organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Methyl-5-(4-methyl­phen­yl)cyclo­hex-2-enone

aDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India, bPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamil Nadu, India, and cInstitute of Organic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
*Correspondence e-mail: athiru@vsnl.net

(Received 5 May 2008; accepted 8 May 2008; online 14 May 2008)

In the title mol­ecule, C14H16O, the cyclo­hexene ring adopts an envelope conformation, with all substituents equatorial. Mol­ecules are linked by C—H⋯O hydrogen bonds. A C—H⋯π inter­action involving the benzene ring is also found in the crystal structure. The H atoms of both methyl groups are disordered equally over two positions.

Related literature

For related literature, see: Padmavathi et al. (2000[Padmavathi, V., Jagan Mohan Reddy, B., Balaih, A., Venugopal Reddy, K. & Bhasker Reddy, D. (2000). Molecules. 5, 1281-1286.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16O

  • Mr = 200.27

  • Monoclinic, P 21 /n

  • a = 5.2623 (3) Å

  • b = 11.1583 (7) Å

  • c = 19.3341 (11) Å

  • β = 94.994 (4)°

  • V = 1130.96 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 160 (1) K

  • 0.25 × 0.18 × 0.18 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: none

  • 16716 measured reflections

  • 2002 independent reflections

  • 1316 reflections with I > 2σ(I)

  • Rint = 0.085

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.231

  • S = 1.09

  • 2002 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.95 2.48 3.425 (3) 173
C5—H5⋯Cgii 1.00 2.94 3.818 (3) 147
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x+1, y, z. Cg is the centroid of the bezene ring.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. London: Academic Press.]); data reduction: DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. London: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The title compound, has been analysed as part of our crystallographic studies on substituted cyclohexenes. The molecular structure of the title compound, with atomic numbering scheme, is shown in Fig. 1. The cyclohexene ring adopts an envelope conformation, with all substituents equatorial. Molecules are linked by C2—H2···O1(2 - x, 1 - y, 1 - z) hydrogen bonds (Fig. 2). A C—H···π interaction involving the benzene ring is also found in the crystal structure.

Related literature top

For related literature, see: Padmavathi et al. (2000). Cg is the centroid of the bezene ring

Experimental top

The title compound was prepared according to the general procedure reported by Padmavathi et al. (2000). A mixture of 2,4-bis(ethoxycarbonyl)-5-hydroxy-5-methyl-3,4'-methylphenylcyclohexanone (3.62 g, 0.01 mol) in glacial acetic acid (25 ml) and concentrated hydrochloric acid (50 ml) was refluxed for 12 h. After completion of the reaction, the reaction mixture was neutralized with aqueous ammonia and separated using chloroform. The product was purified by column chromatography (benzene-EtOAc, 9.5:0.5 v/v). The yield of the isolated product was 1.07 g (87%).

Refinement top

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95–1.00 Å and Uiso(H) = xUeq(carrier atom), where x = 1.5 for methyl and 1.2 for all other C atoms. The H atoms of both methyl groups were found to be disordered equally over two positions rotated from each other by 60°. They were refined as idealized.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are represented by spheres of arbitrary radius.
[Figure 2] Fig. 2. The molecular packing of the title compound, viewed down the a axis showing the C—H···O (dashed lines) interactions.
3-Methyl-5-(4-methylphenyl)cyclohex-2-enone top
Crystal data top
C14H16OF(000) = 432
Mr = 200.27Dx = 1.176 Mg m3
Monoclinic, P21/nMelting point: 315 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 5.2623 (3) ÅCell parameters from 2105 reflections
b = 11.1583 (7) Åθ = 2.0–25.0°
c = 19.3341 (11) ŵ = 0.07 mm1
β = 94.994 (4)°T = 160 K
V = 1130.96 (12) Å3Prism, colourless
Z = 40.25 × 0.18 × 0.18 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
1316 reflections with I > 2σ(I)
Radiation source: Nonius FR590 sealed tube generatorRint = 0.085
Horizontally mounted graphite crystal monochromatorθmax = 25.0°, θmin = 3.7°
Detector resolution: 9 pixels mm-1h = 06
ω scans with κ offsetsk = 013
16716 measured reflectionsl = 2222
2002 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.072H-atom parameters constrained
wR(F2) = 0.231 w = 1/[σ2(Fo2) + (0.1423P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2002 reflectionsΔρmax = 0.48 e Å3
137 parametersΔρmin = 0.30 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.16 (2)
Crystal data top
C14H16OV = 1130.96 (12) Å3
Mr = 200.27Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.2623 (3) ŵ = 0.07 mm1
b = 11.1583 (7) ÅT = 160 K
c = 19.3341 (11) Å0.25 × 0.18 × 0.18 mm
β = 94.994 (4)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
1316 reflections with I > 2σ(I)
16716 measured reflectionsRint = 0.085
2002 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0720 restraints
wR(F2) = 0.231H-atom parameters constrained
S = 1.09Δρmax = 0.48 e Å3
2002 reflectionsΔρmin = 0.30 e Å3
137 parameters
Special details top

Experimental. Solvent used: ? Cooling Device: Oxford Cryosystems Cryostream 700 Crystal mount: glued on a glass fibre Mosaicity (°.): 0.728 (3) Frames collected: 237 Seconds exposure per frame: 18 Degrees rotation per frame: 1.8 Crystal-Detector distance (mm): 30.0

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.8289 (3)0.60964 (17)0.42477 (10)0.0480 (7)
C10.6687 (5)0.5310 (2)0.41187 (13)0.0380 (9)
C20.6807 (5)0.4150 (3)0.44740 (14)0.0392 (9)
C30.5102 (5)0.3288 (2)0.43313 (13)0.0373 (9)
C40.2974 (5)0.3417 (2)0.37608 (13)0.0397 (9)
C50.3519 (5)0.4399 (2)0.32304 (14)0.0410 (9)
C60.4432 (5)0.5523 (3)0.36013 (15)0.0446 (10)
C110.1274 (5)0.4579 (2)0.26887 (14)0.0399 (9)
C120.0467 (5)0.3630 (3)0.22587 (15)0.0449 (10)
C130.1517 (5)0.3746 (3)0.17411 (15)0.0437 (10)
C140.2758 (5)0.4829 (2)0.16303 (13)0.0386 (9)
C150.1973 (5)0.5781 (2)0.20557 (14)0.0412 (9)
C160.0006 (5)0.5656 (2)0.25810 (14)0.0411 (9)
C210.4928 (5)0.4965 (3)0.10693 (15)0.0505 (10)
C310.5112 (6)0.2145 (2)0.47430 (15)0.0496 (10)
H20.816240.400750.482160.0471*
H4A0.272080.264200.351560.0476*
H4B0.137300.361480.396960.0476*
H50.497010.410210.297610.0492*
H6A0.490290.611870.325520.0536*
H6B0.301950.586440.384490.0536*
H120.130070.287790.232100.0539*
H130.202630.307440.146040.0525*
H150.279320.653530.198800.0494*
H160.046710.632150.287050.0493*
H21A0.556560.578990.106750.0758*0.500
H21B0.431590.478010.061680.0758*0.500
H21C0.630660.441170.116000.0758*0.500
H21D0.522650.419790.082870.0758*0.500
H21E0.647620.520770.127940.0758*0.500
H21F0.448550.557610.073620.0758*0.500
H31A0.370720.163090.455560.0744*0.500
H31B0.673700.172790.471170.0744*0.500
H31C0.489900.233120.522990.0744*0.500
H31D0.652160.216240.510920.0744*0.500
H31E0.349180.206540.495310.0744*0.500
H31F0.532980.146210.443490.0744*0.500
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0439 (12)0.0548 (13)0.0434 (13)0.0079 (10)0.0074 (9)0.0016 (9)
C10.0331 (15)0.0480 (17)0.0324 (15)0.0016 (13)0.0006 (12)0.0033 (12)
C20.0340 (14)0.0505 (17)0.0324 (15)0.0048 (13)0.0014 (12)0.0012 (12)
C30.0368 (15)0.0427 (16)0.0323 (15)0.0072 (12)0.0025 (12)0.0009 (12)
C40.0379 (16)0.0433 (17)0.0370 (16)0.0007 (12)0.0012 (12)0.0020 (12)
C50.0421 (16)0.0400 (16)0.0393 (16)0.0006 (12)0.0052 (13)0.0000 (12)
C60.0429 (16)0.0458 (17)0.0432 (17)0.0035 (13)0.0076 (13)0.0081 (13)
C110.0393 (16)0.0390 (16)0.0399 (16)0.0028 (12)0.0043 (12)0.0024 (12)
C120.0485 (17)0.0373 (16)0.0463 (18)0.0028 (12)0.0114 (14)0.0005 (12)
C130.0471 (17)0.0418 (17)0.0406 (17)0.0031 (13)0.0058 (13)0.0043 (12)
C140.0366 (15)0.0468 (17)0.0315 (15)0.0018 (12)0.0024 (11)0.0029 (12)
C150.0403 (16)0.0424 (16)0.0395 (17)0.0052 (12)0.0049 (13)0.0046 (12)
C160.0449 (16)0.0360 (16)0.0409 (17)0.0035 (12)0.0042 (13)0.0015 (12)
C210.0443 (17)0.065 (2)0.0398 (17)0.0002 (15)0.0103 (13)0.0021 (14)
C310.0583 (19)0.0449 (17)0.0441 (17)0.0061 (14)0.0038 (14)0.0024 (13)
Geometric parameters (Å, º) top
O1—C11.227 (3)C5—H51.0000
C1—C21.464 (4)C6—H6A0.9900
C1—C61.503 (4)C6—H6B0.9900
C2—C31.328 (4)C12—H120.9500
C3—C41.509 (4)C13—H130.9500
C3—C311.503 (3)C15—H150.9500
C4—C51.545 (3)C16—H160.9500
C5—C61.503 (4)C21—H21A0.9800
C5—C111.522 (4)C21—H21B0.9800
C11—C121.390 (4)C21—H21C0.9800
C11—C161.385 (3)C21—H21D0.9800
C12—C131.388 (4)C21—H21E0.9800
C13—C141.381 (4)C21—H21F0.9800
C14—C151.384 (3)C31—H31A0.9800
C14—C211.513 (4)C31—H31B0.9800
C15—C161.393 (4)C31—H31C0.9800
C2—H20.9500C31—H31D0.9800
C4—H4A0.9900C31—H31E0.9800
C4—H4B0.9900C31—H31F0.9800
O1···C31i3.387 (3)H4B···H2v2.5000
O1···H6Bii2.6800H5···C22.9700
O1···H13iii2.6500H5···C14ii3.0700
O1···H2iv2.4800H6A···C15ii2.9800
O1···H31Ci2.6800H6A···C162.8400
O1···H31Ei2.7800H6A···H162.4000
C1···C16ii3.594 (4)H6A···C12iii2.9700
C1···C2i3.467 (4)H6A···C13iii3.0500
C1···C3i3.579 (4)H6A···H12iii2.3200
C2···C1i3.467 (4)H6A···H13iii2.4900
C2···C2i3.468 (4)H6B···O1v2.6800
C3···C1i3.579 (4)H6B···C162.8100
C16···C1v3.594 (4)H6B···H162.2700
C31···O1i3.387 (3)H12···C42.9100
C1···H31Ci3.0600H12···H4A2.3800
C2···H52.9700H12···H6Avi2.3200
C2···H4Bii2.7400H12···H16vi2.4800
C4···H122.9100H13···H21D2.3500
C6···H162.5700H13···O1vi2.6500
C12···H21Cii2.9600H13···H6Avi2.4900
C12···H4A2.8300H15···H21A2.3500
C12···H6Avi2.9700H16···C62.5700
C13···H6Avi3.0500H16···H6A2.4000
C14···H5v3.0700H16···H6B2.2700
C15···H6Av2.9800H16···H12iii2.4800
C16···H6A2.8400H21A···H152.3500
C16···H6B2.8100H21A···H4Avii2.5200
C21···H31Biii3.0700H21C···C12v2.9600
C21···H31Avii2.9100H21D···H132.3500
C31···H21Fvi3.1000H21F···C31iii3.1000
H2···H4Bii2.5000H31A···H4A2.3200
H2···H31D2.3200H31A···C21viii2.9100
H2···O1iv2.4800H31B···C21vi3.0700
H4A···C122.8300H31C···O1i2.6800
H4A···H122.3800H31C···C1i3.0600
H4A···H31A2.3200H31D···H22.3200
H4A···H31F2.5200H31E···O1i2.7800
H4A···H21Aviii2.5200H31F···H4A2.5200
H4B···C2v2.7400
O1—C1—C2122.4 (2)C15—C16—H16119.00
O1—C1—C6120.7 (2)C14—C21—H21A109.00
C2—C1—C6116.8 (2)C14—C21—H21B109.00
C1—C2—C3122.8 (2)C14—C21—H21C109.00
C2—C3—C4121.9 (2)C14—C21—H21D109.00
C2—C3—C31122.2 (2)C14—C21—H21E109.00
C4—C3—C31115.9 (2)C14—C21—H21F109.00
C3—C4—C5112.6 (2)H21A—C21—H21B109.00
C4—C5—C6110.2 (2)H21A—C21—H21C110.00
C4—C5—C11111.9 (2)H21A—C21—H21D141.00
C6—C5—C11114.5 (2)H21A—C21—H21E56.00
C1—C6—C5112.8 (2)H21A—C21—H21F56.00
C5—C11—C12119.3 (2)H21B—C21—H21C109.00
C5—C11—C16123.8 (2)H21B—C21—H21D56.00
C12—C11—C16116.9 (2)H21B—C21—H21E141.00
C11—C12—C13122.1 (3)H21B—C21—H21F56.00
C12—C13—C14120.6 (3)H21C—C21—H21D56.00
C13—C14—C15117.8 (2)H21C—C21—H21E56.00
C13—C14—C21121.1 (2)H21C—C21—H21F141.00
C15—C14—C21121.1 (2)H21D—C21—H21E109.00
C14—C15—C16121.4 (2)H21D—C21—H21F109.00
C11—C16—C15121.2 (2)H21E—C21—H21F110.00
C1—C2—H2119.00C3—C31—H31A109.00
C3—C2—H2119.00C3—C31—H31B109.00
C3—C4—H4A109.00C3—C31—H31C109.00
C3—C4—H4B109.00C3—C31—H31D109.00
C5—C4—H4A109.00C3—C31—H31E109.00
C5—C4—H4B109.00C3—C31—H31F109.00
H4A—C4—H4B108.00H31A—C31—H31B109.00
C4—C5—H5107.00H31A—C31—H31C109.00
C6—C5—H5107.00H31A—C31—H31D141.00
C11—C5—H5107.00H31A—C31—H31E56.00
C1—C6—H6A109.00H31A—C31—H31F56.00
C1—C6—H6B109.00H31B—C31—H31C109.00
C5—C6—H6A109.00H31B—C31—H31D56.00
C5—C6—H6B109.00H31B—C31—H31E141.00
H6A—C6—H6B108.00H31B—C31—H31F56.00
C11—C12—H12119.00H31C—C31—H31D56.00
C13—C12—H12119.00H31C—C31—H31E56.00
C12—C13—H13120.00H31C—C31—H31F141.00
C14—C13—H13120.00H31D—C31—H31E109.00
C14—C15—H15119.00H31D—C31—H31F109.00
C16—C15—H15119.00H31E—C31—H31F109.00
C11—C16—H16119.00
O1—C1—C2—C3179.1 (3)C4—C5—C11—C16120.6 (3)
C6—C1—C2—C33.3 (4)C6—C5—C11—C12172.5 (2)
O1—C1—C6—C5149.3 (2)C6—C5—C11—C165.7 (4)
C2—C1—C6—C533.1 (3)C5—C11—C12—C13178.0 (3)
C1—C2—C3—C43.3 (4)C16—C11—C12—C130.4 (4)
C1—C2—C3—C31174.4 (2)C5—C11—C16—C15177.0 (2)
C2—C3—C4—C519.3 (3)C12—C11—C16—C151.3 (4)
C31—C3—C4—C5162.8 (2)C11—C12—C13—C140.6 (4)
C3—C4—C5—C647.3 (3)C12—C13—C14—C150.7 (4)
C3—C4—C5—C11175.9 (2)C12—C13—C14—C21179.8 (3)
C4—C5—C6—C154.2 (3)C13—C14—C15—C160.3 (4)
C11—C5—C6—C1178.6 (2)C21—C14—C15—C16178.9 (2)
C4—C5—C11—C1261.2 (3)C14—C15—C16—C111.3 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x+1/2, y+1/2, z+1/2; (iv) x+2, y+1, z+1; (v) x1, y, z; (vi) x+1/2, y1/2, z+1/2; (vii) x1/2, y+1/2, z+1/2; (viii) x1/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1iv0.952.483.425 (3)173
C5—H5···Cgii1.002.943.818 (3)147
Symmetry codes: (ii) x+1, y, z; (iv) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC14H16O
Mr200.27
Crystal system, space groupMonoclinic, P21/n
Temperature (K)160
a, b, c (Å)5.2623 (3), 11.1583 (7), 19.3341 (11)
β (°) 94.994 (4)
V3)1130.96 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.25 × 0.18 × 0.18
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
16716, 2002, 1316
Rint0.085
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.231, 1.09
No. of reflections2002
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.30

Computer programs: COLLECT (Nonius, 2000), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.952.483.425 (3)173
C5—H5···Cgii1.002.943.818 (3)147
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z.
 

Acknowledgements

AT thanks the UGC, India, for the award of a Minor Research Project [File No. MRP-2355/06(UGC-SERO), Link No. 2355, 10/01/2007].

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. London: Academic Press.  Google Scholar
First citationPadmavathi, V., Jagan Mohan Reddy, B., Balaih, A., Venugopal Reddy, K. & Bhasker Reddy, D. (2000). Molecules. 5, 1281–1286.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds