metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido(2-meth­­oxy-1,10-phenanthroline-κ2N,N′)zinc(II)

aDepartment of Chemistry and Chemical Engineering, Institute of Materials Chemistry, Binzhou University, Binzhou 256603, People's Republic of China, and bDepartment of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China
*Correspondence e-mail: honglizhang1968@yahoo.cn

(Received 15 March 2008; accepted 24 April 2008; online 3 May 2008)

There are two molecules of the title complex, [ZnCl2(C13H10N2O)], in the asymmetric unit. Each Zn atom assumes a distorted tetra­hedral ZnN2Cl2 coordination geometry. There are weak ππ stacking inter­actions between adjacent 1,10-phenanthroline rings [centroid–centroid distances = 3.6356 (18) and 3.6353 (18) Å].

Related literature

For a related structure, see: Zheng et al. (2003[Zheng, S.-L., Zhang, J.-P., Wong, W.-T. & Chen, X.-M. (2003). J. Am. Chem. Soc. 125, 6882-6883.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnCl2(C13H10N2O)]

  • Mr = 346.50

  • Triclinic, [P \overline 1]

  • a = 9.9051 (17) Å

  • b = 11.5654 (19) Å

  • c = 12.774 (2) Å

  • α = 91.849 (2)°

  • β = 108.295 (2)°

  • γ = 98.672 (2)°

  • V = 1368.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.18 mm−1

  • T = 173 (2) K

  • 0.51 × 0.40 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.403, Tmax = 0.812

  • 7507 measured reflections

  • 5264 independent reflections

  • 4386 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.092

  • S = 1.05

  • 5264 reflections

  • 345 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cl1—Zn2 2.1911 (8)
Cl2—Zn2 2.2139 (9)
Cl3—Zn1 2.1949 (8)
Cl4—Zn1 2.2315 (8)
N1—Zn1 2.054 (2)
N2—Zn1 2.076 (2)
N3—Zn2 2.098 (2)
N4—Zn2 2.056 (2)
N1—Zn1—N2 81.15 (8)
N1—Zn1—Cl3 119.22 (6)
N2—Zn1—Cl3 114.55 (7)
N1—Zn1—Cl4 113.92 (6)
N2—Zn1—Cl4 107.63 (6)
Cl3—Zn1—Cl4 115.13 (3)
N4—Zn2—N3 80.57 (9)
N4—Zn2—Cl1 116.23 (7)
N3—Zn2—Cl1 117.56 (7)
N4—Zn2—Cl2 116.69 (7)
N3—Zn2—Cl2 104.48 (7)
Cl1—Zn2—Cl2 115.82 (4)

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The derivatives of 1,10-phenanthroline play a pivotal role in the area of modern coordination chemistry (Zheng et al., 2003), but the complexes with 2-methoxy-1,10-phenanthroline as ligand has not been reported. We are interested in this kind of ligands and here we report a new complex (I) with 2-methoxy-1,10-phenanthroline as ligand.

The coordination structure of (I) is shown in Fig. 1. Each Zn(II) ion is coordinated with two Cl ions and two N atoms, and Zn—Cl bond lengths range from 2.1911 (8)Å to 2.2315 (8) Å and Zn—N bond lengths vary from 2.054 (2) Å to 2.098 (2)Å. Obviously Zn1 and Zn2 atoms are in a distorted tetrahedral geometry (Table 1). There are weak π-π stacking interaction between neighbouring 1,10-phenanthroline ligands. The centroid-to-centroid distances and the centroid-to-plane distances are Cg1···Cg2i = 3.6356 (18)Å and Cg1···Cg2iperp = 3.476 Å; Cg3···Cg4ii = 3.6353 (18)Å and Cg3···Cg4iperp = 3.434Å, and Cgi···Cgj should be the centroid-to-centroid distance while the Cgi···Cgjprep should be the centroid-to-plane distance. Cg1, Cg2, Cg3 and Cg4 are the centroids of the rings N3/C14-C18, C17-C22, N2/C7-C11 and C5-C7/C11-C13, respectively. [symmetry codes: (i) 2-X, 2-Y, 2-Z; (ii) 1-X,1-Y,1-Z]

Related literature top

For a related structure, see: Zheng et al. (2003).

Experimental top

A methanol solution (10 ml) of ZnCl2 (0.0785 g, 0.576 mmol) was added into 10 ml of methanol solution containing 2-methoxy-1,10-phenanthroline (0.1205 g, 0.573 mmol), and the mixed solution was stirred for a few minutes. Colorless crystals were obtained after the solution had been allowed to stand at room temperature for one week.

Refinement top

H atoms were placed in calculated positions (C—H = 0.96 Å for methyl group and C—H = 0.93 Å for phenyl H atoms) and refined as riding with Uiso = 1.5 Ueq(C) for methyl H and Uiso = 1.2 Ueq(C) for phenyl H.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of complex (I), showing the the atom numbering scheme with thermal ellipsoids drawn at the 30% probability level.
Dichlorido(2-methoxy-1,10-phenanthroline-κ2N,N')zinc(II) top
Crystal data top
[ZnCl2(C13H10N2O)]Z = 4
Mr = 346.50F(000) = 696
Triclinic, P1Dx = 1.682 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.9051 (17) ÅCell parameters from 3641 reflections
b = 11.5654 (19) Åθ = 2.4–27.0°
c = 12.774 (2) ŵ = 2.18 mm1
α = 91.849 (2)°T = 173 K
β = 108.295 (2)°Block, colorless
γ = 98.672 (2)°0.51 × 0.40 × 0.10 mm
V = 1368.5 (4) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
5264 independent reflections
Radiation source: fine-focus sealed tube4386 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1210
Tmin = 0.403, Tmax = 0.812k = 1412
7507 measured reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0513P)2]
where P = (Fo2 + 2Fc2)/3
5264 reflections(Δ/σ)max = 0.001
345 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[ZnCl2(C13H10N2O)]γ = 98.672 (2)°
Mr = 346.50V = 1368.5 (4) Å3
Triclinic, P1Z = 4
a = 9.9051 (17) ÅMo Kα radiation
b = 11.5654 (19) ŵ = 2.18 mm1
c = 12.774 (2) ÅT = 173 K
α = 91.849 (2)°0.51 × 0.40 × 0.10 mm
β = 108.295 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
5264 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4386 reflections with I > 2σ(I)
Tmin = 0.403, Tmax = 0.812Rint = 0.019
7507 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.05Δρmax = 0.59 e Å3
5264 reflectionsΔρmin = 0.35 e Å3
345 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5226 (3)0.3267 (3)1.0172 (2)0.0481 (7)
H1A0.55870.25960.99740.072*
H1B0.45650.30281.05670.072*
H1C0.60160.38351.06340.072*
C20.5263 (3)0.4341 (2)0.8608 (2)0.0368 (6)
C30.6781 (3)0.4562 (2)0.8936 (2)0.0462 (7)
H30.73260.43040.95930.055*
C40.7431 (3)0.5151 (3)0.8286 (3)0.0505 (7)
H40.84330.52820.84870.061*
C50.6615 (3)0.5573 (2)0.7302 (2)0.0429 (6)
C60.5121 (3)0.5345 (2)0.7051 (2)0.0334 (5)
C70.4210 (3)0.5801 (2)0.6104 (2)0.0370 (6)
C80.1928 (4)0.6050 (3)0.5073 (2)0.0518 (7)
H80.09380.59180.49500.062*
C90.2462 (4)0.6718 (3)0.4356 (3)0.0622 (9)
H90.18380.70310.37720.075*
C100.3897 (4)0.6909 (3)0.4518 (2)0.0581 (9)
H100.42590.73410.40340.070*
C110.4844 (3)0.6458 (2)0.5413 (2)0.0453 (7)
C120.6372 (4)0.6614 (3)0.5662 (3)0.0540 (8)
H120.67910.70130.51910.065*
C130.7222 (3)0.6196 (3)0.6564 (3)0.0518 (8)
H130.82150.63150.67070.062*
C140.7048 (3)0.9284 (3)1.0543 (2)0.0493 (7)
H140.62890.96331.06090.059*
C150.7847 (4)0.8771 (3)1.1450 (2)0.0577 (8)
H150.76120.87601.21000.069*
C160.8981 (4)0.8284 (3)1.1366 (2)0.0593 (9)
H160.95320.79411.19660.071*
C170.9327 (3)0.8296 (2)1.0379 (2)0.0463 (7)
C180.8429 (3)0.8819 (2)0.9508 (2)0.0396 (6)
C190.8719 (3)0.8864 (2)0.8467 (2)0.0388 (6)
C200.9915 (3)0.8434 (2)0.8365 (3)0.0474 (7)
C211.0808 (4)0.7921 (3)0.9269 (3)0.0642 (9)
H211.16100.76400.91980.077*
C221.0512 (4)0.7837 (3)1.0217 (3)0.0628 (9)
H221.10920.74721.07840.075*
C231.0158 (4)0.8553 (3)0.7330 (3)0.0594 (9)
H231.09490.82940.72150.071*
C240.9236 (3)0.9045 (3)0.6509 (3)0.0526 (8)
H240.93980.91340.58340.063*
C250.8042 (3)0.9416 (3)0.6693 (2)0.0486 (7)
C260.7173 (5)1.0057 (4)0.4866 (3)0.0829 (13)
H26A0.80481.05940.49540.124*
H26B0.63651.03770.44170.124*
H26C0.72090.93220.45140.124*
Cl10.57382 (10)1.15815 (7)0.79281 (6)0.0581 (2)
Cl20.40833 (9)0.84139 (7)0.75709 (6)0.0574 (2)
Cl30.09774 (8)0.51212 (8)0.79552 (7)0.0641 (2)
Cl40.12965 (8)0.27076 (6)0.60771 (5)0.04690 (18)
N10.4460 (2)0.47186 (17)0.76905 (16)0.0327 (5)
N20.2774 (2)0.55965 (19)0.59217 (17)0.0393 (5)
N30.7313 (3)0.93004 (19)0.95981 (17)0.0410 (5)
N40.7788 (3)0.93342 (19)0.76405 (17)0.0398 (5)
O10.4488 (2)0.37827 (16)0.91786 (14)0.0420 (4)
O20.7019 (3)0.9874 (2)0.59364 (16)0.0640 (6)
Zn10.22524 (3)0.44580 (3)0.70131 (2)0.03586 (10)
Zn20.60675 (3)0.97534 (3)0.80582 (2)0.03979 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.060 (2)0.0456 (17)0.0352 (14)0.0128 (14)0.0073 (14)0.0087 (12)
C20.0341 (14)0.0349 (14)0.0394 (14)0.0070 (11)0.0090 (12)0.0005 (11)
C30.0316 (15)0.0500 (17)0.0519 (16)0.0070 (13)0.0066 (13)0.0025 (14)
C40.0281 (15)0.0530 (18)0.0653 (19)0.0035 (13)0.0100 (14)0.0037 (15)
C50.0353 (15)0.0393 (15)0.0547 (16)0.0019 (12)0.0205 (13)0.0073 (13)
C60.0312 (13)0.0297 (13)0.0395 (13)0.0017 (10)0.0141 (11)0.0043 (10)
C70.0424 (16)0.0308 (13)0.0391 (14)0.0000 (11)0.0186 (12)0.0025 (11)
C80.0515 (19)0.0526 (18)0.0488 (17)0.0105 (15)0.0111 (15)0.0138 (14)
C90.079 (3)0.059 (2)0.0433 (17)0.0102 (18)0.0118 (17)0.0194 (15)
C100.085 (3)0.0454 (18)0.0474 (17)0.0003 (17)0.0303 (18)0.0102 (14)
C110.0601 (19)0.0333 (15)0.0448 (15)0.0037 (13)0.0258 (15)0.0006 (12)
C120.066 (2)0.0428 (17)0.0623 (19)0.0104 (15)0.0430 (18)0.0056 (15)
C130.0414 (17)0.0467 (17)0.069 (2)0.0087 (13)0.0290 (16)0.0081 (15)
C140.0555 (19)0.0522 (18)0.0388 (15)0.0018 (14)0.0164 (14)0.0057 (13)
C150.067 (2)0.062 (2)0.0357 (15)0.0041 (17)0.0111 (15)0.0122 (14)
C160.064 (2)0.0517 (19)0.0446 (17)0.0045 (16)0.0010 (16)0.0167 (14)
C170.0420 (17)0.0342 (15)0.0501 (16)0.0008 (12)0.0008 (13)0.0087 (13)
C180.0391 (15)0.0284 (13)0.0437 (15)0.0002 (11)0.0054 (12)0.0047 (11)
C190.0376 (15)0.0285 (13)0.0459 (15)0.0003 (11)0.0105 (12)0.0006 (11)
C200.0379 (16)0.0386 (15)0.0631 (18)0.0010 (12)0.0155 (14)0.0026 (14)
C210.0428 (19)0.057 (2)0.089 (3)0.0133 (15)0.0128 (18)0.0051 (19)
C220.050 (2)0.055 (2)0.071 (2)0.0121 (16)0.0005 (17)0.0122 (17)
C230.0453 (19)0.055 (2)0.081 (2)0.0036 (15)0.0288 (18)0.0119 (17)
C240.0534 (19)0.0561 (19)0.0530 (18)0.0024 (15)0.0305 (16)0.0081 (15)
C250.0572 (19)0.0431 (16)0.0443 (16)0.0002 (14)0.0191 (15)0.0010 (13)
C260.129 (4)0.091 (3)0.0415 (18)0.026 (3)0.040 (2)0.0185 (18)
Cl10.0790 (6)0.0437 (4)0.0556 (4)0.0216 (4)0.0216 (4)0.0094 (3)
Cl20.0496 (5)0.0599 (5)0.0557 (4)0.0008 (4)0.0103 (4)0.0108 (4)
Cl30.0402 (4)0.0903 (6)0.0655 (5)0.0121 (4)0.0239 (4)0.0136 (4)
Cl40.0517 (4)0.0443 (4)0.0428 (4)0.0004 (3)0.0164 (3)0.0023 (3)
N10.0269 (11)0.0334 (11)0.0367 (11)0.0025 (9)0.0100 (9)0.0011 (9)
N20.0413 (13)0.0374 (12)0.0385 (12)0.0046 (10)0.0126 (10)0.0066 (10)
N30.0437 (14)0.0403 (13)0.0373 (12)0.0046 (10)0.0118 (10)0.0066 (10)
N40.0437 (13)0.0415 (13)0.0355 (11)0.0063 (10)0.0152 (10)0.0038 (10)
O10.0366 (11)0.0471 (11)0.0419 (10)0.0072 (8)0.0113 (9)0.0116 (9)
O20.0804 (17)0.0825 (16)0.0392 (11)0.0287 (13)0.0258 (11)0.0171 (11)
Zn10.02763 (17)0.04296 (19)0.03691 (17)0.00325 (13)0.01139 (13)0.00511 (13)
Zn20.0424 (2)0.04270 (19)0.03666 (18)0.01284 (14)0.01315 (15)0.00795 (14)
Geometric parameters (Å, º) top
C1—O11.449 (3)C15—H150.9300
C1—H1A0.9600C16—C171.406 (4)
C1—H1B0.9600C16—H160.9300
C1—H1C0.9600C17—C181.407 (4)
C2—N11.323 (3)C17—C221.427 (5)
C2—O11.330 (3)C18—N31.344 (4)
C2—C31.409 (4)C18—C191.447 (4)
C3—C41.345 (4)C19—N41.356 (3)
C3—H30.9300C19—C201.392 (4)
C4—C51.411 (4)C20—C231.423 (4)
C4—H40.9300C20—C211.424 (4)
C5—C61.393 (4)C21—C221.336 (5)
C5—C131.428 (4)C21—H210.9300
C6—N11.361 (3)C22—H220.9300
C6—C71.434 (4)C23—C241.361 (5)
C7—N21.349 (3)C23—H230.9300
C7—C111.412 (4)C24—C251.400 (4)
C8—N21.323 (3)C24—H240.9300
C8—C91.394 (4)C25—N41.315 (3)
C8—H80.9300C25—O21.349 (4)
C9—C101.353 (5)C26—O21.441 (3)
C9—H90.9300C26—H26A0.9600
C10—C111.404 (4)C26—H26B0.9600
C10—H100.9300C26—H26C0.9600
C11—C121.427 (4)Cl1—Zn22.1911 (8)
C12—C131.349 (5)Cl2—Zn22.2139 (9)
C12—H120.9300Cl3—Zn12.1949 (8)
C13—H130.9300Cl4—Zn12.2315 (8)
C14—N31.313 (3)N1—Zn12.054 (2)
C14—C151.389 (4)N2—Zn12.076 (2)
C14—H140.9300N3—Zn22.098 (2)
C15—C161.361 (5)N4—Zn22.056 (2)
O1—C1—H1A109.5N3—C18—C19117.8 (2)
O1—C1—H1B109.5C17—C18—C19119.2 (3)
H1A—C1—H1B109.5N4—C19—C20123.9 (3)
O1—C1—H1C109.5N4—C19—C18116.8 (2)
H1A—C1—H1C109.5C20—C19—C18119.3 (3)
H1B—C1—H1C109.5C19—C20—C23115.8 (3)
N1—C2—O1113.0 (2)C19—C20—C21119.9 (3)
N1—C2—C3121.8 (2)C23—C20—C21124.3 (3)
O1—C2—C3125.1 (2)C22—C21—C20121.0 (3)
C4—C3—C2119.0 (3)C22—C21—H21119.5
C4—C3—H3120.5C20—C21—H21119.5
C2—C3—H3120.5C21—C22—C17121.5 (3)
C3—C4—C5120.9 (3)C21—C22—H22119.3
C3—C4—H4119.5C17—C22—H22119.3
C5—C4—H4119.5C24—C23—C20120.2 (3)
C6—C5—C4116.5 (3)C24—C23—H23119.9
C6—C5—C13119.2 (3)C20—C23—H23119.9
C4—C5—C13124.3 (3)C23—C24—C25119.1 (3)
N1—C6—C5122.6 (2)C23—C24—H24120.5
N1—C6—C7117.0 (2)C25—C24—H24120.5
C5—C6—C7120.3 (2)N4—C25—O2112.3 (3)
N2—C7—C11122.8 (3)N4—C25—C24122.7 (3)
N2—C7—C6118.0 (2)O2—C25—C24125.0 (3)
C11—C7—C6119.2 (3)O2—C26—H26A109.5
N2—C8—C9122.5 (3)O2—C26—H26B109.5
N2—C8—H8118.7H26A—C26—H26B109.5
C9—C8—H8118.7O2—C26—H26C109.5
C10—C9—C8119.4 (3)H26A—C26—H26C109.5
C10—C9—H9120.3H26B—C26—H26C109.5
C8—C9—H9120.3C2—N1—C6119.0 (2)
C9—C10—C11120.3 (3)C2—N1—Zn1128.98 (18)
C9—C10—H10119.8C6—N1—Zn1111.96 (16)
C11—C10—H10119.8C8—N2—C7118.5 (2)
C10—C11—C7116.4 (3)C8—N2—Zn1130.2 (2)
C10—C11—C12124.8 (3)C7—N2—Zn1111.08 (17)
C7—C11—C12118.8 (3)C14—N3—C18118.5 (2)
C13—C12—C11121.6 (3)C14—N3—Zn2129.7 (2)
C13—C12—H12119.2C18—N3—Zn2111.10 (17)
C11—C12—H12119.2C25—N4—C19118.4 (3)
C12—C13—C5120.8 (3)C25—N4—Zn2128.8 (2)
C12—C13—H13119.6C19—N4—Zn2112.72 (17)
C5—C13—H13119.6C2—O1—C1118.9 (2)
N3—C14—C15123.2 (3)C25—O2—C26118.9 (3)
N3—C14—H14118.4N1—Zn1—N281.15 (8)
C15—C14—H14118.4N1—Zn1—Cl3119.22 (6)
C16—C15—C14118.5 (3)N2—Zn1—Cl3114.55 (7)
C16—C15—H15120.7N1—Zn1—Cl4113.92 (6)
C14—C15—H15120.7N2—Zn1—Cl4107.63 (6)
C15—C16—C17120.5 (3)Cl3—Zn1—Cl4115.13 (3)
C15—C16—H16119.7N4—Zn2—N380.57 (9)
C17—C16—H16119.7N4—Zn2—Cl1116.23 (7)
C16—C17—C18116.1 (3)N3—Zn2—Cl1117.56 (7)
C16—C17—C22124.9 (3)N4—Zn2—Cl2116.69 (7)
C18—C17—C22119.1 (3)N3—Zn2—Cl2104.48 (7)
N3—C18—C17123.0 (3)Cl1—Zn2—Cl2115.82 (4)
N1—C2—C3—C41.5 (4)O1—C2—N1—Zn14.6 (3)
O1—C2—C3—C4179.2 (3)C3—C2—N1—Zn1177.47 (19)
C2—C3—C4—C51.7 (4)C5—C6—N1—C22.3 (4)
C3—C4—C5—C60.0 (4)C7—C6—N1—C2176.0 (2)
C3—C4—C5—C13179.4 (3)C5—C6—N1—Zn1175.99 (19)
C4—C5—C6—N12.0 (4)C7—C6—N1—Zn15.7 (3)
C13—C5—C6—N1177.4 (2)C9—C8—N2—C70.7 (4)
C4—C5—C6—C7176.2 (2)C9—C8—N2—Zn1173.7 (2)
C13—C5—C6—C74.3 (4)C11—C7—N2—C81.4 (4)
N1—C6—C7—N21.0 (3)C6—C7—N2—C8177.6 (2)
C5—C6—C7—N2177.3 (2)C11—C7—N2—Zn1174.0 (2)
N1—C6—C7—C11180.0 (2)C6—C7—N2—Zn17.1 (3)
C5—C6—C7—C111.6 (4)C15—C14—N3—C181.4 (4)
N2—C8—C9—C100.6 (5)C15—C14—N3—Zn2168.3 (2)
C8—C9—C10—C111.3 (5)C17—C18—N3—C140.1 (4)
C9—C10—C11—C70.6 (4)C19—C18—N3—C14179.0 (2)
C9—C10—C11—C12179.6 (3)C17—C18—N3—Zn2171.4 (2)
N2—C7—C11—C100.7 (4)C19—C18—N3—Zn29.5 (3)
C6—C7—C11—C10178.2 (2)O2—C25—N4—C19178.6 (2)
N2—C7—C11—C12179.1 (2)C24—C25—N4—C190.5 (4)
C6—C7—C11—C122.0 (4)O2—C25—N4—Zn22.1 (4)
C10—C11—C12—C13177.2 (3)C24—C25—N4—Zn2177.0 (2)
C7—C11—C12—C133.0 (4)C20—C19—N4—C251.6 (4)
C11—C12—C13—C50.3 (5)C18—C19—N4—C25178.2 (2)
C6—C5—C13—C123.3 (4)C20—C19—N4—Zn2175.5 (2)
C4—C5—C13—C12177.2 (3)C18—C19—N4—Zn24.7 (3)
N3—C14—C15—C161.6 (5)N1—C2—O1—C1176.7 (2)
C14—C15—C16—C170.4 (5)C3—C2—O1—C15.4 (4)
C15—C16—C17—C180.7 (4)N4—C25—O2—C26177.9 (3)
C15—C16—C17—C22178.3 (3)C24—C25—O2—C263.1 (5)
C16—C17—C18—N30.9 (4)C2—N1—Zn1—N2174.7 (2)
C22—C17—C18—N3178.2 (3)C6—N1—Zn1—N27.20 (16)
C16—C17—C18—C19180.0 (2)C2—N1—Zn1—Cl361.5 (2)
C22—C17—C18—C190.9 (4)C6—N1—Zn1—Cl3120.45 (15)
N3—C18—C19—N43.5 (4)C2—N1—Zn1—Cl479.8 (2)
C17—C18—C19—N4177.4 (2)C6—N1—Zn1—Cl498.24 (15)
N3—C18—C19—C20176.4 (2)C8—N2—Zn1—N1177.6 (3)
C17—C18—C19—C202.7 (4)C7—N2—Zn1—N17.67 (16)
N4—C19—C20—C232.3 (4)C8—N2—Zn1—Cl359.5 (3)
C18—C19—C20—C23177.5 (2)C7—N2—Zn1—Cl3125.84 (16)
N4—C19—C20—C21178.0 (3)C8—N2—Zn1—Cl470.0 (3)
C18—C19—C20—C212.1 (4)C7—N2—Zn1—Cl4104.74 (16)
C19—C20—C21—C220.5 (5)C25—N4—Zn2—N3175.9 (3)
C23—C20—C21—C22179.9 (3)C19—N4—Zn2—N37.41 (18)
C20—C21—C22—C172.4 (5)C25—N4—Zn2—Cl159.7 (3)
C16—C17—C22—C21177.3 (3)C19—N4—Zn2—Cl1123.57 (17)
C18—C17—C22—C211.7 (5)C25—N4—Zn2—Cl282.5 (2)
C19—C20—C23—C241.0 (4)C19—N4—Zn2—Cl294.14 (18)
C21—C20—C23—C24179.3 (3)C14—N3—Zn2—N4179.4 (3)
C20—C23—C24—C250.8 (5)C18—N3—Zn2—N49.09 (18)
C23—C24—C25—N41.6 (5)C14—N3—Zn2—Cl165.8 (3)
C23—C24—C25—O2177.3 (3)C18—N3—Zn2—Cl1123.84 (17)
O1—C2—N1—C6177.4 (2)C14—N3—Zn2—Cl264.1 (3)
C3—C2—N1—C60.5 (4)C18—N3—Zn2—Cl2106.21 (17)

Experimental details

Crystal data
Chemical formula[ZnCl2(C13H10N2O)]
Mr346.50
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)9.9051 (17), 11.5654 (19), 12.774 (2)
α, β, γ (°)91.849 (2), 108.295 (2), 98.672 (2)
V3)1368.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.18
Crystal size (mm)0.51 × 0.40 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.403, 0.812
No. of measured, independent and
observed [I > 2σ(I)] reflections
7507, 5264, 4386
Rint0.019
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.092, 1.05
No. of reflections5264
No. of parameters345
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.35

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cl1—Zn22.1911 (8)N1—Zn12.054 (2)
Cl2—Zn22.2139 (9)N2—Zn12.076 (2)
Cl3—Zn12.1949 (8)N3—Zn22.098 (2)
Cl4—Zn12.2315 (8)N4—Zn22.056 (2)
N1—Zn1—N281.15 (8)N4—Zn2—N380.57 (9)
N1—Zn1—Cl3119.22 (6)N4—Zn2—Cl1116.23 (7)
N2—Zn1—Cl3114.55 (7)N3—Zn2—Cl1117.56 (7)
N1—Zn1—Cl4113.92 (6)N4—Zn2—Cl2116.69 (7)
N2—Zn1—Cl4107.63 (6)N3—Zn2—Cl2104.48 (7)
Cl3—Zn1—Cl4115.13 (3)Cl1—Zn2—Cl2115.82 (4)
 

Acknowledgements

The authors thank the Natural Science Foundation of Shandong Province of China for support (grant No. Y2007B26).

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZheng, S.-L., Zhang, J.-P., Wong, W.-T. & Chen, X.-M. (2003). J. Am. Chem. Soc. 125, 6882–6883.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds