organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9-Chloro­methyl-9-[(9H-fluoren-9-yl)meth­yl]-9H-fluorene

aDepartment of Chemistry, Zhejiang University, Yuquan Campus, Hangzhou 310027, People's Republic of China
*Correspondence e-mail: pinglu@zju.edu.cn

(Received 13 April 2008; accepted 26 April 2008; online 3 May 2008)

In the title compound, C28H21Cl, the dihedral angle between the two fluorene ring systems is 71.97 (4)°. There is an intra­molecular C—H⋯Cl hydrogen bond. In the crystal structure, the centroid-to-centroid distance between stacked fluorene ring systems is ca 4.22 Å, which indicates that there are no ππ stacking inter­actions between them.

Related literature

For general background, see: Chun et al. (2003[Chun, C., Kim, M.-J., Vak, D. & Kim, D. Y. (2003). J. Mater. Chem. 13, 2904-2909.]); Kim et al. (1998[Kim, S. Y., Lee, M. & Boo, B. H. (1998). J. Chem. Phys. 109, 2593-2595.]); Muller et al. (2003[Muller, C. D., Falcou, A., Reckefuss, N., Rojahn, M., Wiederhirn, V., Rudati, P., Frohne, H., Nuyken, O., Becker, H. & Meerholz, K. (2003). Nature (London), 421, 829-833.]); Saragi et al. (2004[Saragi, T. P. I., Pudzich, R., Fuhrmann, T. & Salbeck, J. (2004). Appl. Phys. Lett. 84, 2334-2336.]).

[Scheme 1]

Experimental

Crystal data
  • C28H21Cl

  • Mr = 392.90

  • Monoclinic, P 21 /c

  • a = 8.4346 (17) Å

  • b = 26.368 (5) Å

  • c = 9.1162 (18) Å

  • β = 94.08 (3)°

  • V = 2022.3 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 298 (2) K

  • 0.35 × 0.29 × 0.22 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: none

  • 16094 measured reflections

  • 3646 independent reflections

  • 2747 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.133

  • S = 1.08

  • 3646 reflections

  • 263 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C27—H27A⋯Cl1 0.97 2.68 3.075 (2) 105

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

Fluorene derivatives, have attracted much attention due to their potential utilities in organic lightemitting devices (Muller et al., 2003), organic phototransistors (Saragi et al., 2004), nonlinear optics (Kim et al., 1998) and photochromic materials (Chun et al., 2003). The title compound (hereinafter abbreviated to fmcf) is one of fluorene derivatives.

The asymmetric unit of the title compound contains one fmcf molecule (Fig. 1). The chloromethyl group is attached on the C-9 position of one fluorene ring. Two fluorene rings are linked together through a methylene carbon atom, and the dihedral angle between the two fluorene rings is 71.97 (4)°. There is intramolecular C–H···Cl hydrogen bond with distance of 3.075 (2) Å (Table 1), while the intermolecular C–H···Cl contacts are of 3.573 (2) Å, which is not viewed as C–H···Cl hydrogen bond. The centroid to centroid distance between stacked fluorene rings is ca. 4.22 Å, which is very long and prevents π···π stacking (Fig. 2). All bond lengths and angles are normal.

Related literature top

For general background, see: Chun et al. (2003); Kim et al. (1998); Muller et al. (2003); Saragi et al. (2004).

Experimental top

All chemicals were of analytic grade quality obtained from commercial sources and used as received, unless stated otherwise. To a solution of fluorene (1.66 g, 10 mmol) in dry THF (40 ml) was added a hexane solution of n-butylithium (4 ml, 2.5 M, 10 mmol) under nitrogen at -78 °C, the mixture was stirred for 1 h. A solution of PCl3 (2 mmol) in THF (10 ml) was then added. After stirring for another 1 h, the mixture was cooling slowly to room temperature, and kept stirring overnight. To the mixture was added dichloromethane (20 ml) and stirred for 1 h. The solvent was evaporated under reduced pressure. The crude products were purified by columnchromatography (silica gel) using n-hexane/dichloromethane as eluent. The title compound was obtained as white solid in 31% yield. Colorless single crystals were grown from a CH2Cl2 solution of the compound.

Refinement top

H atoms were positioned geometrically and treated as riding, with C—H = 0.93 (aromatic), 0.97 (methylene) and 0.98 Å (methine), and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing view of the title compound. H atoms are omitted for clarity.
9-Chloromethyl-9-[(9H-fluoren-9-yl)methyl]-9H-fluorene top
Crystal data top
C28H21ClF(000) = 824
Mr = 392.90Dx = 1.290 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 12994 reflections
a = 8.4346 (17) Åθ = 3.1–27.4°
b = 26.368 (5) ŵ = 0.20 mm1
c = 9.1162 (18) ÅT = 298 K
β = 94.08 (3)°Chunk, colorless
V = 2022.3 (7) Å30.35 × 0.29 × 0.22 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2747 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 25.3°, θmin = 3.1°
ϕ and ω scansh = 1010
16094 measured reflectionsk = 3131
3646 independent reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0595P)2 + 0.3188P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3646 reflectionsΔρmax = 0.22 e Å3
263 parametersΔρmin = 0.26 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.011 (2)
Crystal data top
C28H21ClV = 2022.3 (7) Å3
Mr = 392.90Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.4346 (17) ŵ = 0.20 mm1
b = 26.368 (5) ÅT = 298 K
c = 9.1162 (18) Å0.35 × 0.29 × 0.22 mm
β = 94.08 (3)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2747 reflections with I > 2σ(I)
16094 measured reflectionsRint = 0.025
3646 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.08Δρmax = 0.22 e Å3
3646 reflectionsΔρmin = 0.26 e Å3
263 parameters
Special details top

Experimental. 1HNMR (500 MHz, δ in p.p.m., CDCl3): 2.90 (d, 2H, J = 5.5 Hz), 3.19 (t, 1H,J= 4.5 Hz), 3.86 (s, 2H), 6.62 (d, 2H, J = 7.0 Hz), 7.02 (t, 2H, J= 7.5 Hz), 7.19 (t, 2H, J = 7.5 Hz), 7.39 (t, 2H, J = 7.5 Hz), 7.46 (t, 2H, J = 7.5 Hz), 7.54 (d, 2H,J = 7.5 Hz), 7.67 (d, 2H, J = 7.5 Hz), 7.78 (d, 2H, J= 7.0 Hz); 13C NMR (125 MHz, δ in p.p.m., CDCl3): 40.64, 44.45, 53.35, 55.55, 119.52, 120.75, 125.06, 125.18, 126.86, 126.92, 127.66,128.74, 140.70, 141.48, 146.99, 148.22; MS (EI): calcd for C28H21Cl, 392; found: 392 (M+), 356, 191 (100), 179, 165, 152.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.14417 (6)0.73515 (2)0.46199 (7)0.0815 (2)
C10.38752 (16)0.68247 (6)0.60052 (19)0.0421 (4)
C20.30669 (16)0.65243 (5)0.72229 (18)0.0407 (4)
C30.16272 (18)0.63563 (7)0.7173 (2)0.0546 (5)
H30.09260.64020.63490.066*
C40.1160 (2)0.60914 (7)0.8475 (3)0.0671 (6)
H40.01210.59710.84340.080*
C50.2094 (2)0.59950 (7)0.9791 (3)0.0651 (5)
H50.16920.58211.05710.078*
C60.3524 (2)0.61602 (7)0.9853 (2)0.0547 (5)
H60.42160.61131.06820.066*
C70.40065 (17)0.64228 (5)0.85735 (18)0.0410 (4)
C80.54497 (17)0.66472 (6)0.83543 (19)0.0427 (4)
C90.6747 (2)0.66400 (7)0.9329 (2)0.0581 (5)
H90.67870.64721.02280.070*
C100.7950 (2)0.69009 (8)0.8846 (3)0.0731 (7)
H100.88990.69130.94300.088*
C110.7859 (2)0.71698 (9)0.7450 (3)0.0778 (7)
H110.87490.73530.72150.093*
C120.6578 (2)0.71744 (7)0.6465 (3)0.0635 (5)
H120.65450.73490.55760.076*
C130.53712 (17)0.69020 (6)0.6907 (2)0.0455 (4)
C140.47723 (18)0.60085 (6)0.46017 (19)0.0461 (4)
H140.50530.59430.56460.055*
C150.38570 (18)0.55633 (6)0.39464 (19)0.0460 (4)
C160.2451 (2)0.54170 (7)0.4245 (2)0.0573 (5)
H160.18670.55920.49090.069*
C170.1854 (2)0.49837 (7)0.3523 (2)0.0637 (5)
H170.08480.48740.37370.076*
C180.2642 (2)0.47010 (7)0.2507 (3)0.0659 (5)
H180.21670.44160.20630.079*
C190.4057 (2)0.48432 (7)0.2191 (2)0.0593 (5)
H190.46280.46680.15160.071*
C200.46626 (18)0.52716 (6)0.29204 (19)0.0473 (4)
C210.61091 (18)0.55048 (7)0.28235 (19)0.0497 (4)
C220.7292 (2)0.53544 (8)0.1985 (2)0.0626 (5)
H220.72110.50700.13830.075*
C230.8541 (2)0.56413 (10)0.2096 (3)0.0737 (6)
H230.93980.55610.15520.088*
C240.8643 (2)0.60722 (9)0.3016 (3)0.0766 (6)
H240.95730.62620.30440.092*
C250.7467 (2)0.62294 (9)0.3868 (2)0.0666 (6)
H250.75610.65150.44660.080*
C260.61912 (18)0.59411 (7)0.37704 (19)0.0501 (4)
C270.40233 (18)0.65354 (6)0.44306 (19)0.0472 (4)
H27A0.29720.65030.39340.057*
H27B0.46610.67410.38160.057*
C280.3207 (2)0.73528 (7)0.5688 (2)0.0576 (5)
H28A0.39830.75490.51930.069*
H28B0.30450.75200.66130.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0610 (3)0.0870 (4)0.0956 (5)0.0332 (3)0.0002 (3)0.0213 (3)
C10.0348 (7)0.0412 (8)0.0506 (10)0.0036 (6)0.0054 (7)0.0058 (7)
C20.0311 (7)0.0375 (8)0.0540 (10)0.0019 (6)0.0063 (7)0.0014 (7)
C30.0342 (8)0.0576 (10)0.0720 (13)0.0010 (7)0.0043 (8)0.0049 (9)
C40.0415 (9)0.0611 (11)0.1018 (17)0.0098 (8)0.0271 (10)0.0070 (11)
C50.0605 (11)0.0605 (11)0.0774 (15)0.0026 (9)0.0271 (10)0.0139 (10)
C60.0519 (10)0.0536 (10)0.0593 (12)0.0054 (8)0.0092 (8)0.0090 (9)
C70.0390 (8)0.0344 (7)0.0503 (10)0.0048 (6)0.0075 (7)0.0000 (7)
C80.0333 (7)0.0382 (8)0.0563 (11)0.0045 (6)0.0020 (7)0.0065 (7)
C90.0454 (9)0.0554 (10)0.0720 (13)0.0096 (8)0.0072 (9)0.0139 (9)
C100.0352 (9)0.0727 (13)0.1100 (19)0.0001 (9)0.0045 (10)0.0327 (13)
C110.0392 (9)0.0748 (13)0.121 (2)0.0183 (9)0.0167 (11)0.0319 (14)
C120.0499 (10)0.0556 (10)0.0871 (15)0.0133 (8)0.0188 (10)0.0032 (10)
C130.0351 (7)0.0404 (8)0.0616 (11)0.0011 (6)0.0087 (7)0.0031 (8)
C140.0401 (8)0.0526 (9)0.0453 (10)0.0095 (7)0.0015 (7)0.0017 (7)
C150.0412 (8)0.0476 (9)0.0488 (10)0.0104 (7)0.0018 (7)0.0071 (7)
C160.0467 (9)0.0584 (10)0.0678 (13)0.0059 (8)0.0118 (8)0.0026 (9)
C170.0487 (10)0.0574 (11)0.0854 (15)0.0004 (8)0.0075 (10)0.0087 (11)
C180.0600 (11)0.0501 (10)0.0869 (15)0.0005 (9)0.0005 (10)0.0018 (10)
C190.0562 (10)0.0511 (10)0.0705 (13)0.0136 (8)0.0047 (9)0.0029 (9)
C200.0426 (8)0.0471 (9)0.0519 (11)0.0125 (7)0.0002 (7)0.0067 (8)
C210.0418 (8)0.0574 (10)0.0496 (10)0.0171 (7)0.0013 (7)0.0059 (8)
C220.0470 (10)0.0744 (12)0.0663 (13)0.0196 (9)0.0045 (9)0.0018 (10)
C230.0406 (10)0.1029 (17)0.0786 (15)0.0206 (10)0.0110 (9)0.0027 (13)
C240.0348 (9)0.1053 (17)0.0897 (17)0.0044 (10)0.0036 (10)0.0003 (14)
C250.0412 (9)0.0843 (14)0.0737 (14)0.0025 (9)0.0006 (9)0.0097 (11)
C260.0349 (8)0.0629 (10)0.0515 (11)0.0120 (7)0.0029 (7)0.0022 (8)
C270.0383 (8)0.0532 (9)0.0499 (10)0.0097 (7)0.0024 (7)0.0078 (8)
C280.0527 (10)0.0496 (10)0.0714 (13)0.0093 (8)0.0104 (9)0.0101 (9)
Geometric parameters (Å, º) top
Cl1—C281.720 (2)C14—C271.530 (2)
C1—C131.470 (2)C14—H140.9800
C1—C281.522 (2)C15—C161.294 (2)
C1—C21.560 (2)C15—C201.421 (2)
C1—C271.638 (2)C16—C171.395 (3)
C2—C31.290 (2)C16—H160.9300
C2—C71.441 (2)C17—C181.394 (3)
C3—C41.455 (3)C17—H170.9300
C3—H30.9300C18—C191.302 (3)
C4—C51.411 (3)C18—H180.9300
C4—H40.9300C19—C201.390 (3)
C5—C61.280 (3)C19—H190.9300
C5—H50.9300C20—C211.375 (2)
C6—C71.440 (2)C21—C221.358 (2)
C6—H60.9300C21—C261.437 (3)
C7—C81.381 (2)C22—C231.295 (3)
C8—C91.360 (2)C22—H220.9300
C8—C131.478 (2)C23—C241.411 (3)
C9—C101.326 (3)C23—H230.9300
C9—H90.9300C24—C251.367 (3)
C10—C111.454 (4)C24—H240.9300
C10—H100.9300C25—C261.315 (3)
C11—C121.355 (3)C25—H250.9300
C11—H110.9300C27—H27A0.9700
C12—C131.331 (2)C27—H27B0.9700
C12—H120.9300C28—H28A0.9700
C14—C261.472 (2)C28—H28B0.9700
C14—C151.505 (2)
C13—C1—C28105.72 (13)C16—C15—C20117.73 (17)
C13—C1—C294.22 (12)C16—C15—C14126.93 (17)
C28—C1—C2115.17 (13)C20—C15—C14115.32 (14)
C13—C1—C27116.01 (12)C15—C16—C17116.78 (18)
C28—C1—C27108.04 (14)C15—C16—H16121.6
C2—C1—C27116.85 (12)C17—C16—H16121.6
C3—C2—C7115.17 (16)C18—C17—C16125.34 (18)
C3—C2—C1127.39 (16)C18—C17—H17117.3
C7—C2—C1117.44 (13)C16—C17—H17117.3
C2—C3—C4116.40 (17)C19—C18—C17118.73 (19)
C2—C3—H3121.8C19—C18—H18120.6
C4—C3—H3121.8C17—C18—H18120.6
C5—C4—C3127.81 (16)C18—C19—C20116.08 (18)
C5—C4—H4116.1C18—C19—H19122.0
C3—C4—H4116.1C20—C19—H19122.0
C6—C5—C4116.31 (19)C21—C20—C19129.09 (16)
C6—C5—H5121.8C21—C20—C15105.57 (15)
C4—C5—H5121.8C19—C20—C15125.33 (16)
C5—C6—C7116.61 (19)C22—C21—C20126.61 (18)
C5—C6—H6121.7C22—C21—C26124.45 (17)
C7—C6—H6121.7C20—C21—C26108.94 (15)
C8—C7—C6128.77 (16)C23—C22—C21114.3 (2)
C8—C7—C2103.51 (14)C23—C22—H22122.8
C6—C7—C2127.70 (15)C21—C22—H22122.8
C9—C8—C7125.19 (17)C22—C23—C24122.10 (19)
C9—C8—C13124.93 (16)C22—C23—H23118.9
C7—C8—C13109.88 (14)C24—C23—H23118.9
C10—C9—C8112.0 (2)C25—C24—C23124.5 (2)
C10—C9—H9124.0C25—C24—H24117.8
C8—C9—H9124.0C23—C24—H24117.8
C9—C10—C11123.34 (18)C26—C25—C24114.1 (2)
C9—C10—H10118.3C26—C25—H25122.9
C11—C10—H10118.3C24—C25—H25122.9
C12—C11—C10125.04 (19)C25—C26—C21120.52 (17)
C12—C11—H11117.5C25—C26—C14125.89 (18)
C10—C11—H11117.5C21—C26—C14113.56 (15)
C13—C12—C11112.7 (2)C14—C27—C1112.98 (13)
C13—C12—H12123.7C14—C27—H27A109.0
C11—C12—H12123.7C1—C27—H27A109.0
C12—C13—C1123.32 (17)C14—C27—H27B109.0
C12—C13—C8121.94 (17)C1—C27—H27B109.0
C1—C13—C8114.73 (13)H27A—C27—H27B107.8
C26—C14—C1596.56 (14)C1—C28—Cl1113.56 (13)
C26—C14—C27113.72 (15)C1—C28—H28A108.9
C15—C14—C27118.13 (13)Cl1—C28—H28A108.9
C26—C14—H14109.2C1—C28—H28B108.9
C15—C14—H14109.2Cl1—C28—H28B108.9
C27—C14—H14109.2H28A—C28—H28B107.7
C13—C1—C2—C3176.17 (17)C26—C14—C15—C201.81 (17)
C28—C1—C2—C366.6 (2)C27—C14—C15—C20123.19 (16)
C27—C1—C2—C361.8 (2)C20—C15—C16—C170.1 (3)
C13—C1—C2—C73.14 (16)C14—C15—C16—C17178.46 (16)
C28—C1—C2—C7112.70 (16)C15—C16—C17—C180.5 (3)
C27—C1—C2—C7118.88 (14)C16—C17—C18—C190.4 (3)
C7—C2—C3—C40.1 (2)C17—C18—C19—C200.4 (3)
C1—C2—C3—C4179.23 (15)C18—C19—C20—C21179.31 (19)
C2—C3—C4—C50.1 (3)C18—C19—C20—C151.0 (3)
C3—C4—C5—C60.1 (3)C16—C15—C20—C21179.38 (16)
C4—C5—C6—C70.1 (3)C14—C15—C20—C210.83 (19)
C5—C6—C7—C8178.42 (17)C16—C15—C20—C190.9 (3)
C5—C6—C7—C20.2 (3)C14—C15—C20—C19179.43 (16)
C3—C2—C7—C8178.76 (14)C19—C20—C21—C221.2 (3)
C1—C2—C7—C80.64 (17)C15—C20—C21—C22179.06 (17)
C3—C2—C7—C60.2 (2)C19—C20—C21—C26179.09 (17)
C1—C2—C7—C6179.23 (15)C15—C20—C21—C260.64 (18)
C6—C7—C8—C93.1 (3)C20—C21—C22—C23179.87 (19)
C2—C7—C8—C9178.30 (15)C26—C21—C22—C230.2 (3)
C6—C7—C8—C13176.25 (15)C21—C22—C23—C240.0 (3)
C2—C7—C8—C132.33 (16)C22—C23—C24—C250.1 (4)
C7—C8—C9—C10177.88 (16)C23—C24—C25—C260.1 (3)
C13—C8—C9—C101.4 (2)C24—C25—C26—C210.3 (3)
C8—C9—C10—C111.2 (3)C24—C25—C26—C14177.61 (17)
C9—C10—C11—C122.2 (3)C22—C21—C26—C250.4 (3)
C10—C11—C12—C130.1 (3)C20—C21—C26—C25179.91 (18)
C11—C12—C13—C1176.77 (16)C22—C21—C26—C14177.76 (16)
C11—C12—C13—C82.5 (3)C20—C21—C26—C142.0 (2)
C28—C1—C13—C1258.6 (2)C15—C14—C26—C25179.82 (19)
C2—C1—C13—C12176.21 (16)C27—C14—C26—C2555.1 (3)
C27—C1—C13—C1261.1 (2)C15—C14—C26—C212.17 (17)
C28—C1—C13—C8122.11 (15)C27—C14—C26—C21126.84 (16)
C2—C1—C13—C84.48 (15)C26—C14—C27—C1123.54 (15)
C27—C1—C13—C8118.20 (15)C15—C14—C27—C1124.34 (16)
C9—C8—C13—C123.6 (3)C13—C1—C27—C1458.35 (18)
C7—C8—C13—C12175.79 (16)C28—C1—C27—C14176.78 (13)
C9—C8—C13—C1175.74 (15)C2—C1—C27—C1451.45 (17)
C7—C8—C13—C14.88 (18)C13—C1—C28—Cl1179.50 (12)
C26—C14—C15—C16179.80 (18)C2—C1—C28—Cl177.98 (18)
C27—C14—C15—C1658.4 (2)C27—C1—C28—Cl154.69 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C27—H27A···Cl10.972.683.075 (2)105
C10—H10···Cl1i0.932.893.573 (2)131
Symmetry code: (i) x+1, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC28H21Cl
Mr392.90
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)8.4346 (17), 26.368 (5), 9.1162 (18)
β (°) 94.08 (3)
V3)2022.3 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.35 × 0.29 × 0.22
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
16094, 3646, 2747
Rint0.025
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.133, 1.08
No. of reflections3646
No. of parameters263
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.26

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C27—H27A···Cl10.972.683.075 (2)104.9
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (20674070) and the Natural Science Foundation of Zhejiang Province, China (R404109).

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChun, C., Kim, M.-J., Vak, D. & Kim, D. Y. (2003). J. Mater. Chem. 13, 2904–2909.  Web of Science CrossRef CAS Google Scholar
First citationKim, S. Y., Lee, M. & Boo, B. H. (1998). J. Chem. Phys. 109, 2593–2595.  Web of Science CrossRef CAS Google Scholar
First citationMuller, C. D., Falcou, A., Reckefuss, N., Rojahn, M., Wiederhirn, V., Rudati, P., Frohne, H., Nuyken, O., Becker, H. & Meerholz, K. (2003). Nature (London), 421, 829–833.  Web of Science CrossRef PubMed Google Scholar
First citationSaragi, T. P. I., Pudzich, R., Fuhrmann, T. & Salbeck, J. (2004). Appl. Phys. Lett. 84, 2334–2336.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds