organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Methyl-5-(3-phen­oxy­phen­yl)cyclo­hex-2-enone

aDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India, bPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamil Nadu, India, and cInstitute of Organic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
*Correspondence e-mail: athiru@vsnl.net

(Received 29 April 2008; accepted 1 May 2008; online 10 May 2008)

In the title mol­ecule, C19H18O2, the cyclo­hexene ring adopts an envelope conformation, with all substituents equatorial. The dihedral angle between the benzene and phenyl rings is 83.75 (16)°. No classical hydrogen bonds are found in the crystal structure.

Related literature

For related literature, see: Pandiarajan et al. (2005[Pandiarajan, K., Sabapathy Mohan, R. T., Gomathi, R. & Muthukumaran, G. (2005). Magn. Reson. Chem. 43, 430-434.]).

[Scheme 1]

Experimental

Crystal data
  • C19H18O2

  • Mr = 278.33

  • Orthorhombic, P b c a

  • a = 9.6002 (3) Å

  • b = 17.1594 (7) Å

  • c = 17.6730 (5) Å

  • V = 2911.34 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 160 (1) K

  • 0.20 × 0.15 × 0.08 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: none

  • 32821 measured reflections

  • 2566 independent reflections

  • 1708 reflections with I > 2σ(I)

  • Rint = 0.115

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.198

  • S = 1.04

  • 2566 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 1.03 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The present X-ray diffraction study was undertaken to determine how the conformation of the system is affected by the substitution of a methyl group at position 3 and a phenoxyphenyl group at position 5 of the cyclohexenone ring. The molecular structure of the title compound, with atomic numbering scheme, is shown in Fig. 1. The cyclohexene ring adopts an envelope conformation, with all substituents equatorial. The dihedral angle between the benzene and phenyl rings is 83.75 (16)°. No classical hydrogen bonds are found in the crystal structure.

Related literature top

For related literature, see: Pandiarajan et al. (2005). The title compound was prepared according to the general procedure reported by Pandiarajan et al. (2005).

Experimental top

The title compound was prepared according to the general procedure reported by Pandiarajan et al. (2005). A mixture of 2,4-bis(ethoxycarbonyl)-5-hydroxy-5-methyl-3,3'-phenoxy phenylcyclohexanone (4.40 g, 0.01 mol) in glacial acetic acid (25 ml) and concentrated hydrochloric acid (50 ml) was refluxed for 12 h. After completion of the reaction, the reaction mixture was neutralized with aqueous ammonia and separated by using chloroform. The product was purified by column chromatography (benzene-EtOAc, 9.5:0.5 v/v). The yield of the isolated product was 2.08 g (75%).

Refinement top

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95–1.00 Å and Uiso(H) = xUeq(carrier atom), where x = 1.5 for methyl and 1.2 for all other C atoms. The maximum residual electron density peak is located 1.08 Å from C5.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 40% probability level. Hydrogen atoms are represented by spheres of arbitrary radius.
3-Methyl-5-(3-phenoxyphenyl)cyclohex-2-enone top
Crystal data top
C19H18O2Dx = 1.270 Mg m3
Mr = 278.33Melting point: 478 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2911 reflections
a = 9.6002 (3) Åθ = 2.0–25.0°
b = 17.1594 (7) ŵ = 0.08 mm1
c = 17.6730 (5) ÅT = 160 K
V = 2911.34 (17) Å3Tablet, colourless
Z = 80.20 × 0.15 × 0.08 mm
F(000) = 1184
Data collection top
Nonius KappaCCD area-detector
diffractometer
1708 reflections with I > 2σ(I)
Radiation source: Nonius FR590 sealed tube generatorRint = 0.115
Horizontally mounted graphite crystal monochromatorθmax = 25.1°, θmin = 2.4°
Detector resolution: 9 pixels mm-1h = 1111
ω scans with κ offsetsk = 2020
32821 measured reflectionsl = 2121
2566 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.198H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0847P)2 + 2.668P]
where P = (Fo2 + 2Fc2)/3
2566 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 1.04 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C19H18O2V = 2911.34 (17) Å3
Mr = 278.33Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.6002 (3) ŵ = 0.08 mm1
b = 17.1594 (7) ÅT = 160 K
c = 17.6730 (5) Å0.20 × 0.15 × 0.08 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
1708 reflections with I > 2σ(I)
32821 measured reflectionsRint = 0.115
2566 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0700 restraints
wR(F2) = 0.198H-atom parameters constrained
S = 1.04Δρmax = 1.04 e Å3
2566 reflectionsΔρmin = 0.38 e Å3
191 parameters
Special details top

Experimental. Solvent used: ? Cooling Device: Oxford Cryosystems Cryostream 700 Crystal mount: glued on a glass fibre Mosaicity (°.): 0.560 (2) Frames collected: 270 Seconds exposure per frame: 114 Degrees rotation per frame: 1.2 Crystal-Detector distance (mm): 30.0

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0247 (3)0.18365 (15)0.28956 (14)0.0629 (9)
O130.5599 (2)0.05049 (13)0.11517 (15)0.0591 (9)
C10.0118 (3)0.14143 (19)0.2341 (2)0.0455 (11)
C20.1041 (3)0.14696 (19)0.16869 (19)0.0451 (11)
C30.0947 (3)0.09996 (18)0.10876 (19)0.0413 (10)
C40.0161 (3)0.03832 (18)0.10374 (17)0.0395 (10)
C50.0737 (4)0.0131 (2)0.1805 (2)0.0567 (12)
C60.1045 (4)0.0818 (2)0.2293 (2)0.0550 (12)
C110.1921 (3)0.0452 (2)0.17330 (17)0.0493 (13)
C120.3246 (4)0.0212 (2)0.14640 (18)0.0514 (11)
C130.4298 (3)0.07684 (19)0.13841 (17)0.0412 (10)
C140.4052 (3)0.15345 (18)0.15702 (17)0.0399 (10)
C150.2749 (3)0.1745 (2)0.18305 (18)0.0478 (11)
C160.1706 (4)0.1217 (2)0.19066 (18)0.0523 (14)
C210.6445 (3)0.10391 (19)0.07643 (19)0.0450 (11)
C220.6069 (3)0.1299 (2)0.0053 (2)0.0490 (11)
C230.6939 (4)0.1795 (2)0.0331 (2)0.0512 (11)
C240.8177 (4)0.20337 (19)0.0009 (2)0.0485 (11)
C250.8541 (4)0.1771 (2)0.0703 (2)0.0517 (11)
C260.7668 (3)0.1271 (2)0.10933 (19)0.0472 (11)
C310.1933 (3)0.1052 (2)0.0437 (2)0.0547 (12)
H20.174410.185940.168810.0541*
H4A0.093810.058320.072420.0474*
H4B0.022960.007860.077740.0474*
H50.003880.015450.206140.0677*
H6A0.189050.107910.209660.0662*
H6B0.125610.063100.280980.0662*
H120.341460.031810.134010.0619*
H140.476760.191320.152030.0479*
H150.257850.227370.196000.0576*
H160.081810.138190.208210.0627*
H220.521620.113460.016840.0588*
H230.668720.197570.082070.0616*
H240.877650.237770.027550.0582*
H250.939400.193320.092520.0622*
H260.791330.109110.158380.0566*
H31A0.261010.146800.053160.0820*
H31B0.242360.055470.037890.0820*
H31C0.141270.116740.002670.0820*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0680 (17)0.0558 (16)0.0649 (16)0.0136 (13)0.0041 (13)0.0168 (14)
O130.0528 (15)0.0379 (14)0.0866 (18)0.0057 (12)0.0163 (13)0.0127 (12)
C10.0423 (18)0.0383 (18)0.056 (2)0.0021 (15)0.0055 (15)0.0018 (17)
C20.0354 (17)0.0379 (19)0.062 (2)0.0055 (14)0.0070 (15)0.0097 (16)
C30.0336 (16)0.0369 (18)0.0533 (19)0.0012 (14)0.0011 (14)0.0100 (15)
C40.0351 (16)0.0394 (18)0.0440 (17)0.0002 (14)0.0006 (13)0.0026 (14)
C50.054 (2)0.063 (2)0.053 (2)0.0137 (19)0.0044 (17)0.0033 (18)
C60.060 (2)0.044 (2)0.061 (2)0.0104 (17)0.0137 (18)0.0118 (17)
C110.0363 (18)0.077 (3)0.0347 (17)0.0184 (17)0.0048 (14)0.0115 (17)
C120.072 (2)0.0363 (19)0.0459 (19)0.0121 (18)0.0090 (17)0.0034 (15)
C130.0388 (17)0.0402 (19)0.0446 (18)0.0023 (15)0.0004 (14)0.0055 (14)
C140.0372 (17)0.0372 (19)0.0452 (18)0.0040 (14)0.0012 (14)0.0045 (14)
C150.047 (2)0.055 (2)0.0415 (18)0.0008 (17)0.0018 (15)0.0035 (16)
C160.048 (2)0.067 (3)0.0420 (19)0.0032 (19)0.0000 (15)0.0037 (17)
C210.0392 (17)0.0357 (18)0.060 (2)0.0048 (15)0.0081 (16)0.0010 (16)
C220.0410 (18)0.047 (2)0.059 (2)0.0015 (16)0.0023 (16)0.0042 (17)
C230.056 (2)0.050 (2)0.0476 (19)0.0128 (18)0.0041 (17)0.0002 (16)
C240.050 (2)0.0376 (19)0.058 (2)0.0036 (15)0.0159 (17)0.0008 (16)
C250.0421 (19)0.053 (2)0.060 (2)0.0040 (17)0.0005 (17)0.0115 (18)
C260.0466 (19)0.049 (2)0.0461 (19)0.0116 (16)0.0019 (16)0.0005 (16)
C310.050 (2)0.048 (2)0.066 (2)0.0049 (17)0.0103 (17)0.0078 (18)
Geometric parameters (Å, º) top
O1—C11.225 (4)C24—C251.382 (5)
O13—C131.390 (4)C25—C261.384 (5)
O13—C211.403 (4)C2—H20.9500
C1—C21.460 (5)C4—H4A0.9900
C1—C61.517 (5)C4—H4B0.9900
C2—C31.334 (5)C5—H51.0000
C3—C41.503 (4)C6—H6A0.9900
C3—C311.492 (5)C6—H6B0.9900
C4—C51.528 (5)C12—H120.9500
C5—C61.490 (5)C14—H140.9500
C5—C111.520 (5)C15—H150.9500
C11—C121.419 (5)C16—H160.9500
C11—C161.364 (5)C22—H220.9500
C12—C131.397 (5)C23—H230.9500
C13—C141.376 (4)C24—H240.9500
C14—C151.381 (4)C25—H250.9500
C15—C161.357 (5)C26—H260.9500
C21—C221.382 (5)C31—H31A0.9800
C21—C261.369 (4)C31—H31B0.9800
C22—C231.372 (5)C31—H31C0.9800
C23—C241.380 (5)
O1···H23i2.6700H4A···C23x2.9900
O1···H15ii2.7200H4A···C24x2.9200
O13···H6Biii2.7500H4B···C26viii2.9300
C2···C6iv3.511 (5)H4B···H31B2.4700
C6···C2iii3.511 (5)H5···C23.0200
C14···C223.332 (4)H5···H162.2600
C22···C143.332 (4)H5···C12iv3.0800
C24···C31v3.583 (5)H5···C13iv3.0100
C31···C24vi3.583 (5)H6A···C122.8000
C1···H6Aiv3.0900H6A···H122.3700
C2···H6Aiv3.0000H6A···C1iii3.0900
C2···H6Biv3.1000H6A···C2iii3.0000
C2···H53.0200H6B···O13iv2.7500
C2···H14vi3.0500H6B···C2iii3.1000
C6···H122.9600H12···C62.9600
C12···H5iii3.0800H12···H6A2.3700
C12···H4A2.9100H12···C22x3.0200
C12···H6A2.8000H14···C212.5700
C13···H222.9500H14···C223.0700
C13···H5iii3.0100H14···C263.0900
C14···H24vii2.9600H14···C2v3.0500
C14···H16iii2.9400H15···H23vii2.5400
C15···H23vii3.0100H15···O1xi2.7200
C15···H26iv3.0200H16···H52.2600
C16···H25viii3.0700H16···C14iv2.9400
C16···H26iv2.9200H22···C132.9500
C21···H31Bix3.0200H23···O1xii2.6700
C21···H142.5700H23···C15xiii3.0100
C22···H143.0700H23···H15xiii2.5400
C22···H12x3.0200H24···C14xiii2.9600
C23···H4Ax2.9900H25···C16ix3.0700
C24···H4Ax2.9200H26···C15iii3.0200
C24···H31Av2.8000H26···C16iii2.9200
C26···H4Bix2.9300H31A···H22.3100
C26···H143.0900H31A···C24vi2.8000
H2···H31A2.3100H31B···C21viii3.0200
H4A···C122.9100H31B···H4B2.4700
C13—O13—C21116.9 (2)C5—C4—H4A109.00
O1—C1—C2122.3 (3)C5—C4—H4B109.00
O1—C1—C6121.2 (3)H4A—C4—H4B108.00
C2—C1—C6116.5 (3)C4—C5—H5106.00
C1—C2—C3123.3 (3)C6—C5—H5106.00
C2—C3—C4121.3 (3)C11—C5—H5106.00
C2—C3—C31122.2 (3)C1—C6—H6A109.00
C4—C3—C31116.5 (3)C1—C6—H6B109.00
C3—C4—C5113.8 (3)C5—C6—H6A109.00
C4—C5—C6111.2 (3)C5—C6—H6B109.00
C4—C5—C11112.5 (3)H6A—C6—H6B108.00
C6—C5—C11114.9 (3)C11—C12—H12121.00
C1—C6—C5114.8 (3)C13—C12—H12121.00
C5—C11—C12120.5 (3)C13—C14—H14120.00
C5—C11—C16120.1 (3)C15—C14—H14120.00
C12—C11—C16119.4 (3)C14—C15—H15119.00
C11—C12—C13118.9 (3)C16—C15—H15119.00
O13—C13—C12117.2 (3)C11—C16—H16120.00
O13—C13—C14122.4 (3)C15—C16—H16120.00
C12—C13—C14120.3 (3)C21—C22—H22120.00
C13—C14—C15119.0 (3)C23—C22—H22120.00
C14—C15—C16121.8 (3)C22—C23—H23120.00
C11—C16—C15120.6 (3)C24—C23—H23120.00
O13—C21—C22120.2 (3)C23—C24—H24120.00
O13—C21—C26118.6 (3)C25—C24—H24120.00
C22—C21—C26121.1 (3)C24—C25—H25120.00
C21—C22—C23119.4 (3)C26—C25—H25120.00
C22—C23—C24120.3 (3)C21—C26—H26120.00
C23—C24—C25119.8 (3)C25—C26—H26120.00
C24—C25—C26120.2 (3)C3—C31—H31A109.00
C21—C26—C25119.2 (3)C3—C31—H31B109.00
C1—C2—H2118.00C3—C31—H31C109.00
C3—C2—H2118.00H31A—C31—H31B109.00
C3—C4—H4A109.00H31A—C31—H31C109.00
C3—C4—H4B109.00H31B—C31—H31C109.00
C21—O13—C13—C12153.1 (3)C6—C5—C11—C16125.0 (3)
C21—O13—C13—C1430.3 (4)C5—C11—C12—C13178.1 (3)
C13—O13—C21—C2267.2 (4)C16—C11—C12—C130.0 (5)
C13—O13—C21—C26115.2 (3)C5—C11—C16—C15178.7 (3)
O1—C1—C2—C3177.8 (3)C12—C11—C16—C150.6 (5)
C6—C1—C2—C33.8 (5)C11—C12—C13—O13177.2 (3)
O1—C1—C6—C5153.3 (3)C11—C12—C13—C140.6 (5)
C2—C1—C6—C528.3 (4)O13—C13—C14—C15177.0 (3)
C1—C2—C3—C41.6 (5)C12—C13—C14—C150.5 (5)
C1—C2—C3—C31178.0 (3)C13—C14—C15—C160.1 (5)
C2—C3—C4—C523.1 (4)C14—C15—C16—C110.7 (5)
C31—C3—C4—C5156.5 (3)O13—C21—C22—C23177.2 (3)
C3—C4—C5—C645.7 (4)C26—C21—C22—C230.3 (5)
C3—C4—C5—C11176.2 (3)O13—C21—C26—C25177.2 (3)
C4—C5—C6—C148.6 (4)C22—C21—C26—C250.3 (5)
C11—C5—C6—C1177.8 (3)C21—C22—C23—C240.2 (5)
C4—C5—C11—C1271.7 (4)C22—C23—C24—C250.1 (5)
C4—C5—C11—C16106.4 (3)C23—C24—C25—C260.1 (5)
C6—C5—C11—C1256.9 (4)C24—C25—C26—C210.2 (5)
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x, y1/2, z+1/2; (iii) x+1/2, y, z+1/2; (iv) x1/2, y, z+1/2; (v) x+1/2, y+1/2, z; (vi) x+1/2, y1/2, z; (vii) x1/2, y+1/2, z; (viii) x1, y, z; (ix) x+1, y, z; (x) x+1, y, z; (xi) x, y+1/2, z+1/2; (xii) x+1/2, y, z1/2; (xiii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC19H18O2
Mr278.33
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)160
a, b, c (Å)9.6002 (3), 17.1594 (7), 17.6730 (5)
V3)2911.34 (17)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.20 × 0.15 × 0.08
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
32821, 2566, 1708
Rint0.115
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.198, 1.04
No. of reflections2566
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.04, 0.38

Computer programs: COLLECT (Nonius, 2000), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2003).

 

Acknowledgements

AT thanks the UGC, India, for the award of a Minor Research Project [file No. MRP-2355/06 (UGC-SERO), link No. 2355, 10/01/2007].

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPandiarajan, K., Sabapathy Mohan, R. T., Gomathi, R. & Muthukumaran, G. (2005). Magn. Reson. Chem. 43, 430–434.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds