organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages o1033-o1034

Mesaconitine

aSchool of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Hunan University of Technology, Changsha 410082, People's Republic of China
*Correspondence e-mail: daohanghe@yahoo.com.cn

(Received 26 April 2008; accepted 4 May 2008; online 10 May 2008)

The title compound, (1α,3α,6α,14α,15α,16β)-3,8,13,14,15-penta­hydr­oxy-1,6,16-trimeth­oxy-4-methoxy­methyl-20-methyl­acon­itan-8,14-diyl 8-acetate 14-benzoate, C33H45NO11, a C19 diterpenoid alkaloid, obtained from the roots of Aconitum kusnezoffii, has been crystallographically characterized in this study. Rings A, B and E have chair conformations, rings C and F display envelope conformations, and ring D adopts a boat conformation. There are inter- and intra­molecular O—H⋯O hydrogen bonds, the latter resulting in the formation of a non-planar seven-membered ring. The inter­molecular inter­actions link the mol­ecules into a two-dimensional network.

Related literature

For general background, see: Hikino et al. (1980[Hikino, H., Konno, C., Takata, H., Yamada, Y., Yamada, C., Ohizumi, Y., Sugio, K. & Fujimura, H. (1980). J. Pharm. Dyn. 3, 514-525.]); Li et al. (1997[Li, Z. B., Lu, G. H., Chen, D. L. & Wang, F. P. (1997). Nat. Prod. Res. Dev. 9, 9-14.]); Mitamura et al. (2002[Mitamura, M., Horie, S., Sakaguchi, M., Someya, A., Tsuchiya, S. V., Murayama, T. & Watanabe, K. (2002). Eur. J. Pharmacol. 436, 217-225.]); Saito et al. (1982[Saito, H., Ueyama, T., Naka, N., Yagi, J. & Okamoto, T. (1982). Chem. Pharm. Bull. 30, 1844-1850.]); For ring conformation details, see: Codding (1982[Codding, P. W. (1982). Acta Cryst. B38, 2519-2522.]); De Camp & Pelletier (1977[De Camp, W. H. & Pelletier, S. W. (1977). Acta Cryst. B33, 722-727.]); Parvez et al. (1999[Parvez, M., Gul, W., Atta-ur-Rahman, Choudhary, M. I., Nasreen, A. & Fatima, N. (1999). Acta Cryst. C55, 72-74.]); Pelletier et al. (1982[Pelletier, S. W., Finer-Moore, J., Desai, R. C., Mody, N. V. & Desai, H. K. (1982). J. Org. Chem. 47, 5290-5297.]). For related literature, see: Pelletier & Djarmati (1976[Pelletier, S. W. & Djarmati, Z. (1976). J Am Chem Soc. 98, 2626-2636.]); Tsuda & Marion (1963[Tsuda, Y. & Marion, L. (1963). Can. J. Chem. 41, 1485-1489.]); Zhapova et al. (1986[Zhapova, T., Modonova, L. D. & Semenov, A. A. (1986). Chem Nat Compd, 21, 7678-679.]).

[Scheme 1]

Experimental

Crystal data
  • C33H45NO11

  • Mr = 631.70

  • Orthorhombic, P 21 21 21

  • a = 12.6820 (6) Å

  • b = 15.3848 (7) Å

  • c = 15.6110 (7) Å

  • V = 3045.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 (2) K

  • 0.46 × 0.35 × 0.12 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.954, Tmax = 0.988

  • 18319 measured reflections

  • 3713 independent reflections

  • 3026 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.081

  • S = 1.07

  • 3713 reflections

  • 418 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H10A⋯O2 0.84 2.11 2.788 (3) 138
O7—H7⋯O8 0.84 2.04 2.560 (3) 120
O4—H4⋯O11i 0.84 2.20 3.018 (3) 163
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As an important Chinese herbal medicine belonging to the genus Aconitum, A. kusnzoffii has been therapeutically used to treat rheumatic pain, paralysis due to stroke, rheumatoid arthritis and some other inflammations. Mesaconitine, a C19 diterpenoid alkaloid, is pharmacologically one of the most active components obtained from the roots of A. kusnezoffii (Li et al., 1997). Mesaconitine has been reported to have an anti-inflammatory activity (Hikino et al.,1980; Saito et al., 1982), and the vasorelaxant effect of mesaconitine may contribute to the therapeutical effectiveness on persons with a weak constitution and poor metabolism, by improving peripheral blood circulation (Mitamura et al., 2002). The three-dimensional structure of most biologically active molecules plays a role in governing their interactions and activities. It is important to obtain information on the mode of action and selectivity of mesaconitine so that it can be used safely and efficiently. Many X-ray crystal structure determinations of C19 diterpenoid alkaloids have been reported, such as pseudaconitine, delphinine (Parvez et al., 1999; Pelletier et al., 1982.). However, the crystal structure of mesaconitine has not been reported. In view of this, the crystal structure determination of the title compound was carried out and the results are presented here.

The structure of mesaconitine is similar to that of aconitine (Codding, 1982). The only difference between aconitine and mesaconitine is a methylene group at the tertiary nitrogen atom. The bond lengths and angles in the title compound are in good agreement with expected values. In the molecule of the title compound, (Fig. 1), rings A, B and E have a chair conformation, rings C and F display an envelope conformation, ring D adopts a boat conformation. The packing of the title compound is shown in Fig. 2. In the crystal structure, there are inter- and intramolecular O—H···O hydrogen bonds. The former link the molecules into a two-dimensional network, while the latter results in the formation of a non-planar seven-membered ring. These intramolecular hydrogen bonds may be effective in the stabilization of the structure.

Related literature top

For general background, see: Hikino et al. (1980); Li et al. (1997); Mitamura et al. (2002); Saito et al. (1982); For ring conformation details, see: Codding (1982); De Camp & Pelletier (1977); Parvez et al. (1999); Pelletier et al. (1982). For related literature, see: Pelletier & Djarmati (1976); Tsuda & Marion (1963); Zhapova et al. (1986).

Experimental top

The title compound was isolated from the roots of A. kusnezoffii according to the literature procedure of Li et al. (1997) and crystals of X-ray quality were grown from methanol at room temperature by slow evaporation.

Refinement top

The H atom attached to C2 was located and refined freely [C—H = 0.97 (2) Å]. Other H atoms were included in the refinement at idealized positions and refin ed as riding, with C—H = 0.95 (aromatic), 0.98 (CH2), 1.00 (CH), O—H = 0.84 Å. Uiso(H) = xUeq(carrier atom), where x = 1.5 for O and methyl, 1.2 for all other H atoms. In the absence of significant anomalous scattering effects, Friedel pairs were merged. The absolute configuration was assigned on the basis of the related literature (Pelletier & Djarmati, 1976; Tsuda & Marion, 1963; Zhapova et al., 1986).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The packing of molecules of the title compound, viewed down the c axis. Dashed lines indicate hydrogen bonds.
3,8,13,14,15-pentahydroxy-1α,3α,6α,14α,15α,16β-20-methyl-1,6,16- trimethoxy-4-methoxymethylaconitan-8,14-diyl 8-acetate 14-benzoate top
Crystal data top
C33H45NO11F(000) = 1352
Mr = 631.70Dx = 1.378 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6314 reflections
a = 12.6820 (6) Åθ = 2.5–26.8°
b = 15.3848 (7) ŵ = 0.10 mm1
c = 15.6110 (7) ÅT = 173 K
V = 3045.9 (2) Å3Block, colorless
Z = 40.46 × 0.35 × 0.12 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
3713 independent reflections
Radiation source: fine-focus sealed tube3026 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scansθmax = 27.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1615
Tmin = 0.954, Tmax = 0.988k = 1619
18319 measured reflectionsl = 1619
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0245P)2 + 1.2755P]
where P = (Fo2 + 2Fc2)/3
3713 reflections(Δ/σ)max = 0.001
418 parametersΔρmax = 0.21 e Å3
2 restraintsΔρmin = 0.22 e Å3
Crystal data top
C33H45NO11V = 3045.9 (2) Å3
Mr = 631.70Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 12.6820 (6) ŵ = 0.10 mm1
b = 15.3848 (7) ÅT = 173 K
c = 15.6110 (7) Å0.46 × 0.35 × 0.12 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
3713 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3026 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.988Rint = 0.042
18319 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0382 restraints
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.21 e Å3
3713 reflectionsΔρmin = 0.22 e Å3
418 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0391 (2)0.81198 (18)0.21029 (19)0.0220 (6)
H10.04770.86470.17340.026*
C20.0052 (2)0.8377 (2)0.3007 (2)0.0246 (7)
C30.0859 (2)0.76493 (18)0.32284 (18)0.0218 (6)
H30.07270.74120.38150.026*
C40.1968 (2)0.80413 (18)0.31663 (18)0.0209 (6)
C50.2045 (2)0.85444 (18)0.23165 (18)0.0219 (6)
H50.17010.91260.23730.026*
C60.1544 (2)0.80248 (19)0.15592 (18)0.0220 (6)
H60.13800.84560.10990.026*
C70.0505 (2)0.75172 (18)0.17449 (18)0.0207 (6)
C80.0175 (2)0.70445 (19)0.09137 (19)0.0226 (6)
H80.02350.74700.04320.027*
C90.0936 (2)0.6672 (2)0.0894 (2)0.0256 (7)
H9A0.11260.65340.02940.031*
H9B0.09490.61230.12250.031*
C100.1744 (2)0.72861 (19)0.12591 (19)0.0241 (6)
H100.17620.78070.08770.029*
C110.1439 (2)0.76086 (19)0.21596 (19)0.0236 (6)
C120.1281 (2)0.68527 (19)0.2794 (2)0.0254 (7)
H12A0.13120.70820.33860.030*
H12B0.18660.64320.27240.030*
C130.0663 (2)0.69431 (18)0.25371 (18)0.0226 (6)
H130.13060.65740.24660.027*
C140.2486 (2)0.7463 (2)0.1230 (2)0.0275 (7)
H14A0.23350.68370.13130.033*
H14B0.26060.75700.06120.033*
C150.3455 (2)0.7728 (2)0.17473 (18)0.0247 (6)
C160.3180 (2)0.86471 (19)0.20170 (19)0.0242 (6)
H160.32140.90480.15130.029*
C170.3584 (2)0.71420 (19)0.25396 (19)0.0253 (7)
H170.33970.65330.23760.030*
C180.2910 (2)0.74092 (19)0.33247 (18)0.0240 (6)
H180.33980.77170.37260.029*
C190.3869 (2)0.97097 (19)0.3007 (2)0.0257 (7)
C200.4690 (2)0.98015 (19)0.3682 (2)0.0250 (6)
C210.5301 (3)0.9093 (2)0.3930 (2)0.0299 (7)
H210.51870.85400.36770.036*
C220.6072 (3)0.9198 (2)0.4544 (2)0.0356 (8)
H220.64890.87150.47130.043*
C230.6240 (3)0.9998 (2)0.4915 (2)0.0365 (8)
H230.67671.00650.53420.044*
C240.5643 (3)1.0702 (2)0.4664 (2)0.0401 (9)
H240.57681.12550.49140.048*
C250.4865 (3)1.0608 (2)0.4053 (2)0.0362 (8)
H250.44511.10940.38870.043*
C260.2065 (2)0.8593 (2)0.46489 (19)0.0284 (7)
C270.2139 (3)0.9414 (2)0.5150 (2)0.0452 (9)
H27A0.14830.97450.50860.068*
H27B0.27310.97620.49370.068*
H27C0.22510.92770.57560.068*
C280.0892 (3)0.9341 (3)0.3905 (3)0.0584 (12)
H28A0.02350.96260.40790.088*
H28B0.13990.93620.43780.088*
H28C0.11870.96410.34060.088*
C290.1046 (3)0.6183 (2)0.0140 (2)0.0339 (8)
H29A0.03830.59800.03930.051*
H29B0.15890.57350.02120.051*
H29C0.12720.67180.04270.051*
C300.0119 (3)0.5751 (2)0.3337 (2)0.0311 (7)
H30A0.05550.54510.32480.047*
H30B0.06960.53280.33150.047*
H30C0.01150.60380.38970.047*
C310.2345 (2)0.81935 (19)0.2462 (2)0.0284 (7)
H31A0.30270.78870.24000.034*
H31B0.22490.83480.30730.034*
C320.3153 (3)0.9539 (2)0.2150 (2)0.0399 (8)
H32A0.38340.92520.20580.060*
H32B0.31041.00540.17830.060*
H32C0.30920.97140.27510.060*
C330.5015 (3)0.6510 (2)0.3335 (2)0.0445 (9)
H33A0.46960.66030.38990.067*
H33B0.57850.65290.33860.067*
H33C0.48000.59410.31130.067*
N10.02662 (19)0.63950 (15)0.26699 (16)0.0239 (5)
O10.20493 (15)0.87584 (12)0.38022 (12)0.0241 (4)
O20.2048 (2)0.78785 (15)0.49642 (14)0.0402 (6)
O30.08940 (16)0.63488 (13)0.07442 (13)0.0263 (5)
O40.27732 (15)0.68993 (14)0.12299 (15)0.0316 (5)
H40.27660.64270.14990.047*
O50.23341 (17)0.89599 (14)0.19455 (15)0.0349 (6)
O60.06838 (16)0.84649 (14)0.36913 (14)0.0328 (5)
O70.43716 (15)0.76827 (15)0.12268 (13)0.0309 (5)
H70.48970.75660.15340.046*
O80.46752 (16)0.71676 (14)0.27663 (14)0.0305 (5)
O90.39220 (15)0.89139 (13)0.26615 (14)0.0257 (5)
O100.25977 (17)0.66318 (13)0.37478 (14)0.0290 (5)
H10A0.23440.67550.42300.044*
O110.32507 (17)1.02599 (13)0.27820 (16)0.0349 (5)
H20.037 (2)0.8949 (9)0.297 (2)0.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0223 (14)0.0175 (14)0.0261 (15)0.0007 (12)0.0000 (12)0.0027 (12)
C20.0242 (15)0.0225 (15)0.0272 (16)0.0032 (12)0.0023 (13)0.0019 (13)
C30.0241 (14)0.0210 (14)0.0204 (14)0.0024 (12)0.0003 (12)0.0007 (12)
C40.0231 (14)0.0190 (14)0.0207 (14)0.0019 (12)0.0004 (12)0.0012 (12)
C50.0216 (14)0.0180 (14)0.0261 (15)0.0037 (12)0.0013 (12)0.0012 (12)
C60.0224 (14)0.0220 (15)0.0215 (15)0.0024 (12)0.0015 (12)0.0018 (12)
C70.0203 (14)0.0180 (14)0.0239 (15)0.0014 (11)0.0029 (12)0.0007 (12)
C80.0251 (15)0.0201 (15)0.0227 (14)0.0031 (12)0.0018 (12)0.0023 (12)
C90.0263 (15)0.0254 (16)0.0251 (16)0.0045 (13)0.0068 (13)0.0003 (13)
C100.0192 (14)0.0249 (15)0.0283 (15)0.0032 (12)0.0032 (12)0.0052 (13)
C110.0217 (14)0.0211 (15)0.0281 (15)0.0004 (12)0.0001 (12)0.0029 (13)
C120.0231 (14)0.0248 (15)0.0282 (16)0.0053 (12)0.0001 (13)0.0023 (13)
C130.0218 (14)0.0198 (14)0.0263 (16)0.0016 (12)0.0013 (12)0.0010 (13)
C140.0273 (15)0.0290 (16)0.0263 (15)0.0029 (14)0.0031 (13)0.0012 (13)
C150.0242 (14)0.0255 (15)0.0243 (15)0.0033 (13)0.0022 (12)0.0001 (13)
C160.0244 (15)0.0248 (15)0.0235 (15)0.0030 (13)0.0028 (12)0.0058 (12)
C170.0230 (15)0.0217 (15)0.0311 (16)0.0013 (12)0.0002 (13)0.0003 (13)
C180.0259 (15)0.0225 (15)0.0237 (15)0.0018 (13)0.0000 (13)0.0021 (12)
C190.0233 (15)0.0203 (15)0.0337 (18)0.0055 (13)0.0016 (13)0.0034 (13)
C200.0217 (14)0.0266 (15)0.0267 (16)0.0045 (13)0.0035 (13)0.0004 (13)
C210.0336 (17)0.0256 (16)0.0307 (18)0.0019 (14)0.0003 (14)0.0026 (14)
C220.0373 (18)0.0350 (19)0.0343 (19)0.0011 (16)0.0072 (15)0.0090 (16)
C230.0339 (18)0.047 (2)0.0284 (18)0.0087 (16)0.0056 (15)0.0040 (16)
C240.0358 (19)0.036 (2)0.049 (2)0.0075 (16)0.0028 (17)0.0144 (17)
C250.0302 (17)0.0269 (17)0.051 (2)0.0008 (14)0.0034 (16)0.0027 (16)
C260.0288 (16)0.0304 (18)0.0260 (16)0.0039 (14)0.0002 (14)0.0031 (14)
C270.064 (3)0.035 (2)0.036 (2)0.0062 (19)0.0018 (19)0.0077 (16)
C280.043 (2)0.050 (2)0.082 (3)0.0042 (19)0.019 (2)0.034 (2)
C290.0347 (17)0.0335 (18)0.0335 (18)0.0068 (15)0.0028 (15)0.0042 (15)
C300.0338 (17)0.0234 (16)0.0362 (18)0.0041 (14)0.0038 (15)0.0080 (14)
C310.0241 (15)0.0279 (16)0.0332 (17)0.0026 (13)0.0009 (13)0.0014 (14)
C320.041 (2)0.0364 (19)0.043 (2)0.0109 (16)0.0066 (17)0.0022 (17)
C330.0345 (19)0.045 (2)0.054 (2)0.0089 (17)0.0026 (17)0.0134 (19)
N10.0250 (13)0.0197 (12)0.0269 (13)0.0043 (11)0.0018 (11)0.0047 (11)
O10.0270 (10)0.0215 (10)0.0238 (11)0.0029 (9)0.0012 (9)0.0031 (9)
O20.0527 (15)0.0367 (14)0.0313 (12)0.0038 (12)0.0017 (11)0.0005 (11)
O30.0290 (11)0.0230 (11)0.0270 (11)0.0031 (9)0.0036 (9)0.0029 (9)
O40.0239 (11)0.0305 (12)0.0405 (13)0.0063 (9)0.0056 (10)0.0057 (11)
O50.0348 (12)0.0273 (12)0.0424 (14)0.0098 (10)0.0107 (11)0.0074 (10)
O60.0293 (11)0.0338 (12)0.0354 (12)0.0005 (10)0.0084 (10)0.0081 (11)
O70.0232 (10)0.0401 (13)0.0293 (11)0.0012 (10)0.0048 (9)0.0014 (11)
O80.0248 (11)0.0300 (12)0.0367 (12)0.0019 (9)0.0003 (10)0.0067 (10)
O90.0231 (10)0.0224 (10)0.0318 (12)0.0035 (9)0.0030 (9)0.0003 (9)
O100.0326 (11)0.0249 (11)0.0297 (12)0.0004 (9)0.0023 (10)0.0080 (10)
O110.0287 (12)0.0229 (11)0.0532 (15)0.0023 (10)0.0106 (11)0.0011 (11)
Geometric parameters (Å, º) top
C1—C111.547 (4)C18—O101.422 (3)
C1—C71.570 (4)C18—H181.0000
C1—C21.570 (4)C19—O111.206 (3)
C1—H11.0000C19—O91.339 (3)
C2—O61.424 (4)C19—C201.489 (4)
C2—C31.556 (4)C20—C251.387 (4)
C2—H20.970 (16)C20—C211.391 (4)
C3—C41.533 (4)C21—C221.379 (4)
C3—C131.551 (4)C21—H210.9500
C3—H31.0000C22—C231.376 (5)
C4—O11.488 (3)C22—H220.9500
C4—C51.539 (4)C23—C241.377 (5)
C4—C181.560 (4)C23—H230.9500
C5—C161.522 (4)C24—C251.380 (5)
C5—C61.562 (4)C24—H240.9500
C5—H51.0000C25—H250.9500
C6—C71.559 (4)C26—O21.204 (4)
C6—C141.561 (4)C26—O11.346 (4)
C6—H61.0000C26—C271.490 (4)
C7—C131.533 (4)C27—H27A0.9800
C7—C81.545 (4)C27—H27B0.9800
C8—O31.431 (3)C27—H27C0.9800
C8—C91.521 (4)C28—O61.413 (4)
C8—H81.0000C28—H28A0.9800
C9—C101.506 (4)C28—H28B0.9800
C9—H9A0.9900C28—H28C0.9800
C9—H9B0.9900C29—O31.417 (4)
C10—O41.435 (3)C29—H29A0.9800
C10—C111.540 (4)C29—H29B0.9800
C10—H101.0000C29—H29C0.9800
C11—C311.534 (4)C30—N11.449 (4)
C11—C121.540 (4)C30—H30A0.9800
C12—N11.480 (4)C30—H30B0.9800
C12—H12A0.9900C30—H30C0.9800
C12—H12B0.9900C31—O51.429 (4)
C13—N11.464 (4)C31—H31A0.9900
C13—H131.0000C31—H31B0.9900
C14—C151.526 (4)C32—O51.405 (4)
C14—H14A0.9900C32—H32A0.9800
C14—H14B0.9900C32—H32B0.9800
C15—O71.420 (3)C32—H32C0.9800
C15—C161.516 (4)C33—O81.413 (4)
C15—C171.539 (4)C33—H33A0.9800
C16—O91.437 (3)C33—H33B0.9800
C16—H161.0000C33—H33C0.9800
C17—O81.429 (3)O4—H40.8400
C17—C181.550 (4)O7—H70.8400
C17—H171.0000O10—H10A0.8400
C11—C1—C7110.0 (2)O9—C16—H16110.3
C11—C1—C2112.6 (2)C15—C16—H16110.3
C7—C1—C2102.1 (2)C5—C16—H16110.3
C11—C1—H1110.6O8—C17—C15106.6 (2)
C7—C1—H1110.6O8—C17—C18109.3 (2)
C2—C1—H1110.6C15—C17—C18114.9 (2)
O6—C2—C3109.5 (2)O8—C17—H17108.6
O6—C2—C1117.6 (2)C15—C17—H17108.6
C3—C2—C1104.7 (2)C18—C17—H17108.6
O6—C2—H2104 (2)O10—C18—C17107.3 (2)
C3—C2—H2113 (2)O10—C18—C4112.6 (2)
C1—C2—H2109 (2)C17—C18—C4117.6 (2)
C4—C3—C13112.2 (2)O10—C18—H18106.2
C4—C3—C2107.8 (2)C17—C18—H18106.2
C13—C3—C2104.1 (2)C4—C18—H18106.2
C4—C3—H3110.8O11—C19—O9123.9 (3)
C13—C3—H3110.8O11—C19—C20126.5 (3)
C2—C3—H3110.8O9—C19—C20109.7 (2)
O1—C4—C3108.3 (2)C25—C20—C21119.7 (3)
O1—C4—C5101.4 (2)C25—C20—C19119.5 (3)
C3—C4—C5108.1 (2)C21—C20—C19120.8 (3)
O1—C4—C18107.7 (2)C22—C21—C20119.7 (3)
C3—C4—C18116.6 (2)C22—C21—H21120.1
C5—C4—C18113.7 (2)C20—C21—H21120.1
C16—C5—C4112.2 (2)C23—C22—C21120.5 (3)
C16—C5—C6101.9 (2)C23—C22—H22119.8
C4—C5—C6111.7 (2)C21—C22—H22119.8
C16—C5—H5110.3C22—C23—C24119.9 (3)
C4—C5—H5110.3C22—C23—H23120.1
C6—C5—H5110.3C24—C23—H23120.1
C7—C6—C14115.5 (2)C23—C24—C25120.4 (3)
C7—C6—C5117.3 (2)C23—C24—H24119.8
C14—C6—C5102.8 (2)C25—C24—H24119.8
C7—C6—H6106.8C24—C25—C20119.8 (3)
C14—C6—H6106.8C24—C25—H25120.1
C5—C6—H6106.8C20—C25—H25120.1
C13—C7—C8116.2 (2)O2—C26—O1125.0 (3)
C13—C7—C6109.1 (2)O2—C26—C27124.1 (3)
C8—C7—C6108.0 (2)O1—C26—C27110.8 (3)
C13—C7—C198.5 (2)C26—C27—H27A109.5
C8—C7—C1112.4 (2)C26—C27—H27B109.5
C6—C7—C1112.5 (2)H27A—C27—H27B109.5
O3—C8—C9107.7 (2)C26—C27—H27C109.5
O3—C8—C7109.5 (2)H27A—C27—H27C109.5
C9—C8—C7116.4 (2)H27B—C27—H27C109.5
O3—C8—H8107.6O6—C28—H28A109.5
C9—C8—H8107.6O6—C28—H28B109.5
C7—C8—H8107.6H28A—C28—H28B109.5
C10—C9—C8112.7 (2)O6—C28—H28C109.5
C10—C9—H9A109.0H28A—C28—H28C109.5
C8—C9—H9A109.0H28B—C28—H28C109.5
C10—C9—H9B109.0O3—C29—H29A109.5
C8—C9—H9B109.0O3—C29—H29B109.5
H9A—C9—H9B107.8H29A—C29—H29B109.5
O4—C10—C9110.3 (2)O3—C29—H29C109.5
O4—C10—C11113.0 (2)H29A—C29—H29C109.5
C9—C10—C11112.1 (2)H29B—C29—H29C109.5
O4—C10—H10107.0N1—C30—H30A109.5
C9—C10—H10107.0N1—C30—H30B109.5
C11—C10—H10107.0H30A—C30—H30B109.5
C31—C11—C10106.4 (2)N1—C30—H30C109.5
C31—C11—C12110.0 (2)H30A—C30—H30C109.5
C10—C11—C12112.1 (2)H30B—C30—H30C109.5
C31—C11—C1111.3 (2)O5—C31—C11107.6 (2)
C10—C11—C1109.1 (2)O5—C31—H31A110.2
C12—C11—C1108.0 (2)C11—C31—H31A110.2
N1—C12—C11112.9 (2)O5—C31—H31B110.2
N1—C12—H12A109.0C11—C31—H31B110.2
C11—C12—H12A109.0H31A—C31—H31B108.5
N1—C12—H12B109.0O5—C32—H32A109.5
C11—C12—H12B109.0O5—C32—H32B109.5
H12A—C12—H12B107.8H32A—C32—H32B109.5
N1—C13—C7109.9 (2)O5—C32—H32C109.5
N1—C13—C3115.7 (2)H32A—C32—H32C109.5
C7—C13—C3100.3 (2)H32B—C32—H32C109.5
N1—C13—H13110.2O8—C33—H33A109.5
C7—C13—H13110.2O8—C33—H33B109.5
C3—C13—H13110.2H33A—C33—H33B109.5
C15—C14—C6107.1 (2)O8—C33—H33C109.5
C15—C14—H14A110.3H33A—C33—H33C109.5
C6—C14—H14A110.3H33B—C33—H33C109.5
C15—C14—H14B110.3C30—N1—C13113.1 (2)
C6—C14—H14B110.3C30—N1—C12110.1 (2)
H14A—C14—H14B108.5C13—N1—C12116.4 (2)
O7—C15—C16113.1 (2)C26—O1—C4121.0 (2)
O7—C15—C14110.1 (2)C29—O3—C8113.7 (2)
C16—C15—C14102.2 (2)C10—O4—H4109.5
O7—C15—C17110.1 (2)C32—O5—C31112.8 (2)
C16—C15—C17110.4 (2)C28—O6—C2112.9 (3)
C14—C15—C17110.8 (2)C15—O7—H7109.5
O9—C16—C15108.1 (2)C33—O8—C17115.5 (2)
O9—C16—C5115.7 (2)C19—O9—C16120.7 (2)
C15—C16—C5101.9 (2)C18—O10—H10A109.5
C11—C1—C2—O626.0 (4)C2—C3—C13—C740.7 (3)
C7—C1—C2—O6143.9 (2)C7—C6—C14—C15133.1 (2)
C11—C1—C2—C395.8 (3)C5—C6—C14—C154.0 (3)
C7—C1—C2—C322.2 (3)C6—C14—C15—O7145.6 (2)
O6—C2—C3—C4124.5 (2)C6—C14—C15—C1625.2 (3)
C1—C2—C3—C4108.5 (2)C6—C14—C15—C1792.4 (3)
O6—C2—C3—C13116.1 (2)O7—C15—C16—O973.8 (3)
C1—C2—C3—C1310.9 (3)C14—C15—C16—O9167.8 (2)
C13—C3—C4—O1175.3 (2)C17—C15—C16—O950.0 (3)
C2—C3—C4—O161.2 (3)O7—C15—C16—C5163.8 (2)
C13—C3—C4—C566.2 (3)C14—C15—C16—C545.5 (3)
C2—C3—C4—C547.9 (3)C17—C15—C16—C572.4 (3)
C13—C3—C4—C1863.2 (3)C4—C5—C16—O945.8 (3)
C2—C3—C4—C18177.4 (2)C6—C5—C16—O9165.3 (2)
O1—C4—C5—C1689.2 (3)C4—C5—C16—C1571.2 (3)
C3—C4—C5—C16157.1 (2)C6—C5—C16—C1548.4 (3)
C18—C4—C5—C1626.0 (3)O7—C15—C17—O833.8 (3)
O1—C4—C5—C6157.2 (2)C16—C15—C17—O891.8 (3)
C3—C4—C5—C643.5 (3)C14—C15—C17—O8155.8 (2)
C18—C4—C5—C687.6 (3)O7—C15—C17—C18155.1 (2)
C16—C5—C6—C7159.5 (2)C16—C15—C17—C1829.5 (3)
C4—C5—C6—C739.7 (3)C14—C15—C17—C1882.9 (3)
C16—C5—C6—C1431.6 (3)O8—C17—C18—O1095.0 (3)
C4—C5—C6—C1488.3 (3)C15—C17—C18—O10145.2 (2)
C14—C6—C7—C1369.8 (3)O8—C17—C18—C4136.9 (3)
C5—C6—C7—C1351.7 (3)C15—C17—C18—C417.0 (4)
C14—C6—C7—C857.4 (3)O1—C4—C18—O10104.2 (3)
C5—C6—C7—C8178.9 (2)C3—C4—C18—O1017.5 (3)
C14—C6—C7—C1178.0 (2)C5—C4—C18—O10144.3 (2)
C5—C6—C7—C156.5 (3)O1—C4—C18—C17130.2 (2)
C11—C1—C7—C1372.6 (3)C3—C4—C18—C17108.0 (3)
C2—C1—C7—C1347.1 (2)C5—C4—C18—C1718.7 (3)
C11—C1—C7—C850.4 (3)O11—C19—C20—C256.9 (5)
C2—C1—C7—C8170.1 (2)O9—C19—C20—C25172.2 (3)
C11—C1—C7—C6172.5 (2)O11—C19—C20—C21174.7 (3)
C2—C1—C7—C667.8 (3)O9—C19—C20—C216.2 (4)
C13—C7—C8—O352.6 (3)C25—C20—C21—C220.2 (5)
C6—C7—C8—O370.3 (3)C19—C20—C21—C22178.6 (3)
C1—C7—C8—O3165.0 (2)C20—C21—C22—C230.1 (5)
C13—C7—C8—C969.9 (3)C21—C22—C23—C240.7 (5)
C6—C7—C8—C9167.2 (2)C22—C23—C24—C250.9 (5)
C1—C7—C8—C942.5 (3)C23—C24—C25—C200.6 (5)
O3—C8—C9—C10166.8 (2)C21—C20—C25—C240.0 (5)
C7—C8—C9—C1043.4 (3)C19—C20—C25—C24178.4 (3)
C8—C9—C10—O4179.6 (2)C10—C11—C31—O568.7 (3)
C8—C9—C10—C1152.7 (3)C12—C11—C31—O5169.7 (2)
O4—C10—C11—C3152.4 (3)C1—C11—C31—O550.1 (3)
C9—C10—C11—C31177.8 (2)C7—C13—N1—C30172.1 (2)
O4—C10—C11—C1267.9 (3)C3—C13—N1—C3075.2 (3)
C9—C10—C11—C1257.5 (3)C7—C13—N1—C1259.0 (3)
O4—C10—C11—C1172.6 (2)C3—C13—N1—C1253.7 (3)
C9—C10—C11—C162.0 (3)C11—C12—N1—C30174.3 (2)
C7—C1—C11—C31177.0 (2)C11—C12—N1—C1344.0 (3)
C2—C1—C11—C3169.9 (3)O2—C26—O1—C42.3 (5)
C7—C1—C11—C1059.9 (3)C27—C26—O1—C4179.4 (3)
C2—C1—C11—C10173.0 (2)C3—C4—O1—C2669.5 (3)
C7—C1—C11—C1262.2 (3)C5—C4—O1—C26176.9 (2)
C2—C1—C11—C1251.0 (3)C18—C4—O1—C2657.3 (3)
C31—C11—C12—N1165.4 (2)C9—C8—O3—C2984.5 (3)
C10—C11—C12—N176.4 (3)C7—C8—O3—C29148.0 (2)
C1—C11—C12—N143.8 (3)C11—C31—O5—C32178.3 (3)
C8—C7—C13—N151.9 (3)C3—C2—O6—C28136.2 (3)
C6—C7—C13—N1174.2 (2)C1—C2—O6—C28104.5 (3)
C1—C7—C13—N168.3 (3)C15—C17—O8—C33164.5 (3)
C8—C7—C13—C3174.2 (2)C18—C17—O8—C3370.7 (3)
C6—C7—C13—C363.4 (3)O11—C19—O9—C163.7 (4)
C1—C7—C13—C354.0 (2)C20—C19—O9—C16177.3 (2)
C4—C3—C13—N1166.2 (2)C15—C16—O9—C19179.1 (2)
C2—C3—C13—N177.4 (3)C5—C16—O9—C1967.5 (3)
C4—C3—C13—C775.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10A···O20.842.112.788 (3)138
O7—H7···O80.842.042.560 (3)120
O4—H4···O11i0.842.203.018 (3)163
Symmetry code: (i) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC33H45NO11
Mr631.70
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)12.6820 (6), 15.3848 (7), 15.6110 (7)
V3)3045.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.46 × 0.35 × 0.12
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.954, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
18319, 3713, 3026
Rint0.042
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.081, 1.07
No. of reflections3713
No. of parameters418
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.22

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2003), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10A···O20.842.112.788 (3)138
O7—H7···O80.842.042.560 (3)120
O4—H4···O11i0.842.203.018 (3)163
Symmetry code: (i) x, y1/2, z+1/2.
 

Acknowledgements

The authors thank Guangdong Provincial Natural Science Foundation of China (No. 04300531) for financial assistance.

References

First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCodding, P. W. (1982). Acta Cryst. B38, 2519–2522.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDe Camp, W. H. & Pelletier, S. W. (1977). Acta Cryst. B33, 722–727.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationHikino, H., Konno, C., Takata, H., Yamada, Y., Yamada, C., Ohizumi, Y., Sugio, K. & Fujimura, H. (1980). J. Pharm. Dyn. 3, 514–525.  CrossRef CAS Google Scholar
First citationLi, Z. B., Lu, G. H., Chen, D. L. & Wang, F. P. (1997). Nat. Prod. Res. Dev. 9, 9-14.  Google Scholar
First citationMitamura, M., Horie, S., Sakaguchi, M., Someya, A., Tsuchiya, S. V., Murayama, T. & Watanabe, K. (2002). Eur. J. Pharmacol. 436, 217–225.  Web of Science CrossRef PubMed CAS Google Scholar
First citationParvez, M., Gul, W., Atta-ur-Rahman, Choudhary, M. I., Nasreen, A. & Fatima, N. (1999). Acta Cryst. C55, 72–74.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPelletier, S. W. & Djarmati, Z. (1976). J Am Chem Soc. 98, 2626–2636.  CrossRef CAS Web of Science Google Scholar
First citationPelletier, S. W., Finer-Moore, J., Desai, R. C., Mody, N. V. & Desai, H. K. (1982). J. Org. Chem. 47, 5290–5297.  CSD CrossRef CAS Web of Science Google Scholar
First citationSaito, H., Ueyama, T., Naka, N., Yagi, J. & Okamoto, T. (1982). Chem. Pharm. Bull. 30, 1844–1850.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsuda, Y. & Marion, L. (1963). Can. J. Chem. 41, 1485-1489.  CrossRef CAS Web of Science Google Scholar
First citationZhapova, T., Modonova, L. D. & Semenov, A. A. (1986). Chem Nat Compd, 21, 7678–679.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 6| June 2008| Pages o1033-o1034
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds