organic compounds
Methyl 3-[(E)-furfurylidene]dithiocarbazate
aCollege of Chemical Engineering and Materials Science, Zhejiang University of Technology, People's Republic of China
*Correspondence e-mail: shanshang@mail.hz.zj.cn
The molecule of the title Schiff base compound, C7H8N2OS2, prepared by the reaction of methyl dithiocarbazate and furfural in an ethanol solution under reflux, adopts an E configuration; the dithiocarbazate and furan units are located on opposite sides of the C=N double bond. The planar dithiocarbazate group is twisted slightly with respect to the furan ring, making a dihedral angle of 5.2 (1)°. Adjacent molecules are linked by N—H⋯S hydrogen bonding to form a supramolecular dimer across an inversion center.
Related literature
For general background, see: Okabe et al. (1993); Shan et al. (2002, 2003). For a related structure, see: Chen et al. (2007). For the synthesis, see: Hu et al. (2001).
Experimental
Crystal data
|
Refinement
|
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536808012506/xu2417sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808012506/xu2417Isup2.hkl
Methyl dithiocarbazate was synthesized in the manner reported previously (Hu et al., 2001). Methyl dithiocarbazate (1.24 g, 10 mmol) and furfural (0.96 g, 10 mmol) were dissolved in ethanol (10 ml) and refluxed for 4 h. Yellow crystalline product appeared after cooling to room temperature. They were separated and washed with cold water. Single crystals of the title compound were obtained by recrystallization from an ethanol solution.
Methyl H atoms were placed in calculated positions with C—H = 0.96 Å and torsion angle was refined to fit electron density, Uiso(H) = 1.5Ueq(C). Other H atoms were placed in calculated positions with C—H = 0.93 and N—H = 0.86 Å, and refined in the riding mode, Uiso(H) = 1.2Ueq(C,N).
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The molecular structure of the title compound with 40% probability displacement ellipsoids (arbitrary spheres for H atoms) [symmetry code: (i) -x, 1 - y, 1 - z]. |
C7H8N2OS2 | Z = 2 |
Mr = 200.27 | F(000) = 208 |
Triclinic, P1 | Dx = 1.448 Mg m−3 |
Hall symbol: -P 1 | Melting point = 414–416 K |
a = 4.0866 (8) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.8698 (12) Å | Cell parameters from 2276 reflections |
c = 12.8453 (15) Å | θ = 2.0–25.0° |
α = 93.970 (14)° | µ = 0.53 mm−1 |
β = 91.856 (12)° | T = 294 K |
γ = 98.293 (12)° | Prism, yellow |
V = 459.21 (12) Å3 | 0.34 × 0.28 × 0.20 mm |
Rigaku R-AXIS RAPID IP diffractometer | 1608 independent reflections |
Radiation source: fine-focus sealed tube | 1349 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.030 |
Detector resolution: 10.0 pixels mm-1 | θmax = 25.2°, θmin = 1.6° |
ω scans | h = −4→4 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −10→10 |
Tmin = 0.850, Tmax = 0.950 | l = −15→14 |
4733 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.096 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0598P)2] where P = (Fo2 + 2Fc2)/3 |
1608 reflections | (Δ/σ)max = 0.001 |
110 parameters | Δρmax = 0.19 e Å−3 |
0 restraints | Δρmin = −0.28 e Å−3 |
C7H8N2OS2 | γ = 98.293 (12)° |
Mr = 200.27 | V = 459.21 (12) Å3 |
Triclinic, P1 | Z = 2 |
a = 4.0866 (8) Å | Mo Kα radiation |
b = 8.8698 (12) Å | µ = 0.53 mm−1 |
c = 12.8453 (15) Å | T = 294 K |
α = 93.970 (14)° | 0.34 × 0.28 × 0.20 mm |
β = 91.856 (12)° |
Rigaku R-AXIS RAPID IP diffractometer | 1608 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 1349 reflections with I > 2σ(I) |
Tmin = 0.850, Tmax = 0.950 | Rint = 0.030 |
4733 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | 0 restraints |
wR(F2) = 0.096 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.19 e Å−3 |
1608 reflections | Δρmin = −0.28 e Å−3 |
110 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.20815 (13) | 0.27619 (5) | 0.50863 (4) | 0.0516 (2) | |
S2 | 0.38692 (13) | 0.20142 (5) | 0.28541 (4) | 0.0506 (2) | |
N1 | 0.1859 (4) | 0.45265 (16) | 0.35473 (12) | 0.0464 (4) | |
H1 | 0.1098 | 0.5149 | 0.3988 | 0.056* | |
N2 | 0.2353 (4) | 0.49265 (16) | 0.25394 (11) | 0.0449 (4) | |
O1 | 0.3206 (4) | 0.60245 (14) | 0.05809 (10) | 0.0553 (4) | |
C1 | 0.2537 (4) | 0.3197 (2) | 0.38518 (14) | 0.0407 (4) | |
C2 | 0.4665 (5) | 0.0393 (2) | 0.35393 (17) | 0.0557 (5) | |
H2A | 0.6311 | 0.0720 | 0.4090 | 0.084* | |
H2B | 0.5448 | −0.0343 | 0.3062 | 0.084* | |
H2C | 0.2659 | −0.0063 | 0.3831 | 0.084* | |
C3 | 0.1483 (5) | 0.6216 (2) | 0.23454 (16) | 0.0502 (5) | |
H3 | 0.0577 | 0.6772 | 0.2875 | 0.060* | |
C4 | 0.1847 (5) | 0.6835 (2) | 0.13501 (16) | 0.0481 (5) | |
C5 | 0.1076 (7) | 0.8131 (3) | 0.09881 (19) | 0.0685 (6) | |
H5 | 0.0139 | 0.8886 | 0.1360 | 0.082* | |
C6 | 0.1961 (6) | 0.8126 (3) | −0.00661 (18) | 0.0673 (6) | |
H6 | 0.1705 | 0.8873 | −0.0523 | 0.081* | |
C7 | 0.3227 (6) | 0.6849 (3) | −0.02770 (17) | 0.0608 (6) | |
H7 | 0.4018 | 0.6557 | −0.0920 | 0.073* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0714 (4) | 0.0502 (3) | 0.0359 (3) | 0.0125 (2) | 0.0107 (2) | 0.0105 (2) |
S2 | 0.0694 (4) | 0.0482 (3) | 0.0378 (3) | 0.0171 (2) | 0.0114 (2) | 0.0072 (2) |
N1 | 0.0681 (10) | 0.0401 (8) | 0.0326 (9) | 0.0104 (7) | 0.0108 (7) | 0.0056 (7) |
N2 | 0.0614 (10) | 0.0393 (8) | 0.0352 (9) | 0.0078 (7) | 0.0060 (7) | 0.0077 (7) |
O1 | 0.0837 (10) | 0.0443 (7) | 0.0418 (8) | 0.0168 (7) | 0.0145 (7) | 0.0112 (6) |
C1 | 0.0456 (10) | 0.0405 (9) | 0.0345 (10) | 0.0013 (8) | 0.0024 (8) | 0.0026 (8) |
C2 | 0.0701 (14) | 0.0467 (11) | 0.0534 (13) | 0.0161 (9) | 0.0056 (10) | 0.0087 (9) |
C3 | 0.0655 (13) | 0.0478 (11) | 0.0390 (11) | 0.0114 (9) | 0.0094 (9) | 0.0051 (9) |
C4 | 0.0631 (12) | 0.0419 (10) | 0.0419 (11) | 0.0129 (9) | 0.0072 (9) | 0.0076 (8) |
C5 | 0.0988 (17) | 0.0596 (13) | 0.0577 (14) | 0.0391 (12) | 0.0168 (12) | 0.0165 (11) |
C6 | 0.0947 (17) | 0.0596 (13) | 0.0544 (15) | 0.0224 (12) | 0.0054 (12) | 0.0278 (11) |
C7 | 0.0875 (16) | 0.0583 (12) | 0.0393 (12) | 0.0115 (11) | 0.0109 (10) | 0.0173 (9) |
S1—C1 | 1.6675 (18) | C2—H2B | 0.9600 |
S2—C1 | 1.7500 (19) | C2—H2C | 0.9600 |
S2—C2 | 1.800 (2) | C3—C4 | 1.430 (3) |
N1—N2 | 1.379 (2) | C3—H3 | 0.9300 |
N1—C1 | 1.331 (2) | C4—C5 | 1.344 (3) |
N1—H1 | 0.8600 | C5—C6 | 1.413 (3) |
N2—C3 | 1.284 (2) | C5—H5 | 0.9300 |
O1—C4 | 1.361 (2) | C6—C7 | 1.327 (4) |
O1—C7 | 1.364 (2) | C6—H6 | 0.9300 |
C2—H2A | 0.9600 | C7—H7 | 0.9300 |
C1—S2—C2 | 101.98 (9) | N2—C3—C4 | 122.79 (19) |
C1—N1—N2 | 121.34 (16) | N2—C3—H3 | 118.6 |
C1—N1—H1 | 119.3 | C4—C3—H3 | 118.6 |
N2—N1—H1 | 119.3 | C5—C4—O1 | 109.57 (17) |
C3—N2—N1 | 114.59 (16) | C5—C4—C3 | 132.1 (2) |
C4—O1—C7 | 106.45 (15) | O1—C4—C3 | 118.37 (16) |
N1—C1—S1 | 120.76 (14) | C4—C5—C6 | 106.8 (2) |
N1—C1—S2 | 114.05 (13) | C4—C5—H5 | 126.6 |
S1—C1—S2 | 125.19 (11) | C6—C5—H5 | 126.6 |
S2—C2—H2A | 109.5 | C7—C6—C5 | 106.67 (19) |
S2—C2—H2B | 109.5 | C7—C6—H6 | 126.7 |
H2A—C2—H2B | 109.5 | C5—C6—H6 | 126.7 |
S2—C2—H2C | 109.5 | C6—C7—O1 | 110.5 (2) |
H2A—C2—H2C | 109.5 | C6—C7—H7 | 124.8 |
H2B—C2—H2C | 109.5 | O1—C7—H7 | 124.8 |
C1—N1—N2—C3 | 177.62 (17) | N2—C3—C4—C5 | 179.2 (2) |
N2—N1—C1—S1 | 177.32 (12) | N2—C3—C4—O1 | −0.7 (3) |
N2—N1—C1—S2 | −3.0 (2) | O1—C4—C5—C6 | 0.7 (3) |
C2—S2—C1—N1 | 178.23 (14) | C3—C4—C5—C6 | −179.2 (2) |
C2—S2—C1—S1 | −2.13 (15) | C4—C5—C6—C7 | −0.5 (3) |
N1—N2—C3—C4 | 179.09 (17) | C5—C6—C7—O1 | 0.1 (3) |
C7—O1—C4—C5 | −0.6 (2) | C4—O1—C7—C6 | 0.3 (3) |
C7—O1—C4—C3 | 179.25 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···S1i | 0.86 | 2.65 | 3.4892 (17) | 165 |
Symmetry code: (i) −x, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C7H8N2OS2 |
Mr | 200.27 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 294 |
a, b, c (Å) | 4.0866 (8), 8.8698 (12), 12.8453 (15) |
α, β, γ (°) | 93.970 (14), 91.856 (12), 98.293 (12) |
V (Å3) | 459.21 (12) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.53 |
Crystal size (mm) | 0.34 × 0.28 × 0.20 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID IP diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.850, 0.950 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4733, 1608, 1349 |
Rint | 0.030 |
(sin θ/λ)max (Å−1) | 0.599 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.031, 0.096, 1.09 |
No. of reflections | 1608 |
No. of parameters | 110 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.19, −0.28 |
Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···S1i | 0.86 | 2.65 | 3.4892 (17) | 165 |
Symmetry code: (i) −x, −y+1, −z+1. |
Acknowledgements
The project was supported by the Natural Science Foundation of Zhejiang Province, China (grant No. M203027).
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Chen, Z.-Y., Wu, G.-Q., Jiang, F.-X., Tian, Y.-L. & Shan, S. (2007). Acta Cryst. E63, o1919–o1920. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Hu, W., Sun, N. & Yang, Z. (2001). Chem. J. Chin. Univ. 22, 2014–2017. CAS Google Scholar
Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Shan, S., Xu, D.-J., Hung, C.-H., Wu, J.-Y. & Chiang, M. Y. (2003). Acta Cryst. C59, o135–o136. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Shan, S., Xu, D.-J., Wu, J.-Y. & Chiang, M. Y. (2002). Acta Cryst. E58, o1333–o1335. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Since some hydrazone derivatives have shown the potential bioactivity as DNA-damaging or mutagenic agents (Okabe et al., 1993), a lots of new hydrazone compounds has been synthesized in our laboratory (Shan et al., 2002, 2003). As part of the ongoing investigation on hydrazone, we present here the crystal structure of the title compound.
The molecular structure is shown in Fig. 1. The N2═C3 bond distance of 1.284 (2) Å clearly indicates the double bond character for the Schiff base compound. The molecule adopts an E configuration, the carbazate and furan moieties located on the opposite positions of the N2═C3 bond; similar to that found in a related structure (Chen et al., 2007). The dithiocarbazate moiety is well co-planar, the maximum atomic deviation being 0.037 (1) Å (S2), and the dithiocarbazate mean plane is slightly twisted with respect to the furan plane by a smaller dihedral angle of 5.2 (1)°. This shows the whole molecule is nearly co-planar.
Inter-molecular N—H···S hydrogen bonding links adjacent molecules to form the centro-symmetric supra-molecular dimmer (Fig. 1 and Table 1).