organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(4-Chloro­phen­yl)-1-methyl-3-oxo­cyclo­hexa­necarbo­nitrile

aDepartment of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India, bPG Research Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613 005, Tamil Nadu, India, and cInstitute of Organic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
*Correspondence e-mail: athiru@vsnl.net

(Received 3 April 2008; accepted 30 April 2008; online 7 May 2008)

In the title mol­ecule, C14H14ClNO, the cyclo­hexane ring adopts a chair conformation. The cyano group and the methyl group have axial and equatorial orientations, respectively. The benzene ring has an equatorial orientation. A C—H⋯π inter­action involving the benzene ring is found in the crystal structure.

Related literature

Subramanyam et al. (2007a[Subramanyam, M., Thiruvalluvar, A., Mohan, R. T. S. & Kamatchi, S. (2007a). Acta Cryst. E63, o2717.],b[Subramanyam, M., Thiruvalluvar, A., Sabapathy Mohan, R. T. & Kamatchi, S. (2007b). Acta Cryst. E63, o2715-o2716.]) and Thiruvalluvar et al. (2007[Thiruvalluvar, A., Subramanyam, M., Mohan, R. T. S., Kamatchi, S. & Murugavel, K. (2007). Acta Cryst. E63, o2780.]) have reported the crystal structures of substituted cyclo­hexane derivatives, in which the cyclo­hexane rings are in a chair conformation.

[Scheme 1]

Experimental

Crystal data
  • C14H14ClNO

  • Mr = 247.71

  • Monoclinic, C 2/c

  • a = 23.3358 (6) Å

  • b = 6.0031 (2) Å

  • c = 20.8948 (6) Å

  • β = 122.386 (2)°

  • V = 2471.81 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 160 (1) K

  • 0.28 × 0.20 × 0.18 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.877, Tmax = 0.956

  • 28232 measured reflections

  • 2822 independent reflections

  • 2211 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.107

  • S = 1.05

  • 2822 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4BCgi 0.99 2.60 3.5333 (18) 157
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}]. Cg is the centroid of the benzene ring.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Subramanyam et al. (2007a,b) and Thiruvalluvar et al. (2007) have reported the crystal structures of substituted cyclohexane derivatives, in which the cyclohexane rings are in chair conformation. The molecular structure of the title compound, with atomic numbering scheme, is shown in Fig. 1. The cyclohexane ring adopts a chair conformation. The cyano group and the methyl group at position 1 have axial and equatorial orientations respectively. The benzene ring at position 5 has an equatorial orientation. A C4—H4B···π(-x, y, 1/2 - z) interaction involving the benzene ring is found in the structure. No classical hydrogen bonds are found in the crystal structure.

Related literature top

Subramanyam et al. (2007a,b) and Thiruvalluvar et al. (2007) have reported the crystal structures of substituted cyclohexane derivatives, in which the cyclohexane rings are in a chair conformation.

Experimental top

A mixture of 5–4'-chlorophenyl-3-methylcyclohex-2-enone (6.40 g, 0.02 mol), potassium cyanide (2.60 g, 0.04 mol), ammonium chloride (1.59 g, 0.03 mol), dimethyl formamide (50 ml) and water (2 ml) was heated with stirring for 16–18 h at 353 K. The reaction mixture was cooled to room temperature and poured into water. The product was extracted with CH2Cl2 (3x10 ml) and the organic layer was dried, evaporated and purified by column chromatography (hexane-EtOAc, 4.5:1 v/v). The yield of the isolated product was 4.30 g (87%).

Refinement top

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95 Å for Csp2, 0.98 Å for methyl C, 0.99 Å for methylene C and 1.00 Å for methine C; Uiso(H) = xUeq(carrier atom), where x = 1.5 for methyl and 1.2 for all other C atoms

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are represented by spheres of arbitrary radius.
5-(4-Chlorophenyl)-1-methyl-3-oxocyclohexanecarbonitrile top
Crystal data top
C14H14ClNOF(000) = 1040
Mr = 247.71Dx = 1.331 Mg m3
Monoclinic, C2/cMelting point: 358 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 23.3358 (6) ÅCell parameters from 31960 reflections
b = 6.0031 (2) Åθ = 2.0–27.5°
c = 20.8948 (6) ŵ = 0.29 mm1
β = 122.386 (2)°T = 160 K
V = 2471.81 (14) Å3Prism, colourless
Z = 80.28 × 0.20 × 0.18 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
2822 independent reflections
Radiation source: Nonius FR590 sealed tube generator2211 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.058
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.1°
ϕ and ω scans with κ offsetsh = 3029
Absorption correction: multi-scan
(Blessing, 1995)
k = 77
Tmin = 0.877, Tmax = 0.956l = 2727
28232 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0525P)2 + 1.7764P]
where P = (Fo2 + 2Fc2)/3
2822 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C14H14ClNOV = 2471.81 (14) Å3
Mr = 247.71Z = 8
Monoclinic, C2/cMo Kα radiation
a = 23.3358 (6) ŵ = 0.29 mm1
b = 6.0031 (2) ÅT = 160 K
c = 20.8948 (6) Å0.28 × 0.20 × 0.18 mm
β = 122.386 (2)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
2822 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
2211 reflections with I > 2σ(I)
Tmin = 0.877, Tmax = 0.956Rint = 0.058
28232 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.05Δρmax = 0.26 e Å3
2822 reflectionsΔρmin = 0.32 e Å3
154 parameters
Special details top

Experimental. Cooling Device: Oxford Cryosystems Cryostream 700

Crystal mount: glued on a glass fibre

Mosaicity (°.): 0.793 (2)

Frames collected: 394

Seconds exposure per frame: 16

Degrees rotation per frame: 1.6

Crystal-Detector distance (mm): 30.0

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.25175 (2)0.41436 (8)0.08818 (3)0.0406 (2)
O30.15529 (6)1.0355 (2)0.24871 (7)0.0401 (4)
N120.08284 (8)0.8728 (3)0.02081 (8)0.0387 (5)
C10.12125 (8)0.5713 (3)0.12750 (9)0.0257 (5)
C20.16797 (8)0.6816 (3)0.20566 (9)0.0296 (5)
C30.13140 (8)0.8524 (3)0.22416 (9)0.0290 (5)
C40.06351 (8)0.7819 (3)0.21034 (9)0.0292 (5)
C50.01764 (7)0.6715 (3)0.13228 (8)0.0241 (4)
C60.05647 (8)0.4842 (3)0.12188 (9)0.0264 (5)
C110.15935 (9)0.3848 (3)0.11531 (10)0.0350 (5)
C120.10064 (8)0.7426 (3)0.06780 (9)0.0277 (5)
C510.04910 (7)0.6001 (3)0.12231 (8)0.0239 (4)
C520.10261 (8)0.7514 (3)0.09191 (8)0.0270 (5)
C530.16454 (8)0.6975 (3)0.08277 (9)0.0293 (5)
C540.17302 (8)0.4867 (3)0.10337 (9)0.0289 (5)
C550.12083 (9)0.3334 (3)0.13444 (10)0.0322 (5)
C560.05897 (8)0.3916 (3)0.14389 (10)0.0304 (5)
H2A0.186850.564750.245270.0355*
H2B0.206380.754460.206420.0355*
H4A0.040060.914130.213960.0350*
H4B0.071010.675760.250400.0350*
H50.006990.787080.092930.0289*
H6A0.026640.413750.071730.0316*
H6B0.069060.369100.161200.0316*
H11A0.172940.270120.154270.0524*
H11B0.199810.446420.118780.0524*
H11C0.129640.318580.065080.0524*
H520.096680.894800.077050.0325*
H530.200350.803340.062760.0353*
H550.127020.190130.149170.0386*
H560.022820.286950.165500.0365*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0277 (2)0.0501 (3)0.0477 (3)0.0075 (2)0.0227 (2)0.0017 (2)
O30.0388 (7)0.0398 (7)0.0447 (7)0.0129 (6)0.0243 (6)0.0142 (6)
N120.0368 (8)0.0456 (9)0.0359 (8)0.0065 (7)0.0210 (7)0.0043 (7)
C10.0237 (8)0.0280 (8)0.0280 (8)0.0011 (6)0.0156 (7)0.0011 (6)
C20.0240 (8)0.0357 (9)0.0279 (8)0.0012 (7)0.0131 (7)0.0017 (7)
C30.0287 (8)0.0343 (9)0.0220 (7)0.0040 (7)0.0122 (7)0.0022 (7)
C40.0299 (8)0.0316 (9)0.0297 (8)0.0017 (7)0.0184 (7)0.0036 (7)
C50.0242 (7)0.0249 (8)0.0253 (7)0.0005 (6)0.0146 (6)0.0019 (6)
C60.0257 (8)0.0276 (8)0.0287 (8)0.0037 (6)0.0165 (7)0.0023 (7)
C110.0339 (9)0.0342 (9)0.0438 (10)0.0003 (7)0.0255 (8)0.0037 (8)
C120.0248 (8)0.0338 (9)0.0284 (8)0.0071 (7)0.0169 (7)0.0056 (7)
C510.0239 (7)0.0286 (8)0.0215 (7)0.0019 (6)0.0136 (6)0.0010 (6)
C520.0272 (8)0.0285 (8)0.0254 (8)0.0012 (7)0.0141 (6)0.0037 (6)
C530.0242 (8)0.0352 (9)0.0260 (8)0.0019 (7)0.0117 (7)0.0038 (7)
C540.0240 (8)0.0365 (9)0.0276 (8)0.0071 (7)0.0147 (7)0.0036 (7)
C550.0348 (9)0.0265 (8)0.0423 (10)0.0033 (7)0.0254 (8)0.0014 (7)
C560.0299 (8)0.0273 (8)0.0394 (9)0.0032 (7)0.0221 (8)0.0047 (7)
Geometric parameters (Å, º) top
Cl1—C541.744 (2)C54—C551.380 (3)
O3—C31.215 (2)C55—C561.393 (3)
N12—C121.145 (2)C2—H2A0.9900
C1—C21.545 (2)C2—H2B0.9900
C1—C61.544 (3)C4—H4A0.9900
C1—C111.533 (3)C4—H4B0.9900
C1—C121.484 (2)C5—H51.0000
C2—C31.511 (3)C6—H6A0.9900
C3—C41.511 (3)C6—H6B0.9900
C4—C51.541 (2)C11—H11A0.9800
C5—C61.531 (3)C11—H11B0.9800
C5—C511.518 (3)C11—H11C0.9800
C51—C521.392 (3)C52—H520.9500
C51—C561.391 (3)C53—H530.9500
C52—C531.391 (3)C55—H550.9500
C53—C541.385 (3)C56—H560.9500
Cl1···N12i3.335 (2)H4B···C51ii3.0000
Cl1···C12i3.397 (2)H4B···C52ii3.0000
Cl1···H2Aii3.0900H4B···C53ii2.9600
O3···H6Biii2.7300H4B···C54ii2.9200
O3···H11Aiii2.6300H4B···C55ii2.8900
O3···H55iv2.7100H4B···C56ii2.9200
N12···Cl1v3.335 (2)H5···N122.9200
N12···H52.9200H5···C122.5200
N12···H6Avi2.8200H5···H522.3500
N12···H52vii2.6300H6A···C563.0800
N12···H11Ciii2.8500H6A···H11C2.5500
C4···C123.527 (3)H6A···N12vi2.8200
C12···C43.527 (3)H6A···C12vi2.9900
C12···Cl1v3.397 (2)H6B···O3ix2.7300
C6···H562.7300H6B···C562.8100
C12···H52.5200H6B···H11A2.5700
C12···H6Avi2.9900H6B···H562.2500
C51···H4Bii3.0000H11A···O3ix2.6300
C52···H4A3.0700H11A···H2A2.4900
C52···H55iii3.0700H11A···H6B2.5700
C52···H4Bii3.0000H11B···H2B2.5500
C52···H11Cvi3.0200H11C···N12ix2.8500
C53···H4Bii2.9600H11C···H6A2.5500
C53···H53viii2.9900H11C···C52vi3.0200
C54···H4Bii2.9200H52···C55iii3.0700
C55···H52ix3.0700H52···H52.3500
C55···H4Bii2.8900H52···N12vii2.6300
C56···H6A3.0800H53···C53viii2.9900
C56···H6B2.8100H53···H53viii2.4800
C56···H4Bii2.9200H55···C52ix3.0700
H2A···H11A2.4900H55···O3x2.7100
H2A···Cl1ii3.0900H56···C62.7300
H2B···H11B2.5500H56···H4Aix2.5700
H4A···C523.0700H56···H6B2.2500
H4A···H56iii2.5700
C2—C1—C6109.48 (15)C3—C2—H2B109.00
C2—C1—C11110.17 (15)H2A—C2—H2B108.00
C2—C1—C12108.61 (15)C3—C4—H4A109.00
C6—C1—C11111.80 (15)C3—C4—H4B109.00
C6—C1—C12107.91 (15)C5—C4—H4A109.00
C11—C1—C12108.79 (15)C5—C4—H4B109.00
C1—C2—C3112.70 (16)H4A—C4—H4B108.00
O3—C3—C2121.85 (19)C4—C5—H5107.00
O3—C3—C4122.09 (18)C6—C5—H5107.00
C2—C3—C4116.05 (15)C51—C5—H5107.00
C3—C4—C5112.68 (15)C1—C6—H6A109.00
C4—C5—C6109.74 (14)C1—C6—H6B109.00
C4—C5—C51110.28 (14)C5—C6—H6A109.00
C6—C5—C51114.51 (15)C5—C6—H6B109.00
C1—C6—C5111.74 (15)H6A—C6—H6B108.00
N12—C12—C1178.0 (2)C1—C11—H11A109.00
C5—C51—C52118.81 (16)C1—C11—H11B109.00
C5—C51—C56123.05 (16)C1—C11—H11C109.00
C52—C51—C56118.12 (18)H11A—C11—H11B109.00
C51—C52—C53121.54 (17)H11A—C11—H11C109.00
C52—C53—C54118.75 (18)H11B—C11—H11C109.00
Cl1—C54—C53118.89 (15)C51—C52—H52119.00
Cl1—C54—C55119.86 (15)C53—C52—H52119.00
C53—C54—C55121.2 (2)C52—C53—H53121.00
C54—C55—C56119.07 (17)C54—C53—H53121.00
C51—C56—C55121.26 (18)C54—C55—H55120.00
C1—C2—H2A109.00C56—C55—H55120.00
C1—C2—H2B109.00C51—C56—H56119.00
C3—C2—H2A109.00C55—C56—H56119.00
C6—C1—C2—C351.31 (19)C4—C5—C51—C5288.61 (17)
C11—C1—C2—C3174.65 (16)C4—C5—C51—C5689.75 (19)
C12—C1—C2—C366.3 (2)C6—C5—C51—C52147.05 (14)
C2—C1—C6—C558.91 (17)C6—C5—C51—C5634.6 (2)
C11—C1—C6—C5178.71 (13)C5—C51—C52—C53178.71 (14)
C12—C1—C6—C559.12 (17)C56—C51—C52—C530.3 (2)
C1—C2—C3—O3133.05 (17)C5—C51—C56—C55179.36 (15)
C1—C2—C3—C447.0 (2)C52—C51—C56—C551.0 (2)
O3—C3—C4—C5132.96 (17)C51—C52—C53—C541.1 (2)
C2—C3—C4—C547.1 (2)C52—C53—C54—Cl1177.24 (12)
C3—C4—C5—C651.79 (19)C52—C53—C54—C551.8 (2)
C3—C4—C5—C51178.83 (14)Cl1—C54—C55—C56177.93 (14)
C4—C5—C6—C159.17 (18)C53—C54—C55—C561.1 (3)
C51—C5—C6—C1176.20 (12)C54—C55—C56—C510.3 (3)
Symmetry codes: (i) x1/2, y1/2, z; (ii) x, y, z+1/2; (iii) x, y+1, z; (iv) x, y+1, z+1/2; (v) x+1/2, y+1/2, z; (vi) x, y+1, z; (vii) x, y+2, z; (viii) x1/2, y+3/2, z; (ix) x, y1, z; (x) x, y1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···Cgii0.992.603.5333 (18)157
Symmetry code: (ii) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H14ClNO
Mr247.71
Crystal system, space groupMonoclinic, C2/c
Temperature (K)160
a, b, c (Å)23.3358 (6), 6.0031 (2), 20.8948 (6)
β (°) 122.386 (2)
V3)2471.81 (14)
Z8
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.28 × 0.20 × 0.18
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.877, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
28232, 2822, 2211
Rint0.058
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.107, 1.05
No. of reflections2822
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.32

Computer programs: COLLECT (Nonius, 2000), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···Cgi0.992.603.5333 (18)157
Symmetry code: (i) x, y, z+1/2.
 

Acknowledgements

AT thanks the UGC, India, for the award of a Minor Research Project [file No. MRP-2355/06 (UGC-SERO), link No. 2355, 10/01/2007].

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSubramanyam, M., Thiruvalluvar, A., Mohan, R. T. S. & Kamatchi, S. (2007a). Acta Cryst. E63, o2717.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSubramanyam, M., Thiruvalluvar, A., Sabapathy Mohan, R. T. & Kamatchi, S. (2007b). Acta Cryst. E63, o2715–o2716.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationThiruvalluvar, A., Subramanyam, M., Mohan, R. T. S., Kamatchi, S. & Murugavel, K. (2007). Acta Cryst. E63, o2780.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds