organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-(2,6-Di­hydroxy­naphthalene-1,5-diyldi­methyl­ene)dipyridinium bis­­(per­chlorate)

aSchool of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, People's Republic of China
*Correspondence e-mail: xingzheng0410@yahoo.com

(Received 15 May 2008; accepted 19 May 2008; online 30 May 2008)

The title compound, C22H20N2O22+·2ClO4, was synthesized by the reaction of naphthalene-2,6-diol with pyridine-4-carbaldehyde, 4-picolylamine and perchloric acid. There is a centre of symmetry at the mid-point of the central C—C bond of the cation. The two pyridine rings are parallel to each other, and the dihedral angle between the naphthalene ring system and the pyridine ring is 80.68 (11)°. All the bond lengths and angles are normal. Classical inter­molecular O—H⋯O and N—H⋯O hydrogen bonds connect cations and anions, forming a one-dimensional chain structure.

Related literature

For related literature, see: Fu & Zhao (2007[Fu, D.-W. & Zhao, H. (2007). Acta Cryst. E63, o3206.]); Aoki et al. (2004[Aoki, Y., Sakaguchi, S. & Ishii, Y. (2004). Adv. Synth. Catal. 346, 199-202.]); Jacobsson & Ellervik (2002[Jacobsson, M. & Ellervik, U. (2002). Tetrahedron Lett. 43, 6549-6552.]); Sasada et al. (2003[Sasada, Y., Shibasaki, Y., Suzuki, M. & Ueda, M. (2003). Polymer 44, 355-360.]); Szatmári et al. (2003[Szatmári, I., Martinek, T. A., Lázár, L. & Fülöp, F. (2003). Tetrahedron, 59, 2877-2884.]); Szatmári et al. (2004[Szatmári, I., Martinek, T. A., Lázár, L., Koch, A., Kleinpeter, E., Neuvonen, K. & Fülöp, F. (2004). J. Org. Chem. 69, 3645-3653.]); Cardellicchio et al. (1999[Cardellicchio, C., Ciccarella, G., Naso, F., Perna, F. & Tortorella, P. (1999). Tetrahedron, 55, 14685-14692.]). For a comparison of bond lengths and angles, see: Oloo et al. (2002[Oloo, E. O., Quail, J. W., Padmanilayam, M. P. & Dimmock, J. R. (2002). Acta Cryst. E58, o689-o690.]).

[Scheme 1]

Experimental

Crystal data
  • C22H20N2O22+·2ClO4

  • Mr = 543.30

  • Monoclinic, P 21 /c

  • a = 4.9587 (4) Å

  • b = 13.0399 (11) Å

  • c = 17.8291 (16) Å

  • β = 96.767 (2)°

  • V = 1144.82 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 296 (2) K

  • 0.30 × 0.20 × 0.05 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.925, Tmax = 0.988

  • 6156 measured reflections

  • 2011 independent reflections

  • 1610 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.151

  • S = 1.06

  • 2011 reflections

  • 168 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1C⋯O2i 0.82 2.05 2.859 (4) 169
N1—H1B⋯O3ii 0.86 2.24 2.997 (4) 148
N1—H1B⋯O4ii 0.86 2.33 3.121 (5) 153
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x-1, y-1, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Phenols and naphthols are an important class of compounds for the syntheses of dyes, pharmaceuticals and polymers. In particular, naphthalenediols are essential components of intelligent polymers such as engineering plastics and liquid crystalline polymers. 2,6-Naphthalenediol has attracted much attention for its chemical and physical properties as a liquid crystalline monomer material (Aoki et al., 2004; Jacobsson & Ellervik, 2002; Sasada et al., 2003). Electron-rich naphthols are also known to be good C-nucleophiles with the ability to undergo ready addition to CN double bonds in modified Mannich condensations (Szatmári et al., 2003; Szatmári et al., 2004 and Cardellicchio et al.,1999). A similar 1,1'-binaphthyl derivative has been reported recently (Fu & Zhao, 2007).

The structure of the title compound is illustrated in Fig. 1. All the bond lengths and angles are normal (Oloo et al., 2002). The two pyridine rings are parallel to each other, and the dihedral angle between the naphthol ring system and the pyridine ring is 80.68 (11)°. The C3—C6—C7—C9 torsion angle is 82.8 (3)°. The packing diagram (Fig. 2) shows that three classical intermolecular O—H···O and N—H···O hydrogen-bonds (Table 1) link cations and anions to form a one-dimensional chain structure.

Related literature top

For related literature, see: Fu & Zhao (2007); Aoki et al. (2004); Jacobsson & Ellervik (2002); Sasada et al. (2003); Szatmári et al. (2003); Szatmári et al. (2004); Cardellicchio et al. (1999). For a comparison of bonds and angles, see: Oloo et al. (2002).

Experimental top

Naphthalene-2,6-diol (1.60 g, 10 mmol), pyridine-4-carbaldehyde (1.07 g, 10 mmol), 4-picolylamine (1.08 g, 10 mmol) and perchloric acid (3 ml) were well mixed and heated to 120°C, cooled down and 25 ml ethanol was added after TLC showed that the reaction was complete. Well dispersed by ethanol, 1.50 g white powder was collected after filtration and finally recrystallized from ethanol, yielding the yellow title compound.

Refinement top

H atoms bonded to O and N atoms were located in a difference map and refined with distance restraints of O—H = 0.82 and N—H = 0.86 Å, and with Uiso(H) = 1.5Ueq(O,N). Other H atoms were positioned geometrically and were allowed to ride on the C atoms to which they are bonded, with C—H = 0.93–0.97 Å; Uiso(H) = xUeq(C), where x= 1.5 for Csp2 and 1.2 for Csp3.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry code (A): -x, -y + 1, -z.
[Figure 2] Fig. 2. The packing of the structure, viewed down the a axis, showing molecules connected by O—H···O and N—H···O hydrogen bonds (dashed lines). H atoms not involved in hydrogen bonding have been omitted.
4,4'-(2,6-Dihydroxynaphthalene-1,5-diyldimethylene)dipyridinium bis(perchlorate) top
Crystal data top
C22H20N2O22+·2ClO4F(000) = 560
Mr = 543.30Dx = 1.576 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3755 reflections
a = 4.9587 (4) Åθ = 2.8–25.0°
b = 13.0399 (11) ŵ = 0.35 mm1
c = 17.8291 (16) ÅT = 296 K
β = 96.767 (2)°Tabular, yellow
V = 1144.82 (17) Å30.30 × 0.20 × 0.05 mm
Z = 2
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2011 independent reflections
Radiation source: fine-focus sealed tube1610 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 55
Tmin = 0.925, Tmax = 0.988k = 1415
6156 measured reflectionsl = 2114
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0742P)2 + 0.8634P]
where P = (Fo2 + 2Fc2)/3
2011 reflections(Δ/σ)max < 0.001
168 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C22H20N2O22+·2ClO4V = 1144.82 (17) Å3
Mr = 543.30Z = 2
Monoclinic, P21/cMo Kα radiation
a = 4.9587 (4) ŵ = 0.35 mm1
b = 13.0399 (11) ÅT = 296 K
c = 17.8291 (16) Å0.30 × 0.20 × 0.05 mm
β = 96.767 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2011 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1610 reflections with I > 2σ(I)
Tmin = 0.925, Tmax = 0.988Rint = 0.023
6156 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.07Δρmax = 0.46 e Å3
2011 reflectionsΔρmin = 0.27 e Å3
168 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1573 (8)0.1073 (3)0.0739 (2)0.0616 (10)
H1A0.23670.06540.03520.074*
C20.0188 (7)0.1821 (2)0.0583 (2)0.0529 (8)
H2A0.05890.19150.00920.063*
C30.1388 (6)0.2445 (2)0.11614 (17)0.0407 (7)
C40.0721 (7)0.2263 (3)0.18810 (19)0.0532 (8)
H4A0.14880.26620.22830.064*
C50.1058 (8)0.1501 (3)0.2003 (2)0.0630 (10)
H5A0.14920.13780.24880.076*
C60.3317 (6)0.3289 (2)0.10067 (18)0.0456 (8)
H6A0.50710.29910.09470.055*
H6B0.35580.37460.14390.055*
C70.2348 (6)0.3905 (2)0.03090 (17)0.0412 (7)
C80.3277 (6)0.3667 (2)0.03634 (19)0.0489 (8)
C90.0446 (6)0.4723 (2)0.03359 (17)0.0390 (7)
C100.0624 (6)0.4991 (2)0.10063 (17)0.0462 (8)
H10A0.00820.46280.14470.055*
C110.2443 (7)0.5773 (3)0.10207 (19)0.0531 (8)
H11A0.31330.59360.14690.080*
Cl10.28576 (17)0.89190 (6)0.17150 (5)0.0565 (3)
N10.2164 (6)0.0937 (2)0.1433 (2)0.0618 (8)
H1B0.33050.04660.15180.093*
O10.5047 (5)0.2863 (2)0.03716 (15)0.0732 (8)
H1C0.51860.27010.08100.110*
O20.3960 (6)0.79156 (19)0.18131 (15)0.0704 (8)
O30.3505 (7)0.9360 (2)0.10369 (15)0.0823 (9)
O40.4082 (10)0.9556 (3)0.22951 (18)0.1228 (15)
O50.0089 (7)0.8878 (3)0.1717 (4)0.177 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.072 (2)0.0445 (19)0.065 (2)0.0003 (17)0.007 (2)0.0014 (17)
C20.066 (2)0.0429 (18)0.0483 (19)0.0033 (15)0.0006 (17)0.0020 (15)
C30.0432 (16)0.0336 (15)0.0431 (17)0.0128 (12)0.0042 (13)0.0051 (13)
C40.063 (2)0.0491 (19)0.0459 (19)0.0051 (16)0.0017 (16)0.0011 (15)
C50.075 (3)0.058 (2)0.058 (2)0.0047 (19)0.015 (2)0.0109 (18)
C60.0447 (17)0.0406 (16)0.0491 (19)0.0056 (13)0.0049 (14)0.0010 (14)
C70.0426 (16)0.0362 (15)0.0432 (17)0.0003 (13)0.0020 (13)0.0031 (13)
C80.0473 (18)0.0421 (17)0.057 (2)0.0121 (14)0.0068 (15)0.0009 (15)
C90.0389 (15)0.0347 (15)0.0428 (17)0.0008 (12)0.0025 (13)0.0038 (12)
C100.0540 (18)0.0444 (17)0.0403 (17)0.0031 (14)0.0057 (15)0.0070 (14)
C110.061 (2)0.0542 (19)0.0453 (19)0.0124 (16)0.0133 (16)0.0009 (15)
Cl10.0550 (5)0.0464 (5)0.0695 (6)0.0110 (4)0.0128 (4)0.0129 (4)
N10.0591 (18)0.0398 (16)0.086 (2)0.0005 (13)0.0067 (17)0.0113 (16)
O10.0863 (18)0.0700 (17)0.0639 (16)0.0429 (14)0.0108 (14)0.0016 (13)
O20.0823 (18)0.0523 (15)0.0787 (18)0.0170 (13)0.0176 (14)0.0166 (13)
O30.114 (2)0.0672 (17)0.0640 (18)0.0037 (16)0.0037 (16)0.0161 (14)
O40.225 (5)0.077 (2)0.064 (2)0.008 (3)0.010 (2)0.0115 (17)
O50.059 (2)0.121 (3)0.360 (7)0.031 (2)0.062 (3)0.132 (4)
Geometric parameters (Å, º) top
C1—N11.318 (5)C7—C91.429 (4)
C1—C21.359 (5)C8—O11.369 (4)
C1—H1A0.9300C8—C11i1.401 (5)
C2—C31.391 (4)C9—C101.408 (4)
C2—H2A0.9300C9—C9i1.424 (6)
C3—C41.383 (4)C10—C111.364 (4)
C3—C61.504 (4)C10—H10A0.9300
C4—C51.363 (5)C11—C8i1.401 (5)
C4—H4A0.9300C11—H11A0.9300
C5—N11.320 (5)Cl1—O51.374 (3)
C5—H5A0.9300Cl1—O41.407 (4)
C6—C71.511 (4)Cl1—O31.409 (3)
C6—H6A0.9700Cl1—O21.421 (3)
C6—H6B0.9700N1—H1B0.8600
C7—C81.370 (4)O1—H1C0.8200
N1—C1—C2120.5 (3)C9—C7—C6121.1 (3)
N1—C1—H1A119.7O1—C8—C7117.7 (3)
C2—C1—H1A119.7O1—C8—C11i121.1 (3)
C1—C2—C3119.9 (3)C7—C8—C11i121.2 (3)
C1—C2—H2A120.1C10—C9—C9i118.5 (3)
C3—C2—H2A120.1C10—C9—C7122.0 (3)
C4—C3—C2117.3 (3)C9i—C9—C7119.5 (3)
C4—C3—C6121.5 (3)C11—C10—C9121.2 (3)
C2—C3—C6121.2 (3)C11—C10—H10A119.4
C5—C4—C3120.2 (3)C9—C10—H10A119.4
C5—C4—H4A119.9C10—C11—C8i120.3 (3)
C3—C4—H4A119.9C10—C11—H11A119.8
N1—C5—C4120.1 (4)C8i—C11—H11A119.8
N1—C5—H5A119.9O5—Cl1—O4111.5 (3)
C4—C5—H5A119.9O5—Cl1—O3110.3 (3)
C3—C6—C7113.1 (2)O4—Cl1—O3105.5 (2)
C3—C6—H6A109.0O5—Cl1—O2109.5 (2)
C7—C6—H6A109.0O4—Cl1—O2109.1 (2)
C3—C6—H6B109.0O3—Cl1—O2110.97 (17)
C7—C6—H6B109.0C1—N1—C5122.0 (3)
H6A—C6—H6B107.8C1—N1—H1B119.0
C8—C7—C9119.3 (3)C5—N1—H1B119.0
C8—C7—C6119.6 (3)C8—O1—H1C109.5
N1—C1—C2—C30.3 (5)C9—C7—C8—C11i1.5 (5)
C1—C2—C3—C40.4 (4)C6—C7—C8—C11i179.4 (3)
C1—C2—C3—C6179.2 (3)C8—C7—C9—C10178.7 (3)
C2—C3—C4—C50.3 (5)C6—C7—C9—C100.4 (4)
C6—C3—C4—C5179.2 (3)C8—C7—C9—C9i0.1 (5)
C3—C4—C5—N10.4 (5)C6—C7—C9—C9i179.2 (3)
C4—C3—C6—C7135.8 (3)C9i—C9—C10—C111.1 (5)
C2—C3—C6—C743.7 (4)C7—C9—C10—C11179.9 (3)
C3—C6—C7—C896.3 (3)C9—C10—C11—C8i0.3 (5)
C3—C6—C7—C982.8 (3)C2—C1—N1—C51.1 (5)
C9—C7—C8—O1178.5 (3)C4—C5—N1—C11.1 (5)
C6—C7—C8—O10.6 (5)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1C···O2ii0.822.052.859 (4)169
N1—H1B···O3iii0.862.242.997 (4)148
N1—H1B···O4iii0.862.333.121 (5)153
Symmetry codes: (ii) x+1, y+1, z; (iii) x1, y1, z.

Experimental details

Crystal data
Chemical formulaC22H20N2O22+·2ClO4
Mr543.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)4.9587 (4), 13.0399 (11), 17.8291 (16)
β (°) 96.767 (2)
V3)1144.82 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.30 × 0.20 × 0.05
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.925, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
6156, 2011, 1610
Rint0.023
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.151, 1.07
No. of reflections2011
No. of parameters168
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.27

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1C···O2i0.822.052.859 (4)168.9
N1—H1B···O3ii0.862.242.997 (4)147.5
N1—H1B···O4ii0.862.333.121 (5)153.0
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y1, z.
 

Acknowledgements

This project was supported by a Start-up Grant from Southeast University to Dr Zhi-Rong Qu and by Jiangsu Education Department of China (No. 05KJB350031). The data collection was carried out by the School of Chemistry and Chemical Engineering, Nanjing University, P. R. China.

References

First citationAoki, Y., Sakaguchi, S. & Ishii, Y. (2004). Adv. Synth. Catal. 346, 199–202.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCardellicchio, C., Ciccarella, G., Naso, F., Perna, F. & Tortorella, P. (1999). Tetrahedron, 55, 14685–14692.  Web of Science CrossRef CAS Google Scholar
First citationFu, D.-W. & Zhao, H. (2007). Acta Cryst. E63, o3206.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJacobsson, M. & Ellervik, U. (2002). Tetrahedron Lett. 43, 6549–6552.  Web of Science CrossRef CAS Google Scholar
First citationOloo, E. O., Quail, J. W., Padmanilayam, M. P. & Dimmock, J. R. (2002). Acta Cryst. E58, o689–o690.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSasada, Y., Shibasaki, Y., Suzuki, M. & Ueda, M. (2003). Polymer 44, 355-360.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzatmári, I., Martinek, T. A., Lázár, L. & Fülöp, F. (2003). Tetrahedron, 59, 2877–2884.  Google Scholar
First citationSzatmári, I., Martinek, T. A., Lázár, L., Koch, A., Kleinpeter, E., Neuvonen, K. & Fülöp, F. (2004). J. Org. Chem. 69, 3645–3653.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds