organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-tert-butyl N,N′-(octa­hydro­penta­lene-2,5-di­yl)dicarbamate

aDivision of Organic Chemistry, National Chemical Laboratory, Pashan Road, Pune 411 008, India, and bCenter for Materials Characterization, National Chemical Laboratory, Pashan Road, Pune 411 008, India
*Correspondence e-mail: rg.gonnade@ncl.res.in

(Received 8 May 2008; accepted 16 May 2008; online 24 May 2008)

In the molecule of the title compound, C18H32N2O4, the central bicyclo­[3.3.0]octane (octa­hydro­penta­lene) has a rigid ring junction. Both rings of the bicyclo­[3.3.0]octane unit adopt an envelope conformation, and the flexible tert-butyl­carbamoyl side chains each have an extended conformation. Such a constrained bicyclo­[3.3.0]octane aliphatic template is of inter­est with respect to the design of novel self-assembling motifs. Mol­ecules related by c-glide symmetry are linked via inter­molecular N—H⋯O hydrogen bonds, forming a two-dimensional layer structure. Neighboring layers are weakly associated along the a axis due to the close approach of the tert-butyl­carbamoyl groups (2.55 Å).

Related literature

For related literature, see: Bertz et al. (1982[Bertz, S. H., Rihs, G. & Woodward, R. B. (1982). Tetrahedron, 38, 63-70.]); Kendhale et al. (2008[Kendhale, A. M., Gonnade, R., Rajamohanan, P. R. & Sanjayan, G. J. (2008). Tetrahedron Lett. 49, 3056-3059.]); Yates et al. (1960[Yates, P., Smakula, E. & French, G. B. (1960). J. Am. Chem. Soc. 82, 6347-6353.]); Yeo et al. (2006[Yeo, S. J., Jeong, K. S., Han, H., Kimb, J. & Jeong, N. (2006). Tetrahedron Lett. 47, 7389-7393.]).

[Scheme 1]

Experimental

Crystal data
  • C18H32N2O4

  • Mr = 340.46

  • Monoclinic, P 2/c

  • a = 33.161 (17) Å

  • b = 6.060 (3) Å

  • c = 9.926 (5) Å

  • β = 95.594 (9)°

  • V = 1985.2 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 297 (2) K

  • 0.64 × 0.13 × 0.08 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.951, Tmax = 0.994

  • 9395 measured reflections

  • 3479 independent reflections

  • 2863 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.133

  • S = 1.08

  • 3479 reflections

  • 271 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3i 0.86 2.11 2.954 (3) 167
N1—H1⋯O1ii 0.86 2.19 3.022 (3) 162
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) [x, -y+2, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2003[Bruker (2003). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The skeleton of bicyclo[3.3.0]octane is interesting because it has a rigid ring junction as well as conformationally flexible side groups (Bertz et al., 1982; Yates et al., 1960). Depending on the substituents, it can adopt one of three different conformations in a given circumstance (Yeo et al., 2006). In the context of our interest in extending the applicability of bicyclo[3.3.0]octane as a self-assembling motif (Kendhale et al., 2008), the title compound (I) has been synthesized and here we report its crystal structure.

The two five-membered rings of the bicyclo[3.3.0]octane subunit adopt an exo/endo envelope conformation, while the flexible tert-Butylcarbamoyl group takes an extended conformation (Fig. 1).

In the crystal, molecules related by c-glide symmetry are linked via intermolecular N—H···O hydrogen bonds (Table 1) forming a layered arrangement (Fig.2). These layers are weakly associated along the a axis due to the close approach of the bulkier tert-butylcarbamoy group (2.55 Å).

Related literature top

For related literature, see: Bertz et al. (1982); Kendhale et al. (2008); Yates et al. (1960); Yeo et al. (2006).

Experimental top

Tetramethylbicyclo[3.3.0]octane-3,7-dione-2,4,6,8-tetracarboxylate, bicyclo[3.3.0]octane-3,7-dione and 2, 5-dihydroxy-bicyclo[3.3.0]octane were prepared according to the literature procedure (Bertz et al., 1982; Yeo et al., 2006). The 2, 5-dihydroxy-bicyclo[3.3.0]octane (3.86 g, 27.183 mmol) was treated with methanesulfonyl chloride (6.31 ml, 9.34 g, 81.549 mmol) and triethyl amine (11.36 ml, 8.25 g, 81.549 mmol) in DCM (50 ml) at room temperature for 12 h to obtain 2,5-dimethanesulfonyloxy bicyclo[3.3.0]octane. Nucleophilic displacement of 2,5-dimethanesulfonyloxy bicyclo[3.3.0]octane (6 g, 20.134 mmol) by sodium azide (13.08 g, 201.34 mmol) in DMF (40 ml) at 343 K for 24 h, delivered 2,5-diazido-bicyclo[3.3.0]octane. The 2,5-diazido-bicyclo[3.3.0]octane (0.5 g, 2.6041 mmol) was hydrogenated in the presence of Pd/c-methanol (20 ml) system, and in situ protection with tert-Butyl Dicarbonate (Boc)2O, (1.7 g, 7.812 mmol), afforded the required 5-tert-Butoxycarbonylamino-octahydro-pentalen-2-yl)-carbamic acid tert-butyl ester (0.61 g, 69%). Colourless needles suitable for X-ray diffraction were obtained by slow evaporation of a solution in methanol-ethyl acetate (1:4) mixture at room temperature.

Refinement top

The H atoms bonded to bicyclo[3.3.0]octane unit were located in a difference Fourier map and refined isotropically. Other H atoms bonded to N atoms and tert-butyl group were placed in geometrically idealized positions with N—H = 0.86 Å (for NH) and C—H = 0.96 Å (for methyl H) and constrained to ride on their parent atoms with Uiso(H) = xUeq(C,N), where x = 1.2 for NH amd x = 1.5 for methyl H.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Molecular packing viewed down the b axis, showing the layered arrangement of the molecules linked via N—H···O hydrogen bonds.
Di-tert-butyl N,N'-(octahydropentalene-2,5-diyl)dicarbamate top
Crystal data top
C18H32N2O4F(000) = 744
Mr = 340.46Dx = 1.139 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 3113 reflections
a = 33.161 (17) Åθ = 2.5–25.4°
b = 6.060 (3) ŵ = 0.08 mm1
c = 9.926 (5) ÅT = 297 K
β = 95.594 (9)°Needle, colourless
V = 1985.2 (18) Å30.64 × 0.13 × 0.08 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
3479 independent reflections
Radiation source: fine-focus sealed tube2863 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 25.0°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 3929
Tmin = 0.951, Tmax = 0.994k = 77
9395 measured reflectionsl = 1011
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: geom, difmap for bicyclo unit
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0452P)2 + 0.984P]
where P = (Fo2 + 2Fc2)/3
3479 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C18H32N2O4V = 1985.2 (18) Å3
Mr = 340.46Z = 4
Monoclinic, P2/cMo Kα radiation
a = 33.161 (17) ŵ = 0.08 mm1
b = 6.060 (3) ÅT = 297 K
c = 9.926 (5) Å0.64 × 0.13 × 0.08 mm
β = 95.594 (9)°
Data collection top
Bruker SMART APEX
diffractometer
3479 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
2863 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.994Rint = 0.026
9395 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.17 e Å3
3479 reflectionsΔρmin = 0.14 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.14804 (5)1.1114 (3)0.46136 (15)0.0640 (5)
O20.10387 (4)1.1306 (3)0.62262 (15)0.0567 (4)
O30.35645 (5)0.4521 (3)0.36953 (14)0.0614 (5)
O40.39622 (4)0.3724 (3)0.56279 (14)0.0559 (4)
N10.16176 (5)0.9541 (3)0.66747 (17)0.0496 (5)
H10.15250.92740.74380.060*
N20.34243 (5)0.5850 (3)0.57189 (16)0.0460 (5)
H20.34960.58920.65750.055*
C10.20180 (6)0.8722 (4)0.6444 (2)0.0421 (5)
C20.23645 (7)0.9724 (4)0.7371 (3)0.0526 (6)
C30.27303 (6)0.8282 (3)0.7141 (2)0.0395 (5)
C40.25453 (6)0.6036 (3)0.6631 (2)0.0396 (5)
C50.20867 (7)0.6266 (4)0.6674 (3)0.0485 (5)
C60.29869 (7)0.9084 (4)0.6030 (2)0.0471 (5)
C70.30653 (6)0.7070 (4)0.5165 (2)0.0439 (5)
C80.26760 (7)0.5747 (4)0.5201 (2)0.0437 (5)
C90.13895 (6)1.0694 (4)0.5737 (2)0.0450 (5)
C100.07445 (7)1.2714 (4)0.5428 (2)0.0522 (6)
C110.05791 (8)1.1566 (5)0.4146 (3)0.0763 (8)
H11A0.07881.14490.35450.114*
H11B0.03561.23990.37160.114*
H11C0.04871.01160.43600.114*
C120.04103 (8)1.2937 (6)0.6378 (3)0.0875 (10)
H12A0.03021.15050.65470.131*
H12B0.01981.38640.59650.131*
H12C0.05211.35820.72180.131*
C130.09321 (10)1.4901 (5)0.5166 (4)0.0927 (10)
H13A0.10681.54630.59940.139*
H13B0.07251.59170.48250.139*
H13C0.11241.47240.45110.139*
C140.36414 (6)0.4672 (4)0.4910 (2)0.0415 (5)
C150.42463 (7)0.2332 (4)0.4955 (2)0.0554 (6)
C160.45595 (10)0.1763 (7)0.6134 (3)0.1111 (14)
H16A0.46670.30980.65470.167*
H16B0.47750.09250.58060.167*
H16C0.44330.09080.67910.167*
C170.40278 (10)0.0335 (5)0.4356 (4)0.0995 (12)
H17A0.38820.03600.50300.149*
H17B0.42210.06860.40510.149*
H17C0.38410.07750.36040.149*
C180.44483 (8)0.3633 (5)0.3914 (3)0.0732 (8)
H18A0.42550.39420.31530.110*
H18B0.46680.27900.36180.110*
H18C0.45500.49940.43060.110*
H30.2897 (6)0.808 (3)0.798 (2)0.043 (6)*
H40.2652 (6)0.486 (4)0.720 (2)0.050 (6)*
H70.3117 (6)0.747 (3)0.422 (2)0.047 (6)*
H1A0.2045 (6)0.908 (3)0.555 (2)0.045 (6)*
H2A0.2412 (8)1.128 (5)0.717 (3)0.074 (8)*
H5A0.1936 (8)0.540 (5)0.598 (3)0.080 (9)*
H6A0.3249 (8)0.982 (4)0.643 (3)0.070 (7)*
H8A0.2709 (6)0.416 (4)0.495 (2)0.044 (6)*
H2B0.2287 (8)0.959 (4)0.836 (3)0.073 (8)*
H5B0.2002 (7)0.592 (4)0.758 (2)0.052 (6)*
H6B0.2824 (7)1.009 (4)0.544 (2)0.058 (7)*
H8B0.2473 (6)0.636 (3)0.456 (2)0.038 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0590 (10)0.0951 (14)0.0394 (9)0.0194 (9)0.0125 (7)0.0133 (9)
O20.0453 (9)0.0790 (12)0.0467 (9)0.0222 (8)0.0095 (7)0.0101 (8)
O30.0549 (10)0.0956 (13)0.0333 (9)0.0147 (9)0.0019 (7)0.0137 (8)
O40.0495 (9)0.0773 (11)0.0413 (8)0.0235 (8)0.0055 (7)0.0050 (8)
N10.0437 (10)0.0693 (13)0.0377 (9)0.0157 (9)0.0131 (8)0.0096 (9)
N20.0442 (10)0.0644 (12)0.0296 (8)0.0127 (9)0.0051 (7)0.0014 (8)
C10.0410 (11)0.0513 (13)0.0353 (11)0.0063 (10)0.0095 (9)0.0038 (10)
C20.0498 (13)0.0465 (14)0.0628 (15)0.0001 (11)0.0122 (11)0.0151 (12)
C30.0394 (11)0.0432 (12)0.0356 (11)0.0004 (9)0.0022 (9)0.0018 (9)
C40.0439 (12)0.0335 (11)0.0415 (11)0.0030 (9)0.0049 (9)0.0040 (9)
C50.0428 (12)0.0478 (13)0.0559 (14)0.0051 (10)0.0092 (11)0.0022 (11)
C60.0429 (12)0.0424 (12)0.0569 (14)0.0003 (10)0.0093 (10)0.0061 (11)
C70.0412 (11)0.0570 (14)0.0341 (11)0.0087 (10)0.0072 (9)0.0072 (10)
C80.0448 (12)0.0450 (13)0.0406 (12)0.0084 (10)0.0001 (9)0.0078 (10)
C90.0416 (12)0.0544 (13)0.0395 (12)0.0069 (10)0.0058 (9)0.0011 (10)
C100.0436 (12)0.0594 (14)0.0523 (13)0.0136 (11)0.0024 (10)0.0019 (11)
C110.0626 (16)0.089 (2)0.0735 (18)0.0099 (15)0.0139 (14)0.0117 (16)
C120.0612 (17)0.122 (3)0.0797 (19)0.0425 (18)0.0100 (14)0.0030 (19)
C130.079 (2)0.0664 (19)0.128 (3)0.0028 (16)0.0131 (19)0.0090 (19)
C140.0361 (11)0.0540 (13)0.0348 (11)0.0010 (10)0.0044 (8)0.0033 (9)
C150.0534 (14)0.0604 (15)0.0551 (13)0.0157 (12)0.0195 (11)0.0013 (12)
C160.096 (2)0.159 (4)0.081 (2)0.084 (2)0.0219 (18)0.025 (2)
C170.104 (2)0.0595 (18)0.145 (3)0.0050 (17)0.063 (2)0.018 (2)
C180.0549 (15)0.0820 (19)0.0867 (19)0.0037 (14)0.0270 (14)0.0087 (16)
Geometric parameters (Å, º) top
O1—C91.210 (3)C7—C81.523 (3)
O2—C91.355 (2)C7—H71.00 (2)
O2—C101.469 (3)C8—H8A1.00 (2)
O3—C141.211 (2)C8—H8B0.95 (2)
O4—C141.350 (2)C10—C131.497 (4)
O4—C151.472 (3)C10—C111.506 (3)
N1—C91.337 (3)C10—C121.530 (3)
N1—C11.456 (3)C11—H11A0.9600
N1—H10.8600C11—H11B0.9600
N2—C141.336 (3)C11—H11C0.9600
N2—C71.462 (3)C12—H12A0.9600
N2—H20.8600C12—H12B0.9600
C1—C51.520 (3)C12—H12C0.9600
C1—C21.526 (3)C13—H13A0.9600
C1—H1A0.92 (2)C13—H13B0.9600
C2—C31.530 (3)C13—H13C0.9600
C2—H2A0.98 (3)C15—C171.503 (4)
C2—H2B1.04 (3)C15—C181.508 (3)
C3—C61.536 (3)C15—C161.527 (4)
C3—C41.557 (3)C16—H16A0.9600
C3—H30.96 (2)C16—H16B0.9600
C4—C51.532 (3)C16—H16C0.9600
C4—C81.534 (3)C17—H17A0.9600
C4—H40.96 (2)C17—H17B0.9600
C5—H5A0.96 (3)C17—H17C0.9600
C5—H5B0.99 (2)C18—H18A0.9600
C6—C71.529 (3)C18—H18B0.9600
C6—H6A1.02 (3)C18—H18C0.9600
C6—H6B0.97 (2)
C9—O2—C10120.93 (17)H8A—C8—H8B107.1 (17)
C14—O4—C15120.70 (16)O1—C9—N1125.17 (19)
C9—N1—C1122.09 (17)O1—C9—O2124.89 (19)
C9—N1—H1119.0N1—C9—O2109.93 (18)
C1—N1—H1119.0O2—C10—C13110.0 (2)
C14—N2—C7120.73 (17)O2—C10—C11110.8 (2)
C14—N2—H2119.6C13—C10—C11112.7 (2)
C7—N2—H2119.6O2—C10—C12101.63 (18)
N1—C1—C5115.83 (18)C13—C10—C12111.5 (2)
N1—C1—C2114.47 (18)C11—C10—C12109.6 (2)
C5—C1—C2101.90 (19)C10—C11—H11A109.5
N1—C1—H1A104.2 (13)C10—C11—H11B109.5
C5—C1—H1A110.1 (13)H11A—C11—H11B109.5
C2—C1—H1A110.4 (13)C10—C11—H11C109.5
C1—C2—C3104.11 (18)H11A—C11—H11C109.5
C1—C2—H2A112.7 (16)H11B—C11—H11C109.5
C3—C2—H2A111.8 (16)C10—C12—H12A109.5
C1—C2—H2B107.3 (14)C10—C12—H12B109.5
C3—C2—H2B111.8 (14)H12A—C12—H12B109.5
H2A—C2—H2B109 (2)C10—C12—H12C109.5
C2—C3—C6115.44 (19)H12A—C12—H12C109.5
C2—C3—C4104.78 (17)H12B—C12—H12C109.5
C6—C3—C4105.77 (17)C10—C13—H13A109.5
C2—C3—H3110.0 (12)C10—C13—H13B109.5
C6—C3—H3110.2 (12)H13A—C13—H13B109.5
C4—C3—H3110.3 (13)C10—C13—H13C109.5
C5—C4—C8113.99 (19)H13A—C13—H13C109.5
C5—C4—C3105.79 (17)H13B—C13—H13C109.5
C8—C4—C3105.21 (17)O3—C14—N2124.39 (19)
C5—C4—H4111.3 (13)O3—C14—O4124.89 (19)
C8—C4—H4109.9 (13)N2—C14—O4110.70 (17)
C3—C4—H4110.4 (13)O4—C15—C17109.6 (2)
C1—C5—C4102.69 (17)O4—C15—C18111.0 (2)
C1—C5—H5A111.6 (17)C17—C15—C18112.3 (2)
C4—C5—H5A112.2 (16)O4—C15—C16101.48 (19)
C1—C5—H5B106.9 (13)C17—C15—C16112.8 (3)
C4—C5—H5B112.0 (13)C18—C15—C16109.2 (2)
H5A—C5—H5B111 (2)C15—C16—H16A109.5
C7—C6—C3106.68 (18)C15—C16—H16B109.5
C7—C6—H6A112.4 (14)H16A—C16—H16B109.5
C3—C6—H6A111.9 (14)C15—C16—H16C109.5
C7—C6—H6B105.8 (14)H16A—C16—H16C109.5
C3—C6—H6B108.6 (14)H16B—C16—H16C109.5
H6A—C6—H6B111 (2)C15—C17—H17A109.5
N2—C7—C8112.69 (19)C15—C17—H17B109.5
N2—C7—C6111.67 (18)H17A—C17—H17B109.5
C8—C7—C6102.47 (17)C15—C17—H17C109.5
N2—C7—H7105.5 (12)H17A—C17—H17C109.5
C8—C7—H7111.8 (12)H17B—C17—H17C109.5
C6—C7—H7112.9 (12)C15—C18—H18A109.5
C7—C8—C4106.16 (17)C15—C18—H18B109.5
C7—C8—H8A112.7 (12)H18A—C18—H18B109.5
C4—C8—H8A112.7 (12)C15—C18—H18C109.5
C7—C8—H8B109.0 (12)H18A—C18—H18C109.5
C4—C8—H8B109.2 (12)H18B—C18—H18C109.5
C9—N1—C1—C5126.3 (2)C3—C6—C7—C834.0 (2)
C9—N1—C1—C2115.6 (2)N2—C7—C8—C483.2 (2)
N1—C1—C2—C3168.58 (18)C6—C7—C8—C436.9 (2)
C5—C1—C2—C342.8 (2)C5—C4—C8—C7141.38 (19)
C1—C2—C3—C691.7 (2)C3—C4—C8—C725.9 (2)
C1—C2—C3—C424.2 (2)C1—N1—C9—O12.5 (4)
C2—C3—C4—C53.1 (2)C1—N1—C9—O2178.18 (19)
C6—C3—C4—C5125.53 (19)C10—O2—C9—O14.6 (4)
C2—C3—C4—C8117.87 (19)C10—O2—C9—N1176.08 (19)
C6—C3—C4—C84.6 (2)C9—O2—C10—C1361.7 (3)
N1—C1—C5—C4169.18 (18)C9—O2—C10—C1163.6 (3)
C2—C1—C5—C444.3 (2)C9—O2—C10—C12180.0 (2)
C8—C4—C5—C185.8 (2)C7—N2—C14—O30.3 (3)
C3—C4—C5—C129.3 (2)C7—N2—C14—O4178.76 (18)
C2—C3—C6—C7133.66 (19)C15—O4—C14—O31.7 (3)
C4—C3—C6—C718.3 (2)C15—O4—C14—N2179.80 (19)
C14—N2—C7—C893.1 (2)C14—O4—C15—C1763.5 (3)
C14—N2—C7—C6152.15 (19)C14—O4—C15—C1861.1 (3)
C3—C6—C7—N286.9 (2)C14—O4—C15—C16177.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.862.112.954 (3)167
N1—H1···O1ii0.862.193.022 (3)162
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y+2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H32N2O4
Mr340.46
Crystal system, space groupMonoclinic, P2/c
Temperature (K)297
a, b, c (Å)33.161 (17), 6.060 (3), 9.926 (5)
β (°) 95.594 (9)
V3)1985.2 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.64 × 0.13 × 0.08
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.951, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
9395, 3479, 2863
Rint0.026
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.133, 1.08
No. of reflections3479
No. of parameters271
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.14

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.862.112.954 (3)167.0
N1—H1···O1ii0.862.193.022 (3)162.2
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y+2, z+1/2.
 

Acknowledgements

AMK is the recipient of a Senior Research Fellowship from the Council of Scientific and Industrial Research (CSIR), New Delhi, India.

References

First citationBertz, S. H., Rihs, G. & Woodward, R. B. (1982). Tetrahedron, 38, 63–70.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2003). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKendhale, A. M., Gonnade, R., Rajamohanan, P. R. & Sanjayan, G. J. (2008). Tetrahedron Lett. 49, 3056–3059.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYates, P., Smakula, E. & French, G. B. (1960). J. Am. Chem. Soc. 82, 6347–6353.  CrossRef CAS Web of Science Google Scholar
First citationYeo, S. J., Jeong, K. S., Han, H., Kimb, J. & Jeong, N. (2006). Tetrahedron Lett. 47, 7389–7393.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds