)0.0386 (6)0.0023 (4)0.0031 (5)0.0086 (4)
C60.0301 (6)0.0200 (5)0.0400 (6)0.0040 (4)0.0043 (5)0.0086 (4)
C70.0306 (6)0.0246 (5)0.0377 (6)0.0014 (4)0.0050 (5)0.0098 (5)
C80.0376 (7)0.0299 (6)0.0546 (9)0.0049 (5)0.0012 (6)0.0062 (6)
C90.0421 (8)0.0477 (9)0.0610 (10)0.0127 (7)0.0082 (7)0.0108 (7)
C100.0331 (7)0.0566 (10)0.0660 (11)0.0028 (7)0.0024 (7)0.0262 (8)
C110.0364 (7)0.0375 (7)0.0644 (10)0.0053 (6)0.0075 (7)0.0210 (7)
C120.0345 (6)0.0257 (6)0.0450 (7)0.0006 (5)0.0095 (5)0.0118 (5)
O20.0458 (6)0.0227 (5)0.0677 (8)0.0004 (4)0.0063 (5)0.0039 (5)
C130.0402 (7)0.0268 (6)0.0403 (7)0.0018 (5)0.0062 (5)0.0094 (5)
O30.0838 (10)0.0372 (6)0.0517 (7)0.0105 (6)0.0301 (7)0.0116 (5)
O40.0702 (8)0.0307 (5)0.0453 (6)0.0010 (5)0.0188 (5)0.0164 (4)
C140.0785 (13)0.0520 (10)0.0517 (10)0.0078 (9)0.0171 (9)0.0264 (8)
C150.0932 (16)0.0557 (11)0.0642 (12)0.0218 (11)0.0058 (11)0.0351 (10)
C160.0368 (6)0.0207 (5)0.0507 (8)0.0016 (5)0.0126 (6)0.0121 (5)
C170.0508 (8)0.0217 (5)0.0483 (8)0.0047 (5)0.0154 (6)0.0082 (5)
O50.0715 (9)0.0265 (5)0.1037 (11)0.0072 (5)0.0159 (8)0.0272 (6)
O60.0534 (7)0.0329 (5)0.0741 (8)0.0180 (5)0.0064 (6)0.0185 (5)
C180.0722 (14)0.0501 (11)0.116 (2)0.0352 (10)0.0059 (13)0.0184 (12)
C190.0650 (14)0.0790 (17)0.154 (3)0.0359 (13)0.0172 (16)0.0439 (18)
Geometric parameters (Å, º) top
N1—C61.3761 (18)C12—O21.366 (2)
N1—C21.3859 (16)O2—H20.8200
N1—H10.8600C13—O31.2161 (19)
C2—O11.2319 (17)C13—O41.3299 (17)
C2—N31.3385 (19)O4—C141.456 (2)
N3—C41.4733 (18)C14—C151.490 (3)
N3—H30.8600C14—H14A0.9700
C4—C51.5172 (17)C14—H14B0.9700
C4—C71.5196 (19)C15—H15A0.9600
C4—H40.9800C15—H15B0.9600
C5—C61.3553 (19)C15—H15C0.9600
C5—C131.458 (2)C16—C171.505 (2)
C6—C161.5134 (17)C16—H16A0.9700
C7—C81.390 (2)C16—H16B0.9700
C7—C121.3997 (18)C17—O51.2047 (18)
C8—C91.393 (2)C17—O61.318 (2)
C8—H80.9300O6—C181.461 (2)
C9—C101.376 (3)C18—C191.428 (4)
C9—H90.9300C18—H18A0.9700
C10—C111.381 (3)C18—H18B0.9700
C10—H100.9300C19—H19A0.9600
C11—C121.391 (2)C19—H19B0.9600
C11—H110.9300C19—H19C0.9600
C6—N1—C2123.64 (12)C12—O2—H2109.5
C6—N1—H1118.2O3—C13—O4121.72 (14)
C2—N1—H1118.2O3—C13—C5123.83 (13)
O1—C2—N3124.46 (12)O4—C13—C5114.46 (12)
O1—C2—N1119.97 (13)C13—O4—C14118.33 (13)
N3—C2—N1115.52 (12)O4—C14—C15107.06 (16)
C2—N3—C4122.97 (11)O4—C14—H14A110.3
C2—N3—H3118.5C15—C14—H14A110.3
C4—N3—H3118.5O4—C14—H14B110.3
N3—C4—C5109.07 (11)C15—C14—H14B110.3
N3—C4—C7109.88 (11)H14A—C14—H14B108.6
C5—C4—C7113.81 (11)C14—C15—H15A109.5
N3—C4—H4108.0C14—C15—H15B109.5
C5—C4—H4108.0H15A—C15—H15B109.5
C7—C4—H4108.0C14—C15—H15C109.5
C6—C5—C13125.23 (12)H15A—C15—H15C109.5
C6—C5—C4119.05 (12)H15B—C15—H15C109.5
C13—C5—C4115.65 (11)C17—C16—C6116.62 (12)
C5—C6—N1119.39 (11)C17—C16—H16A108.1
C5—C6—C16127.74 (12)C6—C16—H16A108.1
N1—C6—C16112.86 (11)C17—C16—H16B108.1
C8—C7—C12118.38 (13)C6—C16—H16B108.1
C8—C7—C4122.55 (12)H16A—C16—H16B107.3
C12—C7—C4118.97 (12)O5—C17—O6124.41 (16)
C7—C8—C9121.11 (15)O5—C17—C16122.19 (16)
C7—C8—H8119.4O6—C17—C16113.38 (12)
C9—C8—H8119.4C17—O6—C18116.16 (15)
C10—C9—C8119.64 (16)C19—C18—O6109.59 (19)
C10—C9—H9120.2C19—C18—H18A109.8
C8—C9—H9120.2O6—C18—H18A109.8
C9—C10—C11120.39 (15)C19—C18—H18B109.8
C9—C10—H10119.8O6—C18—H18B109.8
C11—C10—H10119.8H18A—C18—H18B108.2
C10—C11—C12120.09 (15)C18—C19—H19A109.5
C10—C11—H11120.0C18—C19—H19B109.5
C12—C11—H11120.0H19A—C19—H19B109.5
O2—C12—C11122.69 (13)C18—C19—H19C109.5
O2—C12—C7116.89 (13)H19A—C19—H19C109.5
C11—C12—C7120.39 (15)H19B—C19—H19C109.5
C6—N1—C2—O1168.78 (13)C8—C9—C10—C110.7 (3)
C6—N1—C2—N38.8 (2)C9—C10—C11—C121.0 (3)
O1—C2—N3—C4162.57 (13)C10—C11—C12—O2177.68 (15)
N1—C2—N3—C419.99 (19)C10—C11—C12—C70.3 (2)
C2—N3—C4—C536.47 (17)C8—C7—C12—O2178.66 (14)
C2—N3—C4—C788.92 (15)C4—C7—C12—O22.32 (19)
N3—C4—C5—C627.05 (17)C8—C7—C12—C110.5 (2)
C7—C4—C5—C696.02 (15)C4—C7—C12—C11175.82 (13)
N3—C4—C5—C13155.91 (12)C6—C5—C13—O3179.07 (16)
C7—C4—C5—C1381.02 (15)C4—C5—C13—O34.1 (2)
C13—C5—C6—N1179.52 (13)C6—C5—C13—O40.8 (2)
C4—C5—C6—N13.74 (19)C4—C5—C13—O4176.03 (12)
C13—C5—C6—C161.2 (2)O3—C13—O4—C140.9 (3)
C4—C5—C6—C16177.95 (12)C5—C13—O4—C14179.27 (15)
C2—N1—C6—C516.6 (2)C13—O4—C14—C15175.54 (17)
C2—N1—C6—C16161.95 (13)C5—C6—C16—C1771.9 (2)
N3—C4—C7—C893.30 (16)N1—C6—C16—C17109.73 (15)
C5—C4—C7—C829.33 (19)C6—C16—C17—O5163.22 (15)
N3—C4—C7—C1282.87 (15)C6—C16—C17—O618.42 (19)
C5—C4—C7—C12154.50 (12)O5—C17—O6—C183.9 (3)
C12—C7—C8—C90.8 (2)C16—C17—O6—C18174.44 (17)
C4—C7—C8—C9175.40 (15)C17—O6—C18—C19164.6 (2)
C7—C8—C9—C100.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.861.972.788 (2)159
O2—H2···O3ii0.821.952.772 (2)177
N3—H3···O5iii0.862.203.0014 (18)155
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC17H20N2O6
Mr348.35
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.783 (2), 9.336 (3), 11.415 (4)
α, β, γ (°)71.47 (4), 82.78 (5), 75.05 (4)
V3)856.5 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5849, 4950, 3935
Rint0.040
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.174, 1.04
No. of reflections4950
No. of parameters229
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.32

Computer programs: XSCANS (Siemens, 1991), XSCANS (Siemens, 1991), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
N1—C61.3761 (18)N3—C41.4733 (18)
N1—C21.3859 (16)C4—C51.5172 (17)
C2—O11.2319 (17)C5—C61.3553 (19)
C2—N31.3385 (19)
C5—C4—C7—C829.33 (19)C5—C6—C16—C1771.9 (2)
C6—C5—C13—O3179.07 (16)C6—C16—C17—O618.42 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.861.972.788 (2)158.6
O2—H2···O3ii0.821.952.772 (2)177.1
N3—H3···O5iii0.862.203.0014 (18)154.9
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z+1; (iii) x, y1, z.
 

Acknowledgements

This work was supported by the Grant Agency of the Slovak Republic, project Nos. 1/4298/07 and 1/4299/07.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAzizian, J., Mohammadi, A. A., Kohshari, M., Karimi, A. R. & Mohammadizadeh, M. R. (2007). J. Heterocycl. Chem. 44, 455–458.  CrossRef CAS Google Scholar
First citationEndow, S. A. & Baker, D. S. (2003). Annu. Rev. Physiol. 65, 161–180.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKettmann, V. & Svetlík, J. (1997). Acta Cryst. C53, 1493–1495.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationQing-Fang, C., Xu, X.-Y., Bao, J.-Y. & Zhang, C.-F. (2007). Acta Cryst. E63, o2391–o2392.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1991). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSvětlík, J., Hanus, V. & Bella, J. (1991). J. Chem. Res. (S), pp. 4–5.  Google Scholar
First citationWood, K. W. & Bergnes, G. (2004). Annu. Rep. Med. Chem. 39, 173–183.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds