metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Amino­acetato-κ2O,N)bis­­(quinolin-8-olato-κ2O,N)cobalt(III) methanol solvate

aCollege of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, Shanxi 037009, People's Republic of China
*Correspondence e-mail: jingbuqin@163.com

(Received 6 April 2008; accepted 4 May 2008; online 10 May 2008)

In the crystal structure of the title compound, [Co(C2H4NO2)(C9H6NO)2]·CH3OH, the CoIII atom is chelated by two quinolin-8-olate and one glycinate anions in a distorted octa­hedral coordination geometry. The five-membered chelating glycinate ring assumes an envelope conformation. The complex mol­ecules are assembled by inter­molecular N—H⋯O hydrogen bonding.

Related literature

For a related structure, see: Li et al. (2003[Li, D.-X., Xu, D.-J., Gu, J.-M. & Xu, Y.-Z. (2003). Acta Cryst. E59, m543-m545.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C2H4NO2)(C9H6NO)2]·CH4O

  • Mr = 453.33

  • Triclinic, [P \overline 1]

  • a = 9.8377 (4) Å

  • b = 10.6526 (4) Å

  • c = 10.7369 (4) Å

  • α = 82.047 (1)°

  • β = 76.289 (1)°

  • γ = 64.941 (1)°

  • V = 989.32 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.91 mm−1

  • T = 273 (2) K

  • 0.20 × 0.15 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.840, Tmax = 0.899

  • 11346 measured reflections

  • 3486 independent reflections

  • 3261 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.093

  • S = 1.00

  • 3486 reflections

  • 281 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Selected geometric parameters (Å, °)

Co1—O1 1.9045 (12)
Co1—O3 1.8926 (13)
Co1—O4 1.9002 (13)
Co1—N1 1.9373 (14)
Co1—N2 1.9179 (15)
Co1—N3 1.9309 (15)
O3—Co1—O4 90.60 (6)
O3—Co1—O1 89.93 (6)
O4—Co1—O1 176.81 (5)
O3—Co1—N2 176.47 (5)
O4—Co1—N2 85.88 (6)
O1—Co1—N2 93.56 (6)
O3—Co1—N3 87.07 (7)
O4—Co1—N3 91.14 (6)
O1—Co1—N3 85.75 (6)
N2—Co1—N3 92.71 (7)
O3—Co1—N1 85.82 (6)
O4—Co1—N1 92.39 (6)
O1—Co1—N1 90.79 (6)
N2—Co1—N1 94.60 (6)
N3—Co1—N1 172.09 (7)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O2i 0.82 1.92 2.743 (3) 175
N3—H21⋯O5 0.85 (2) 2.17 (3) 2.950 (3) 153 (2)
N3—H22⋯O3ii 0.86 (3) 2.10 (3) 2.952 (2) 169 (2)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The 8–hydroxyquinoline (HQ) is a very good ligand, forms complex compounds with various metal ions in solution. The strong chelating action of HQ in solution has been extensively studied and widely used in analytical chemistry. In this work, we use glycin and 8–hydroxyquinoline as bidedtate ligand to synthesize the title complex, (I).

The molecular structure of the title compound is shown in Fig. 1. The CoIII atom is chelated by two 8-hydroxyquinoline and one glycin anions in a distorted octahedral coordination geometry. The Co—N bond distances are longer than Co—O bond distances (Table 1), which agrees with that found in a related structure, tris(8-quinolinolato)-cobalt(III) methanol solvate (Li et al. 2003). The two 8-hydroxyquinolate rings are almost perpendicular to each other with a dihedral angle of 81.0°. The five-membered chelating ring of the glycin assumes an envelope conformation, with N3 atom at the flap position. The complex molecules are assembled by intermolecular N–H···O hydrogen bonding (Table 2). Lattice methanol molecule is linked with complex via O—H···O and N—H···O hydrogen bonding (Fig. 2).

Related literature top

For a related structure, see: Li et al. (2003).

Refinement top

Amino H atoms were located in a difference Fourier map and refined isotropically. Other H atoms were placed in calculated positions and allowed to ride on their attached atoms, with C—H = 0.93–0.97 Å, O–H = 0.82 Å, Uiso(H) = 1.2 or 1.5Ueq(C,O).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The atomic labeling scheme of (I) with displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of the unit cell showing hydrogen bonds as dashed lines. H atoms, except for those involved in hydrogen bonds, are not included.
[Figure 3] Fig. 3. Interactive view of the complex.
(Aminoacetato-κ2O,N)bis(quinolin-8-olato- κ2O,N)cobalt(III) methanol solvate top
Crystal data top
[Co(C2H4NO2)(C9H6NO)2]·CH4OZ = 2
Mr = 453.33F(000) = 468
Triclinic, P1Dx = 1.522 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.8377 (4) ÅCell parameters from 7882 reflections
b = 10.6526 (4) Åθ = 2.4–28.2°
c = 10.7369 (4) ŵ = 0.91 mm1
α = 82.047 (1)°T = 273 K
β = 76.289 (1)°Block, purple
γ = 64.941 (1)°0.20 × 0.15 × 0.12 mm
V = 989.32 (7) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3486 independent reflections
Radiation source: fine-focus sealed tube3261 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 25.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 911
Tmin = 0.840, Tmax = 0.899k = 1212
11346 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.073P)2 + 0.17P]
where P = (Fo2 + 2Fc2)/3
3486 reflections(Δ/σ)max = 0.001
281 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Co(C2H4NO2)(C9H6NO)2]·CH4Oγ = 64.941 (1)°
Mr = 453.33V = 989.32 (7) Å3
Triclinic, P1Z = 2
a = 9.8377 (4) ÅMo Kα radiation
b = 10.6526 (4) ŵ = 0.91 mm1
c = 10.7369 (4) ÅT = 273 K
α = 82.047 (1)°0.20 × 0.15 × 0.12 mm
β = 76.289 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3486 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3261 reflections with I > 2σ(I)
Tmin = 0.840, Tmax = 0.899Rint = 0.017
11346 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.28 e Å3
3486 reflectionsΔρmin = 0.36 e Å3
281 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.21615 (2)0.26369 (2)0.46144 (2)0.03237 (12)
O10.36577 (14)0.20861 (13)0.56554 (12)0.0381 (3)
O20.46440 (17)0.29619 (16)0.67761 (14)0.0553 (4)
O30.05933 (15)0.33761 (13)0.60596 (13)0.0418 (3)
O40.06935 (14)0.32742 (13)0.35430 (13)0.0421 (3)
O50.4828 (3)0.4912 (3)0.2562 (2)0.1083 (9)
H50.49330.55730.27700.162*
N10.18775 (16)0.09298 (15)0.50938 (14)0.0348 (3)
N20.36569 (17)0.19377 (15)0.30857 (14)0.0349 (3)
N30.23374 (19)0.43960 (16)0.43835 (17)0.0397 (4)
C10.0225 (2)0.23999 (19)0.67578 (17)0.0391 (4)
C20.0769 (2)0.2598 (2)0.7924 (2)0.0539 (5)
H20.12310.34650.82790.065*
C30.1088 (3)0.1483 (3)0.8583 (2)0.0683 (7)
H30.17350.16260.93860.082*
C40.0487 (3)0.0206 (3)0.8091 (2)0.0656 (6)
H40.07440.04980.85430.079*
C50.0530 (2)0.0043 (2)0.6888 (2)0.0460 (5)
C60.1205 (2)0.1297 (2)0.6232 (2)0.0528 (5)
H60.09990.20570.66000.063*
C70.2144 (2)0.1391 (2)0.5076 (2)0.0504 (5)
H70.25670.22100.46420.060*
C80.2488 (2)0.02614 (18)0.45221 (19)0.0413 (4)
H80.31620.03540.37350.050*
C90.08930 (19)0.10617 (18)0.62504 (17)0.0364 (4)
C100.1360 (2)0.30635 (18)0.23300 (19)0.0422 (4)
C110.0622 (3)0.3473 (2)0.1301 (2)0.0590 (6)
H110.04350.39650.14390.071*
C120.1463 (4)0.3150 (3)0.0052 (2)0.0690 (7)
H120.09390.34450.06220.083*
C130.3015 (4)0.2421 (3)0.0224 (2)0.0657 (7)
H130.35300.22300.10680.079*
C140.3826 (3)0.1964 (2)0.07908 (19)0.0500 (5)
C150.5417 (3)0.1158 (2)0.0668 (2)0.0576 (5)
H150.60260.09030.01390.069*
C160.6059 (2)0.0755 (2)0.1726 (2)0.0558 (5)
H160.71010.02050.16450.067*
C170.5149 (2)0.1171 (2)0.29365 (19)0.0438 (4)
H170.56020.09040.36530.053*
C180.2987 (2)0.23139 (18)0.20409 (18)0.0393 (4)
C190.3819 (2)0.31043 (19)0.60261 (16)0.0392 (4)
C200.2899 (2)0.45316 (19)0.5487 (2)0.0452 (4)
H20A0.20400.50390.61440.054*
H20B0.35380.50470.52210.054*
C210.5849 (6)0.4394 (5)0.1517 (4)0.1377 (19)
H21A0.53430.43210.08850.207*
H21B0.65790.34900.17220.207*
H21C0.63670.49930.11830.207*
H220.143 (3)0.502 (3)0.436 (2)0.060 (7)*
H210.295 (3)0.444 (2)0.369 (2)0.048 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02705 (16)0.02604 (16)0.04380 (17)0.01193 (11)0.00651 (10)0.00211 (10)
O10.0359 (7)0.0324 (7)0.0464 (7)0.0132 (5)0.0107 (5)0.0006 (5)
O20.0585 (9)0.0602 (9)0.0529 (8)0.0229 (7)0.0185 (7)0.0116 (7)
O30.0365 (7)0.0317 (6)0.0529 (7)0.0144 (5)0.0006 (5)0.0027 (5)
O40.0315 (6)0.0366 (7)0.0594 (8)0.0142 (5)0.0147 (6)0.0056 (6)
O50.1061 (17)0.1167 (19)0.1255 (19)0.0846 (16)0.0328 (15)0.0453 (15)
N10.0294 (7)0.0310 (7)0.0468 (8)0.0139 (6)0.0126 (6)0.0036 (6)
N20.0330 (8)0.0318 (7)0.0431 (8)0.0165 (6)0.0089 (6)0.0020 (6)
N30.0316 (8)0.0305 (8)0.0567 (10)0.0144 (7)0.0078 (7)0.0035 (7)
C10.0321 (9)0.0415 (10)0.0468 (10)0.0187 (7)0.0087 (7)0.0023 (8)
C20.0489 (12)0.0610 (13)0.0523 (11)0.0273 (10)0.0013 (9)0.0072 (10)
C30.0685 (15)0.0868 (18)0.0532 (12)0.0460 (14)0.0061 (11)0.0020 (12)
C40.0710 (15)0.0741 (16)0.0641 (14)0.0506 (13)0.0070 (12)0.0173 (12)
C50.0414 (10)0.0463 (11)0.0589 (11)0.0272 (9)0.0163 (9)0.0131 (9)
C60.0506 (11)0.0379 (10)0.0813 (15)0.0285 (9)0.0242 (11)0.0152 (9)
C70.0458 (11)0.0330 (9)0.0788 (14)0.0189 (8)0.0193 (10)0.0011 (9)
C80.0377 (9)0.0336 (9)0.0547 (11)0.0146 (7)0.0135 (8)0.0003 (8)
C90.0310 (9)0.0374 (9)0.0461 (9)0.0185 (7)0.0135 (7)0.0070 (7)
C100.0461 (10)0.0310 (9)0.0590 (12)0.0226 (8)0.0218 (9)0.0108 (8)
C110.0656 (14)0.0484 (12)0.0783 (15)0.0302 (11)0.0415 (12)0.0196 (11)
C120.101 (2)0.0613 (15)0.0661 (15)0.0430 (15)0.0491 (15)0.0208 (12)
C130.104 (2)0.0626 (14)0.0471 (12)0.0481 (15)0.0239 (12)0.0099 (10)
C140.0691 (14)0.0482 (12)0.0451 (10)0.0369 (11)0.0115 (10)0.0026 (9)
C150.0618 (14)0.0653 (14)0.0516 (12)0.0374 (11)0.0071 (10)0.0148 (10)
C160.0408 (11)0.0627 (13)0.0630 (13)0.0224 (10)0.0013 (9)0.0159 (10)
C170.0340 (9)0.0455 (10)0.0523 (10)0.0160 (8)0.0078 (8)0.0051 (8)
C180.0472 (10)0.0330 (9)0.0463 (10)0.0241 (8)0.0143 (8)0.0062 (7)
C190.0337 (9)0.0423 (10)0.0383 (9)0.0145 (8)0.0010 (7)0.0084 (7)
C200.0412 (10)0.0362 (9)0.0614 (12)0.0182 (8)0.0087 (9)0.0070 (8)
C210.197 (5)0.142 (4)0.116 (3)0.129 (4)0.030 (3)0.047 (3)
Geometric parameters (Å, º) top
Co1—O11.9045 (12)C5—C61.417 (3)
Co1—O31.8926 (13)C6—C71.348 (3)
Co1—O41.9002 (13)C6—H60.9300
Co1—N11.9373 (14)C7—C81.403 (3)
Co1—N21.9179 (15)C7—H70.9300
Co1—N31.9309 (15)C8—H80.9300
O1—C191.287 (2)C10—C111.384 (3)
O2—C191.225 (2)C10—C181.431 (3)
O3—C11.323 (2)C11—C121.400 (4)
O4—C101.314 (2)C11—H110.9300
O5—C211.319 (4)C12—C131.367 (4)
O5—H50.8200C12—H120.9300
N1—C81.320 (2)C13—C141.413 (3)
N1—C91.365 (2)C13—H130.9300
N2—C171.326 (2)C14—C181.405 (3)
N2—C181.362 (2)C14—C151.413 (3)
N3—C201.468 (3)C15—C161.361 (3)
N3—H220.86 (3)C15—H150.9300
N3—H210.85 (2)C16—C171.399 (3)
C1—C21.374 (3)C16—H160.9300
C1—C91.419 (3)C17—H170.9300
C2—C31.410 (3)C19—C201.518 (3)
C2—H20.9300C20—H20A0.9700
C3—C41.359 (4)C20—H20B0.9700
C3—H30.9300C21—H21A0.9600
C4—C51.414 (3)C21—H21B0.9600
C4—H40.9300C21—H21C0.9600
C5—C91.414 (2)
O3—Co1—O490.60 (6)C6—C7—H7119.8
O3—Co1—O189.93 (6)C8—C7—H7119.8
O4—Co1—O1176.81 (5)N1—C8—C7121.45 (18)
O3—Co1—N2176.47 (5)N1—C8—H8119.3
O4—Co1—N285.88 (6)C7—C8—H8119.3
O1—Co1—N293.56 (6)N1—C9—C5122.64 (17)
O3—Co1—N387.07 (7)N1—C9—C1115.27 (15)
O4—Co1—N391.14 (6)C5—C9—C1122.07 (17)
O1—Co1—N385.75 (6)O4—C10—C11125.8 (2)
N2—Co1—N392.71 (7)O4—C10—C18117.56 (16)
O3—Co1—N185.82 (6)C11—C10—C18116.6 (2)
O4—Co1—N192.39 (6)C10—C11—C12120.2 (2)
O1—Co1—N190.79 (6)C10—C11—H11119.9
N2—Co1—N194.60 (6)C12—C11—H11119.9
N3—Co1—N1172.09 (7)C13—C12—C11123.2 (2)
C19—O1—Co1113.96 (11)C13—C12—H12118.4
C1—O3—Co1111.40 (11)C11—C12—H12118.4
C10—O4—Co1111.26 (11)C12—C13—C14119.0 (2)
C21—O5—H5109.5C12—C13—H13120.5
C8—N1—C9119.18 (15)C14—C13—H13120.5
C8—N1—Co1131.33 (13)C18—C14—C13117.7 (2)
C9—N1—Co1109.46 (12)C18—C14—C15116.45 (19)
C17—N2—C18119.37 (17)C13—C14—C15125.8 (2)
C17—N2—Co1129.99 (13)C16—C15—C14120.2 (2)
C18—N2—Co1110.63 (12)C16—C15—H15119.9
C20—N3—Co1107.24 (11)C14—C15—H15119.9
C20—N3—H22111.7 (16)C15—C16—C17119.9 (2)
Co1—N3—H22106.0 (17)C15—C16—H16120.1
C20—N3—H21110.4 (15)C17—C16—H16120.1
Co1—N3—H21111.4 (15)N2—C17—C16121.50 (18)
H22—N3—H21110 (2)N2—C17—H17119.3
O3—C1—C2124.64 (18)C16—C17—H17119.3
O3—C1—C9117.25 (15)N2—C18—C14122.54 (18)
C2—C1—C9118.10 (17)N2—C18—C10114.32 (17)
C1—C2—C3119.9 (2)C14—C18—C10123.13 (18)
C1—C2—H2120.1O2—C19—O1123.35 (17)
C3—C2—H2120.1O2—C19—C20120.82 (17)
C4—C3—C2122.5 (2)O1—C19—C20115.83 (15)
C4—C3—H3118.7N3—C20—C19109.90 (15)
C2—C3—H3118.7N3—C20—H20A109.7
C3—C4—C5119.62 (19)C19—C20—H20A109.7
C3—C4—H4120.2N3—C20—H20B109.7
C5—C4—H4120.2C19—C20—H20B109.7
C4—C5—C9117.7 (2)H20A—C20—H20B108.2
C4—C5—C6126.22 (19)O5—C21—H21A109.5
C9—C5—C6116.04 (18)O5—C21—H21B109.5
C7—C6—C5120.19 (17)H21A—C21—H21B109.5
C7—C6—H6119.9O5—C21—H21C109.5
C5—C6—H6119.9H21A—C21—H21C109.5
C6—C7—C8120.45 (19)H21B—C21—H21C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O2i0.821.922.743 (3)175
N3—H21···O50.85 (2)2.17 (3)2.950 (3)153 (2)
N3—H22···O3ii0.86 (3)2.10 (3)2.952 (2)169 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Co(C2H4NO2)(C9H6NO)2]·CH4O
Mr453.33
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)9.8377 (4), 10.6526 (4), 10.7369 (4)
α, β, γ (°)82.047 (1), 76.289 (1), 64.941 (1)
V3)989.32 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.91
Crystal size (mm)0.20 × 0.15 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.840, 0.899
No. of measured, independent and
observed [I > 2σ(I)] reflections
11346, 3486, 3261
Rint0.017
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.094, 1.00
No. of reflections3486
No. of parameters281
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.36

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Co1—O11.9045 (12)Co1—N11.9373 (14)
Co1—O31.8926 (13)Co1—N21.9179 (15)
Co1—O41.9002 (13)Co1—N31.9309 (15)
O3—Co1—O490.60 (6)O1—Co1—N385.75 (6)
O3—Co1—O189.93 (6)N2—Co1—N392.71 (7)
O4—Co1—O1176.81 (5)O3—Co1—N185.82 (6)
O3—Co1—N2176.47 (5)O4—Co1—N192.39 (6)
O4—Co1—N285.88 (6)O1—Co1—N190.79 (6)
O1—Co1—N293.56 (6)N2—Co1—N194.60 (6)
O3—Co1—N387.07 (7)N3—Co1—N1172.09 (7)
O4—Co1—N391.14 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O2i0.821.922.743 (3)175.4
N3—H21···O50.85 (2)2.17 (3)2.950 (3)153 (2)
N3—H22···O3ii0.86 (3)2.10 (3)2.952 (2)169 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.
 

Acknowledgements

This work was supported by the Youth Science Foundation of Shanxi Datong University, China (No. 2007Q08).

References

First citationLi, D.-X., Xu, D.-J., Gu, J.-M. & Xu, Y.-Z. (2003). Acta Cryst. E59, m543–m545.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds