inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Dipraseodymium(III) pyroborate molybdate(VI), Pr2(B2O5)(MoO4)

aInstitut für Kristallographie, Universität zu Köln, Zülpicher Strasse 49b, D-50674 Köln, Germany
*Correspondence e-mail: peter.held@uni-koeln.de

(Received 1 April 2008; accepted 15 April 2008; online 3 May 2008)

Single crystals of triclinic Pr2(B2O5)(MoO4) were prepared from an incongruently melting flux in the system Pr2O3–MoO3–B2O3 in a platinum crucible in an atmosphere of air. In the crystal structure, distorted edge-sharing [PrO8] square anti­prisms form a three-dimensional framework. These are further linked by isolated [MoO4] tetra­hedra and isolated pyroborate groups [B2O5], the latter consisting of two independent trigonal [BO3] groups sharing one O atom. The [MoO4] tetra­hedra and the [B2O5] groups are arranged in alternating layers parallel to the ab plane.

Related literature

A rough investigation of the ternary systems RE2O3—B2O3—MoO3 (RE = rare earth element) has been reported by Lysanova et al. (1983[Lysanova, G. V., Dzhurinskii, B. F., Komova, M. G. & Tananaev, I. V. (1983). Russ. J. Inorg. Chem. 28, 1344-1349.]) and Dzhurinskii & Lysanova (1998[Dzhurinskii, B. F. & Lysanova, G. V. (1998). Russ. J. Inorg. Chem. 43, 1931-1940.]). X-ray powder diffraction data of RE2(B2O5)(MoO4) compounds with RE = Pr, Nd, Sm, Eu, Gd and Tb were reported by Lysanova et al. (1983[Lysanova, G. V., Dzhurinskii, B. F., Komova, M. G. & Tananaev, I. V. (1983). Russ. J. Inorg. Chem. 28, 1344-1349.]). Geometric parameters of [BO3] groups were reviewed by Zobetz (1982[Zobetz, E. (1982). Z. Kristallogr. 160, 81-92.]).

Experimental

Crystal data
  • Pr2(B2O5)(MoO4)

  • Mr = 543.38

  • Triclinic, [P \overline 1]

  • a = 5.2806 (5) Å

  • b = 7.0278 (5) Å

  • c = 10.5824 (9) Å

  • α = 74.557 (6)°

  • β = 76.307 (7)°

  • γ = 73.065 (6)°

  • V = 356.69 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 15.20 mm−1

  • T = 291 (2) K

  • 0.20 × 0.15 × 0.12 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (MolEN; Fair, 1990[Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.]) Tmin = 0.296, Tmax = 0.999 (expected range = 0.048–0.161)

  • 4733 measured reflections

  • 2155 independent reflections

  • 1983 reflections with I > 2σ(I)

  • Rint = 0.019

  • 3 standard reflections every 100 reflections intensity decay: 1.7%

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.082

  • S = 1.13

  • 2155 reflections

  • 127 parameters

  • Δρmax = 2.55 e Å−3

  • Δρmin = −1.73 e Å−3

Table 1
Selected bond lengths (Å)

Pr1—O4 2.370 (3)
Pr1—O3i 2.430 (3)
Pr1—O1i 2.450 (3)
Pr1—O5ii 2.461 (3)
Pr1—O7 2.480 (3)
Pr1—O2 2.529 (3)
Pr1—O2iii 2.557 (3)
Pr1—O6iv 2.610 (3)
Pr2—O8 2.364 (3)
Pr2—O8v 2.375 (3)
Pr2—O4vi 2.456 (3)
Pr2—O3 2.506 (3)
Pr2—O1 2.513 (3)
Pr2—O3vii 2.585 (3)
Pr2—O1viii 2.585 (3)
Pr2—O6ix 2.645 (4)
Mo—O5 1.748 (3)
Mo—O7 1.748 (3)
Mo—O6 1.782 (4)
Mo—O2x 1.803 (3)
B1—O8 1.345 (6)
B1—O4 1.370 (6)
B1—O9 1.387 (6)
B2—O9xi 1.373 (6)
B2—O1xi 1.378 (6)
B2—O3 1.384 (6)
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+1, -z-1; (iii) -x+1, -y, -z-1; (iv) x, y-1, z; (v) -x, -y-1, -z; (vi) -x+1, -y-1, -z; (vii) -x, -y-2, -z; (viii) -x+1, -y-2, -z; (ix) -x, -y, -z; (x) -x, -y+1, -z-1; (xi) x-1, y, z.

Data collection: MACH3 (Enraf–Nonius, 1993[Enraf-Nonius (1993). MACH3 Server Software. OpenVMS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: MACH3; data reduction: MolEN (Fair, 1990[Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ATOMS (Dowty, 2002[Dowty, E. (2002). ATOMS. Shape Software, Kingsport, Tennessee, USA.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

The existence of several compounds in the systems RE2O3— B2O3—MoO3 (RE = rare earth element) has been studied by Lysanova et al. (1983) by means of X-ray powder diffraction data and was partly corroborated by Dzhurinskii & Lysanova (1998). Among these pseudo-ternary compounds, rare earth pyroborate molybdates of the type RE2(B2O5)(MoO4) were reported for RE = Pr - Tb (excluding Pm) (Lysanova et al., 1983), all with incongruent melting behaviour. However, no structural information about these compounds has been given so far. In the course of our investigations of the systems RE2O3—B2O3MO3 (M = Mo, W) we grew single crystals of the Pr-compound Pr2(B2O5)(MoO4), (I), as a representative of the rare earth pyroborate molybdate series.

In the crystal structure of (I) the two symmetrically non-equivalent Pr atoms show a distinct eightfold coordination by oxygen atoms, both with a slightly distorted square antiprismatic coordination polyhedron, and with Pr—O bond lengths ranging from 2.370 (3) Å to 2.610 (3) Å for Pr1, and from 2.364 (3) Å to 2.645 (4) Å for Pr2 (Fig. 2). The [PrO8] polyhedra are connected via common edges, where Pr2 is connected to six neighbouring [PrO8] polyhedra with Pr—Pr distances ranging from 3.9237 (5) Å to 4.1242 (5) Å, while Pr1 is connected to only four [PrO8] polyhedra with Pr—Pr distances between 3.9702 (6) Å and 4.1583 (6) Å. From the different connection schemes of the two Pr atoms a three-dimensional framework of [PrO8] polyhedra with interstitial voids results (Fig. 1). In these voids nearly undistorted and isolated [MoO4] tetrahedra, that are arranged in layers parallel to the ab plane are positioned (Fig. 1).

The two crystallographically different B atoms are threefold coordinated by O atoms. The two [BO3] groups are linked by a common oxygen ligand O9 (see Fig. 2), thus forming isolated pyroborate groups [B2O5]. The pyroborate groups are bent with an angle (B1— O9— B2) of 125.1 (4)°, while the individual [BO3] groups show no unusual distortions (Zobetz, 1982). The oxygen ligands of the pyroborate group (apart from the bridging oxygen O9, see Fig. 2) each belong either to two different [PrO8] polyhedra (being simultaneously ligands of B1) or to three different [PrO8] polyhedra (being simultaneously ligands of B2). All [B2O5] groups are arranged in double layers that extend parallel to the ab-plane and alternate with layers of [MoO4] tetrahedra (see Fig. 1).

Related literature top

A rough investigation of the ternary systems RE2O3—B2O3—MoO3 (RE = rare earth element) has been reported by Lysanova et al. (1983) and Dzhurinskii & Lysanova (1998). X-ray powder diffraction data of RE2(B2O5)(MoO4) compounds with RE = Pr, Nd, Sm, Eu, Gd and Tb are given by Lysanova et al. (1983). Geometric parameters of [BO3] groups were reviewed by Zobetz (1982).

Experimental top

Single crystals of (I) were obtained by growth from the melt. A homogenized powder mixture of Pr4O11 (99.9%, Alfa Aesar), B2O3 (99.98%, Alfa Aesar) and MoO3 (99.95%, Alfa Aesar) in a molar ratio of 1: 3.33: 7 was heated in a covered platinum crucible in air atmosphere to 1423 K and subsequently cooled at a rate of 3 K h-1 to 1173 K. Transparent, light-green prismatic single crystals of the title compound were separated mechanically from the fine-grained praseodymium borate molybdate matrix.

Refinement top

The final difference Fourier map indicated a positive maximum at a distance of 0.76 Å from Pr1 and a negative maximum at a distance of 0.85 Å from the same atom.

Computing details top

Data collection: MACH3 (Enraf–Nonius, 1993); cell refinement: MACH3 (Enraf–Nonius, 1993); data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS (Dowty, 2002); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. : View of the structure of (I) approximately along the a-axis, emphasizing coordination surroundings of the cations. Pr atoms are shown as large red spheres, Mo atoms as smaller orange spheres, and B atoms as small green spheres. O atoms are indicated by the corners of the coordination polyhedra and are not drawn.
[Figure 2] Fig. 2. : Fraction of the structure of (I) with atomic labelling scheme in a projection approximately along the a-axis. The atoms are drawn as displacement ellipsoids at the 50% probability level. [Symmetry codes: (i) x, y + 1, z; (ii) -x + 1, -y + 1, -z - 1; (iii) -x + 1, -y, (iv) x, y - 1, z; -z - 1; (x) -x, -y, -z; (xii) x + 1, y, z; (xiii) x + 1, y + 1, z; (xiv) -x + 1, -y - 1, -z; (xv) x + 1, y - 1, z.]
Dipraseodymium(III) pyroborate molybdate(VI) top
Crystal data top
Pr2(B2O5)(MoO4)Z = 2
Mr = 543.38F(000) = 484
Triclinic, P1Dx = 5.059 Mg m3
a = 5.2806 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.0278 (5) ÅCell parameters from 25 reflections
c = 10.5824 (9) Åθ = 20.8–24.2°
α = 74.557 (6)°µ = 15.20 mm1
β = 76.307 (7)°T = 291 K
γ = 73.065 (6)°Prism, light green
V = 356.69 (5) Å30.20 × 0.15 × 0.12 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1983 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
Graphite monochromatorθmax = 30.4°, θmin = 3.1°
ω/2θ scansh = 77
Absorption correction: ψ scan
(MolEN; Fair, 1990)
k = 1010
Tmin = 0.296, Tmax = 0.999l = 1515
4733 measured reflections3 standard reflections every 100 reflections
2155 independent reflections intensity decay: 1.7%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0533P)2 + 1.1726P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.082(Δ/σ)max < 0.001
S = 1.13Δρmax = 2.55 e Å3
2155 reflectionsΔρmin = 1.73 e Å3
127 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0319 (13)
Crystal data top
Pr2(B2O5)(MoO4)γ = 73.065 (6)°
Mr = 543.38V = 356.69 (5) Å3
Triclinic, P1Z = 2
a = 5.2806 (5) ÅMo Kα radiation
b = 7.0278 (5) ŵ = 15.20 mm1
c = 10.5824 (9) ÅT = 291 K
α = 74.557 (6)°0.20 × 0.15 × 0.12 mm
β = 76.307 (7)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1983 reflections with I > 2σ(I)
Absorption correction: ψ scan
(MolEN; Fair, 1990)
Rint = 0.019
Tmin = 0.296, Tmax = 0.9993 standard reflections every 100 reflections
4733 measured reflections intensity decay: 1.7%
2155 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031127 parameters
wR(F2) = 0.0820 restraints
S = 1.13Δρmax = 2.55 e Å3
2155 reflectionsΔρmin = 1.73 e Å3
Special details top

Experimental. A suitable single-crystal was carefully selected under a polarizing microscope and mounted in a glass capillary.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pr10.37016 (5)0.07689 (4)0.31461 (2)0.00706 (11)
Pr20.15410 (5)0.79427 (4)0.04666 (2)0.00693 (11)
Mo0.03514 (8)0.70782 (6)0.41958 (4)0.00758 (12)
O70.1449 (8)0.4427 (5)0.3778 (4)0.0144 (7)
O50.2335 (7)0.7903 (6)0.5706 (3)0.0152 (7)
O60.0805 (7)0.8248 (6)0.2991 (4)0.0141 (7)
O20.3079 (7)0.1829 (5)0.5554 (3)0.0111 (6)
B10.4573 (10)0.4118 (7)0.1373 (5)0.0077 (8)
O40.4775 (7)0.2184 (5)0.1465 (3)0.0114 (6)
O80.2350 (7)0.4758 (5)0.0732 (3)0.0114 (6)
O90.6870 (7)0.5435 (5)0.1886 (4)0.0121 (7)
B20.2634 (10)0.7520 (8)0.1570 (5)0.0091 (8)
O10.5437 (7)0.8575 (5)0.1392 (3)0.0094 (6)
O30.0094 (7)0.8664 (5)0.1355 (3)0.0086 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pr10.00931 (15)0.00715 (15)0.00456 (15)0.00225 (10)0.00160 (10)0.00032 (10)
Pr20.00839 (16)0.00662 (15)0.00584 (15)0.00215 (10)0.00193 (10)0.00046 (9)
Mo0.0094 (2)0.0072 (2)0.00587 (19)0.00159 (14)0.00209 (14)0.00082 (13)
O70.0190 (18)0.0082 (15)0.0112 (15)0.0002 (12)0.0023 (14)0.0025 (12)
O50.0167 (17)0.0188 (17)0.0100 (15)0.0069 (14)0.0023 (13)0.0039 (13)
O60.0165 (17)0.0179 (17)0.0109 (15)0.0060 (13)0.0036 (13)0.0052 (13)
O20.0110 (15)0.0136 (16)0.0096 (15)0.0016 (12)0.0034 (12)0.0038 (12)
B10.011 (2)0.008 (2)0.0034 (19)0.0022 (16)0.0003 (16)0.0011 (15)
O40.0159 (16)0.0096 (15)0.0101 (15)0.0046 (12)0.0044 (13)0.0008 (11)
O80.0093 (15)0.0086 (14)0.0130 (16)0.0015 (11)0.0004 (13)0.0005 (12)
O90.0120 (16)0.0075 (15)0.0142 (17)0.0020 (12)0.0011 (13)0.0012 (12)
B20.009 (2)0.009 (2)0.0080.0028 (16)0.0004 (17)0.0010 (16)
O10.0099 (15)0.0107 (15)0.0088 (14)0.0036 (12)0.0030 (12)0.0017 (11)
O30.0076 (14)0.0106 (15)0.0071 (14)0.0025 (11)0.0007 (11)0.0024 (11)
Geometric parameters (Å, º) top
Pr1—O42.370 (3)Pr2—O1ix2.585 (3)
Pr1—O3i2.430 (3)Pr2—O6x2.645 (4)
Pr1—O1i2.450 (3)Pr2—B2viii3.021 (5)
Pr1—O5ii2.461 (3)Pr2—Pr2vii3.9237 (6)
Pr1—O72.480 (3)Pr2—Pr1vi3.9702 (5)
Pr1—O22.529 (3)Pr2—Pr1iv3.9893 (5)
Pr1—O2iii2.557 (3)Mo—O51.748 (3)
Pr1—O6iv2.610 (3)Mo—O71.748 (3)
Pr1—Mov3.6714 (6)Mo—O61.782 (4)
Pr1—Pr2vi3.9702 (5)Mo—O2v1.803 (3)
Pr1—Pr2i3.9893 (5)Mo—Pr1v3.6714 (6)
Pr1—Pr2vii4.0171 (5)B1—O81.345 (6)
Pr2—O82.364 (3)B1—O41.370 (6)
Pr2—O8vii2.375 (3)B1—O91.387 (6)
Pr2—O4vi2.456 (3)B2—O9xi1.373 (6)
Pr2—O32.506 (3)B2—O1xi1.378 (6)
Pr2—O12.513 (3)B2—O31.384 (6)
Pr2—O3viii2.585 (3)B2—Pr2viii3.021 (5)
O4—Pr1—O3i77.59 (12)O4vi—Pr2—O1ix64.22 (10)
O4—Pr1—O1i67.58 (11)O3—Pr2—O1ix102.94 (11)
O3i—Pr1—O1i73.79 (11)O1—Pr2—O1ix75.10 (12)
O4—Pr1—O5ii112.06 (12)O3viii—Pr2—O1ix54.11 (11)
O3i—Pr1—O5ii139.81 (11)O8—Pr2—O6x117.87 (11)
O1i—Pr1—O5ii74.69 (11)O8vii—Pr2—O6x68.69 (12)
O4—Pr1—O7149.37 (12)O4vi—Pr2—O6x79.69 (11)
O3i—Pr1—O775.46 (11)O3—Pr2—O6x126.73 (10)
O1i—Pr1—O790.93 (12)O1—Pr2—O6x154.52 (11)
O5ii—Pr1—O780.77 (12)O3viii—Pr2—O6x69.74 (10)
O4—Pr1—O2141.05 (11)O1ix—Pr2—O6x82.67 (11)
O3i—Pr1—O2121.14 (11)O8—Pr2—Pr2vii34.21 (8)
O1i—Pr1—O2146.59 (11)O8vii—Pr2—Pr2vii34.03 (8)
O5ii—Pr1—O276.77 (11)O4vi—Pr2—Pr2vii97.53 (8)
O7—Pr1—O267.53 (11)O3—Pr2—Pr2vii93.69 (8)
O4—Pr1—O2iii76.63 (11)O1—Pr2—Pr2vii103.65 (8)
O3i—Pr1—O2iii145.67 (11)O3viii—Pr2—Pr2vii140.80 (7)
O1i—Pr1—O2iii115.72 (11)O1ix—Pr2—Pr2vii161.72 (7)
O5ii—Pr1—O2iii71.93 (11)O6x—Pr2—Pr2vii93.54 (8)
O7—Pr1—O2iii133.79 (11)B2viii—Pr2—Pr2vii166.65 (10)
O2—Pr1—O2iii70.32 (12)O8—Pr2—Pr1vi113.11 (9)
O4—Pr1—O6iv69.35 (11)O8vii—Pr2—Pr1vi125.58 (9)
O3i—Pr1—O6iv72.69 (11)O4vi—Pr2—Pr1vi33.96 (8)
O1i—Pr1—O6iv129.69 (11)O3—Pr2—Pr1vi139.70 (8)
O5ii—Pr1—O6iv147.48 (12)O1—Pr2—Pr1vi90.73 (8)
O7—Pr1—O6iv115.17 (12)O3viii—Pr2—Pr1vi79.17 (7)
O2—Pr1—O6iv83.51 (11)O1ix—Pr2—Pr1vi36.78 (7)
O2iii—Pr1—O6iv77.21 (11)O6x—Pr2—Pr1vi63.84 (8)
O4—Pr1—Pr2vi35.36 (8)B2viii—Pr2—Pr1vi57.28 (10)
O3i—Pr1—Pr2vi89.53 (8)Pr2vii—Pr2—Pr1vi126.063 (11)
O1i—Pr1—Pr2vi39.18 (8)O8—Pr2—Pr1iv82.46 (9)
O5ii—Pr1—Pr2vi81.40 (9)O8vii—Pr2—Pr1iv115.15 (9)
O7—Pr1—Pr2vi129.95 (9)O4vi—Pr2—Pr1iv115.41 (8)
O2—Pr1—Pr2vi149.14 (8)O3—Pr2—Pr1iv35.45 (7)
O2iii—Pr1—Pr2vi82.37 (8)O1—Pr2—Pr1iv35.98 (7)
O6iv—Pr1—Pr2vi104.66 (8)O3viii—Pr2—Pr1iv88.62 (7)
Mov—Pr1—Pr2vi173.822 (12)O1ix—Pr2—Pr1iv89.26 (7)
O4—Pr1—Pr2i68.51 (8)O6x—Pr2—Pr1iv157.63 (7)
O3i—Pr1—Pr2i36.74 (8)B2viii—Pr2—Pr1iv87.02 (10)
O1i—Pr1—Pr2i37.06 (8)Pr2vii—Pr2—Pr1iv100.262 (11)
O5ii—Pr1—Pr2i108.19 (8)Pr1vi—Pr2—Pr1iv118.956 (9)
O7—Pr1—Pr2i81.16 (8)O5—Mo—O7107.10 (17)
O2—Pr1—Pr2i147.30 (8)O5—Mo—O6107.70 (16)
O2iii—Pr1—Pr2i142.36 (8)O7—Mo—O6111.77 (17)
O6iv—Pr1—Pr2i102.41 (8)O5—Mo—O2v105.62 (17)
Mov—Pr1—Pr2i124.637 (12)O7—Mo—O2v118.20 (16)
Pr2vi—Pr1—Pr2i61.044 (9)O6—Mo—O2v105.89 (16)
O4—Pr1—Pr2vii53.61 (8)Pr1i—O6—Pr2x99.70 (12)
O3i—Pr1—Pr2vii38.13 (7)Mov—O2—Pr1114.85 (15)
O1i—Pr1—Pr2vii91.90 (8)Mov—O2—Pr1iii122.00 (16)
O5ii—Pr1—Pr2vii164.08 (9)Pr1—O2—Pr1iii109.68 (12)
O7—Pr1—Pr2vii108.49 (8)O8—B1—O4122.1 (4)
O2—Pr1—Pr2vii118.48 (8)O8—B1—O9121.5 (4)
O2iii—Pr1—Pr2vii107.57 (8)O4—B1—O9116.2 (4)
O6iv—Pr1—Pr2vii40.47 (8)B1—O4—Pr1129.0 (3)
Mov—Pr1—Pr2vii97.798 (12)B1—O4—Pr2vi113.9 (3)
Pr2vi—Pr1—Pr2vii82.769 (10)Pr1—O4—Pr2vi110.68 (12)
Pr2i—Pr1—Pr2vii62.010 (9)B1—O8—Pr2134.1 (3)
O8—Pr2—O8vii68.24 (13)B1—O8—Pr2vii113.4 (3)
O8—Pr2—O4vi79.16 (11)Pr2—O8—Pr2vii111.76 (13)
O8vii—Pr2—O4vi113.81 (11)B2xii—O9—B1125.1 (4)
O8—Pr2—O395.79 (11)O9xi—B2—O1xi123.8 (4)
O8vii—Pr2—O390.33 (12)O9xi—B2—O3119.3 (4)
O4vi—Pr2—O3150.59 (11)O1xi—B2—O3116.8 (4)
O8—Pr2—O172.10 (11)Pr1iv—O1—Pr2106.97 (12)
O8vii—Pr2—O1134.09 (11)B2xii—O1—Pr2ix94.4 (3)
O4vi—Pr2—O179.52 (11)Pr1iv—O1—Pr2ix104.05 (12)
O3—Pr2—O171.43 (11)Pr2—O1—Pr2ix104.90 (12)
O8—Pr2—O3viii167.27 (12)B2—O3—Pr1iv123.2 (3)
O8vii—Pr2—O3viii108.01 (11)B2—O3—Pr2114.9 (3)
O4vi—Pr2—O3viii113.02 (11)Pr1iv—O3—Pr2107.81 (12)
O3—Pr2—O3viii71.81 (12)B2—O3—Pr2viii94.2 (3)
O1—Pr2—O3viii105.54 (10)Pr1iv—O3—Pr2viii106.39 (12)
O8—Pr2—O1ix134.34 (11)Pr2—O3—Pr2viii108.19 (12)
O8vii—Pr2—O1ix150.80 (11)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z1; (iii) x+1, y, z1; (iv) x, y1, z; (v) x, y+1, z1; (vi) x+1, y1, z; (vii) x, y1, z; (viii) x, y2, z; (ix) x+1, y2, z; (x) x, y, z; (xi) x1, y, z; (xii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaPr2(B2O5)(MoO4)
Mr543.38
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)5.2806 (5), 7.0278 (5), 10.5824 (9)
α, β, γ (°)74.557 (6), 76.307 (7), 73.065 (6)
V3)356.69 (5)
Z2
Radiation typeMo Kα
µ (mm1)15.20
Crystal size (mm)0.20 × 0.15 × 0.12
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(MolEN; Fair, 1990)
Tmin, Tmax0.296, 0.999
No. of measured, independent and
observed [I > 2σ(I)] reflections
4733, 2155, 1983
Rint0.019
(sin θ/λ)max1)0.712
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.082, 1.13
No. of reflections2155
No. of parameters127
Δρmax, Δρmin (e Å3)2.55, 1.73

Computer programs: MACH3 (Enraf–Nonius, 1993), MolEN (Fair, 1990), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ATOMS (Dowty, 2002), publCIF (Westrip, 2008).

Selected bond lengths (Å) top
Pr1—O42.370 (3)Pr2—O3vii2.585 (3)
Pr1—O3i2.430 (3)Pr2—O1viii2.585 (3)
Pr1—O1i2.450 (3)Pr2—O6ix2.645 (4)
Pr1—O5ii2.461 (3)Mo—O51.748 (3)
Pr1—O72.480 (3)Mo—O71.748 (3)
Pr1—O22.529 (3)Mo—O61.782 (4)
Pr1—O2iii2.557 (3)Mo—O2x1.803 (3)
Pr1—O6iv2.610 (3)B1—O81.345 (6)
Pr2—O82.364 (3)B1—O41.370 (6)
Pr2—O8v2.375 (3)B1—O91.387 (6)
Pr2—O4vi2.456 (3)B2—O9xi1.373 (6)
Pr2—O32.506 (3)B2—O1xi1.378 (6)
Pr2—O12.513 (3)B2—O31.384 (6)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z1; (iii) x+1, y, z1; (iv) x, y1, z; (v) x, y1, z; (vi) x+1, y1, z; (vii) x, y2, z; (viii) x+1, y2, z; (ix) x, y, z; (x) x, y+1, z1; (xi) x1, y, z.
 

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) under project BE 2147/6–1.

References

First citationDowty, E. (2002). ATOMS. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationDzhurinskii, B. F. & Lysanova, G. V. (1998). Russ. J. Inorg. Chem. 43, 1931–1940.  Google Scholar
First citationEnraf–Nonius (1993). MACH3 Server Software. OpenVMS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFair, C. K. (1990). MolEN. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationLysanova, G. V., Dzhurinskii, B. F., Komova, M. G. & Tananaev, I. V. (1983). Russ. J. Inorg. Chem. 28, 1344–1349.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar
First citationZobetz, E. (1982). Z. Kristallogr. 160, 81–92.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds