organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Bis[(2,6-di­meth­oxy­phen­yl)ethyn­yl]benzene

aDepartment of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan, and bInstitute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan
*Correspondence e-mail: ono.katsuhiko@nitech.ac.jp

(Received 2 May 2008; accepted 8 May 2008; online 14 May 2008)

The title compound, C26H22O4, is a derivative of 1,4-bis­(phenyl­ethyn­yl)benzene substituted by four meth­oxy groups at the terminal benzene rings. The asymmetric unit consists of two half-molecules; one centrosymmetric molecule is planar but the other is non-planar, with dihedral angles of 67.7 (1)° between the central benzene ring and the terminal benzene rings. In the crystal structure, mol­ecules form a zigzag mol­ecular network due to ππ [the inter­planar and centroid–centroid distances between the benzene rings are 3.50 (1) and 3.57 (1) Å, respectively] and C—H⋯π inter­actions (2.75 Å). Introduction of the four meth­oxy groups results in the supra­molecular architecture.

Related literature

The synthetic research of ethynylated aromatic compounds has attracted considerable attention because of inter­est in their mol­ecular structures (Bunz et al., 1999[Bunz, U. H. F., Rubin, Y. & Tobe, Y. (1999). Chem. Soc. Rev. 28, 107-119.]; Kawase et al., 2003[Kawase, T., Seirai, Y., Darabi, H. R., Oda, M., Sarakai, Y. & Tashiro, K. (2003). Angew. Chem. Int. Ed. 42, 1621-1624.]), optical properties (Beeby et al., 2002[Beeby, A., Findlay, K., Low, P. J. & Marder, T. B. (2002). J. Am. Chem. Soc. 124, 8280-8284.]; Bunz, 2000[Bunz, U. H. F. (2000). Chem. Rev. 100, 1605-1644.]) and mol­ecular electronics (Tour, 2000[Tour, J. M. (2000). Acc. Chem. Res. 33, 791-804.]). 1,4-Bis(phenyl­ethyn­yl)benzene is used as a building block in applications such as liquid-crystalline materials (Dai et al., 1999[Dai, C., Nguyen, P., Marder, T. B., Scott, A. J., Clegg, W. & Viney, C. (1999). Chem. Commun. pp. 2493-2494.]) and electron-conducting mol­ecular wires (Moore et al., 2006[Moore, A. M., Dameron, A. A., Mantooth, B. A., Smith, R. K., Fuchs, D. J., Ciszek, J. W., Maya, F., Yao, Y., Tour, J. M. & Weiss, P. S. (2006). J. Am. Chem. Soc. 128, 1959-1967.]). For related mol­ecular structures, including a 1,4-bis­(phenyl­ethyn­yl)benzene system, see: Watt et al. (2004[Watt, S. W., Dai, C., Scott, A. J., Burke, J. M., Thomas, R. Ll., Collings, J. C., Viney, C., Clegg, W. & Marder, T. B. (2004). Angew. Chem. Int. Ed. 43, 3061-3063.]); Li et al. (1998[Li, H., Powell, D. R., Firman, T. K. & West, R. (1998). Macromolecules, 31, 1093-1098.]); Filatov & Petrukhina (2005[Filatov, A. S. & Petrukhina, M. A. (2005). Acta Cryst. C61, o193-o194.]).

[Scheme 1]

Experimental

Crystal data
  • C26H22O4

  • Mr = 398.44

  • Monoclinic, P 21 /c

  • a = 12.391 (4) Å

  • b = 10.313 (3) Å

  • c = 16.611 (5) Å

  • β = 95.323 (4)°

  • V = 2113.5 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 (1) K

  • 0.47 × 0.35 × 0.10 mm

Data collection
  • Rigaku/MSC Mercury CCD diffractometer

  • Absorption correction: none

  • 16248 measured reflections

  • 4775 independent reflections

  • 4206 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.120

  • S = 1.12

  • 4775 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2001[Rigaku/MSC (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The synthetic research of ethynylated aromatic compounds has attracted considerable attention because of interests in their molecular structures (Bunz et al., 1999; Kawase et al., 2003), optical properties (Beeby et al., 2002; Bunz, 2000) and molecular electronics (Tour, 2000). Among these ethynylated aromatic compounds, 1,4-bis(phenylethynyl)benzene derivatives have been extensively studied. These compounds have stiff, linear molecular structures and are used as building blocks in the applications such as liquid-crystalline materials (Dai et al., 1999) and electron-conducting molecular wires (Moore et al., 2006). According to the X-ray crystallographic analyses of 1,4-bis(phenylethynyl)benzene, the molecules crystallize in two crystal forms with the P1 and Pbcn space groups (Watt et al., 2004; Li et al., 1998). In both crystals, the molecules are linear and planar. In P1, the molecules are aggregated by the face-to-edge interactions based on C—H···π contacts (2.74–2.89 Å). In Pbcn, the molecules form π-dimers with an intermolecular distance of 3.49 Å. The π-dimers are aggregated by the face-to-face interactions based on π···π contacts (3.45 Å) and the face-to-edge interactions based on C—H···π contacts (benzene ring) (2.85–2.88 Å) and C—H···π contacts (CC bond) (2.79–2.87 Å). Furthermore, the X-ray crystallographic analysis carried out on 1,4-bis(p-tolylethynyl)benzene in P21/c (Filatov & Petrukhina, 2005) again showed the molecule to be linear and planar. The molecules are stacked along the b axis to form a column with intermolecular distances of 3.51 and 3.56 Å. This result indicates that the introduction of two methyl groups to the terminal benzene rings provides the modification of molecular assembly. With regard to this, we investigated the molecular and crystal structure of the title compound, (I), which is a derivative substituted by four methoxy groups at the terminal benzene rings.

Single crystals of (I) were grown by recrystallization from dichloromethane. These produce a structure in P21/c that shows two crystallographically independent molecules, each possessing an inversion centre (Fig. 1). One molecule is planar and strained at the CC bonds. The other molecule is a linear, nonplanar structure with a dihedral angle of 67.7 (1)° between the central benzene ring and the terminal benzene rings. The CC bond lengths are 1.200 (2) Å (C7—C8) and 1.199 (2) Å (C20—C21). These values are analogous to those of 1,4-bis(phenylethynyl)benzene (1.202–1.205 Å). The CC—C bond angles are 173.1 (2)° (C1—C7—C8), 174.3 (2)° (C7—C8—C9), 178.6 (2)° (C14—C20—C21) and 178.7 (2)° (C20—C21—C22). The bond angles of C1—C7—C8 and C7—C8—C9 are strained as compared to those of 1,4-bis(phenylethynyl)benzene (176.9°–179.5°). Both the molecules alternately arrange to form a zigzag molecular chain due to the π···π and C—H···π interactions (Fig. 2). The terminal benzene rings overlap each other to form a π-stacking (Fig. 3). The interplanar and centroid-centroid distances between the benzene rings are 3.50 (1) and 3.57 (1) Å, respectively. The C—H···π contact between the H26C atom and the C8 atom is observed (2.75 Å). This contact affords the strained structure at the CC bonds between the C7 and C8 atoms. Furthermore, the four methoxy groups lock the benzene dimer to provide the zigzag molecular network (Fig. 4). Thus, the introduction of four methoxy groups to the terminal benzene rings forms a supramolecular architecture of 1,4-bis(phenylethynyl)benzene.

In summary, we studied the molecular and crystal structure of 1,4-bis[(2,6-dimethoxyphenyl)ethynyl]benzene, which is a 1,4-bis(phenylethynyl)benzene derivative substituted by four methoxy groups at the terminal benzene rings. The methoxy groups fixed a π-stacking geometry between the terminal benzene rings resulting in the formation of the zigzag molecular network. The introduction of methoxy groups provided a supramolecular architecture of 1,4-bis(phenylethynyl)benzene.

Related literature top

The synthetic research of ethynylated aromatic compounds has attracted considerable attention because of interest in their molecular structures (Bunz et al., 1999; Kawase et al., 2003), optical properties (Beeby et al., 2002; Bunz, 2000) and molecular electronics (Tour, 2000). 1,4-Bis(phenylethynyl)benzene is used as a building block in the applications such as liquid-crystalline materials (Dai et al., 1999) and electron-conducting molecular wires (Moore et al., 2006). For related molecular structures, including a 1,4-bis(phenylethynyl)benzene system, see: Watt et al. (2004); Li et al. (1998); Filatov & Petrukhina (2005).

Experimental top

The title compound (I) was prepared as follows: Bis(triphenylphosphine)palladium(II) dichloride [Pd(PPh3)2Cl2] (10 mg, 0.014 mmol) was added to a mixture of 1-ethynyl-2,6-dimethoxybenzene (76 mg, 0.47 mmol), 1,4-diiodobenzene (77 mg, 0.23 mmol), and copper(I) iodide (3 mg, 0.014 mmol) in dry DMF (5 ml) and dry triethylamine (5 ml) under nitrogen. The reaction mixture was stirred for 16 h at 80 °C. After removal of the solvent, dichloromethane (30 ml) and aqueous disodium ethylenediaminetetraacetate (Na2edta) solution (5%, 30 ml) were added. The organic layer was separated and washed with water (30 ml). The organic solution was dried over Na2SO4 and concentrated. The residue was separated by column chromatography on silica gel (CH2Cl2/hexane = 9: 1) to afford compound (I) (52 mg, 56%) as a yellow powder. Yellow crystals of (I) suitable for X-ray analysis were grown from a dichloromethane solution.

Refinement top

All the H atoms were placed in geometrically calculated positions, with C—H = 0.95 (phenyl) and 0.98 (methyl) Å, and refined using a riding model with Uiso(H) = 1.2Ueq(C) (phenyl) and 1.5Ueq(C) (methyl).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear (Rigaku/MSC, 2001); data reduction: CrystalClear (Rigaku/MSC, 2001); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structures of (I), with atom labels and 50% probability displacement elipsoids for non-H atoms and H atoms are shown as small spheres of arbitrary radii [symmetry codes: (i) 1-x,-y,-z; (ii) 2-x,1-y,1-z].
[Figure 2] Fig. 2. The packing diagram of (I), zigzag molecular chain.
[Figure 3] Fig. 3. The packing diagram of (I), overlap mode.
[Figure 4] Fig. 4. The packing diagram of (I), zigzag network.
1,4-Bis[(2,6-dimethoxyphenyl)ethynyl]benzene top
Crystal data top
C26H22O4F(000) = 840
Mr = 398.44Dx = 1.252 Mg m3
Monoclinic, P21/cMelting point = 528–529 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.391 (4) ÅCell parameters from 5564 reflections
b = 10.313 (3) Åθ = 3.2–27.5°
c = 16.611 (5) ŵ = 0.08 mm1
β = 95.323 (4)°T = 173 K
V = 2113.5 (11) Å3Block, yellow
Z = 40.47 × 0.35 × 0.10 mm
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
4206 reflections with I > 2σ(I)
Radiation source: rotating-anode X-ray tubeRint = 0.028
Graphite Monochromator monochromatorθmax = 27.5°, θmin = 3.2°
Detector resolution: 14.6199 pixels mm-1h = 1611
ϕ and ω scansk = 1311
16248 measured reflectionsl = 2121
4775 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.044P)2 + 0.7208P]
where P = (Fo2 + 2Fc2)/3
4775 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C26H22O4V = 2113.5 (11) Å3
Mr = 398.44Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.391 (4) ŵ = 0.08 mm1
b = 10.313 (3) ÅT = 173 K
c = 16.611 (5) Å0.47 × 0.35 × 0.10 mm
β = 95.323 (4)°
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
4206 reflections with I > 2σ(I)
16248 measured reflectionsRint = 0.028
4775 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.12Δρmax = 0.20 e Å3
4775 reflectionsΔρmin = 0.16 e Å3
271 parameters
Special details top

Experimental. IR (KBr, cm-1): 3002, 2836, 2209, 1582, 1514, 1474, 1429, 1300, 1258, 1113, 1034, 843, 772, 718; 1H NMR (CDCl3, δ p.p.m.): 3.92 (s, 12H), 6.56 (d, J = 8.4 Hz, 4H), 7.25 (t, J = 8.4 Hz, 2H), 7.54 (s, 4H); 13C NMR (CDCl3, δ p.p.m.): 56.1, 83.5, 97.8, 101.5, 103.5, 123.4, 130.0, 131.5, 161.5; MS (EI): m/z 399 (M+ + 1), 161.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.78035 (10)0.11242 (15)0.26308 (8)0.0283 (3)
C20.78339 (11)0.21811 (16)0.31655 (9)0.0316 (3)
C30.86038 (12)0.22279 (19)0.38320 (10)0.0417 (4)
H30.86320.29490.41890.050*
C40.93251 (13)0.1214 (2)0.39674 (10)0.0476 (5)
H40.98490.12500.44220.057*
C50.93074 (12)0.0146 (2)0.34601 (10)0.0437 (4)
H50.98090.05420.35670.052*
C60.85420 (11)0.00986 (16)0.27909 (9)0.0332 (3)
C70.70162 (11)0.10222 (14)0.19462 (8)0.0269 (3)
C80.63967 (11)0.08077 (13)0.13629 (8)0.0270 (3)
C90.56837 (10)0.04176 (13)0.06729 (8)0.0238 (3)
C100.47959 (11)0.11676 (14)0.03736 (8)0.0274 (3)
H100.46530.19670.06280.033*
C110.58769 (11)0.07592 (14)0.02880 (8)0.0269 (3)
H110.64760.12810.04840.032*
C120.70206 (18)0.4179 (2)0.35277 (12)0.0591 (5)
H12A0.64380.47700.33250.089*
H12B0.68780.38570.40630.089*
H12C0.77140.46430.35680.089*
C130.90402 (17)0.2050 (2)0.24194 (13)0.0617 (6)
H13A0.88730.26780.19830.093*
H13B0.98150.18430.24600.093*
H13C0.88540.24230.29310.093*
C140.70955 (10)0.10378 (14)0.44408 (9)0.0280 (3)
C150.70353 (11)0.00310 (15)0.50009 (10)0.0333 (3)
C160.62828 (13)0.09645 (16)0.48519 (11)0.0414 (4)
H160.62470.16580.52250.050*
C170.55901 (13)0.09237 (17)0.41523 (12)0.0451 (4)
H170.50710.15970.40540.054*
C180.56229 (12)0.00605 (17)0.35890 (10)0.0401 (4)
H180.51340.00650.31140.048*
C190.63847 (11)0.10420 (14)0.37318 (9)0.0302 (3)
C200.78731 (11)0.20559 (14)0.45872 (9)0.0281 (3)
C210.85122 (11)0.29250 (14)0.46985 (9)0.0287 (3)
C220.92644 (10)0.39768 (13)0.48466 (8)0.0251 (3)
C230.91450 (11)0.48457 (15)0.54763 (9)0.0311 (3)
H230.85610.47440.58030.037*
C241.01269 (11)0.41447 (15)0.43720 (9)0.0320 (3)
H241.02150.35610.39410.038*
C250.76768 (17)0.0831 (2)0.62854 (14)0.0679 (7)
H25A0.82330.06630.67320.102*
H25B0.77870.16960.60630.102*
H25C0.69580.07870.64850.102*
C260.58057 (15)0.21684 (19)0.25079 (11)0.0494 (5)
H26A0.59900.29450.22090.074*
H26B0.50550.22310.26440.074*
H26C0.58860.13990.21730.074*
O10.70668 (9)0.31087 (11)0.29821 (6)0.0383 (3)
O20.84253 (9)0.08962 (12)0.22507 (7)0.0428 (3)
O30.77520 (9)0.01165 (12)0.56704 (7)0.0462 (3)
O40.65148 (8)0.20675 (11)0.32338 (6)0.0374 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0245 (6)0.0386 (8)0.0220 (7)0.0056 (6)0.0025 (5)0.0012 (6)
C20.0286 (7)0.0411 (9)0.0249 (7)0.0099 (6)0.0010 (5)0.0001 (6)
C30.0373 (8)0.0587 (11)0.0279 (8)0.0169 (8)0.0038 (6)0.0035 (7)
C40.0310 (8)0.0764 (14)0.0334 (9)0.0144 (8)0.0082 (6)0.0078 (9)
C50.0270 (7)0.0650 (12)0.0391 (9)0.0019 (7)0.0031 (6)0.0161 (9)
C60.0294 (7)0.0447 (9)0.0263 (7)0.0011 (6)0.0077 (6)0.0052 (7)
C70.0307 (7)0.0261 (7)0.0240 (7)0.0023 (5)0.0028 (5)0.0014 (5)
C80.0315 (7)0.0251 (7)0.0244 (7)0.0023 (5)0.0021 (5)0.0016 (6)
C90.0260 (6)0.0248 (7)0.0206 (6)0.0037 (5)0.0023 (5)0.0001 (5)
C100.0320 (7)0.0230 (7)0.0272 (7)0.0013 (5)0.0023 (5)0.0050 (5)
C110.0267 (6)0.0255 (7)0.0278 (7)0.0030 (5)0.0006 (5)0.0005 (6)
C120.0762 (13)0.0491 (12)0.0504 (12)0.0019 (10)0.0032 (10)0.0238 (9)
C130.0676 (12)0.0600 (13)0.0596 (13)0.0301 (10)0.0166 (10)0.0093 (10)
C140.0229 (6)0.0256 (7)0.0358 (8)0.0026 (5)0.0049 (5)0.0056 (6)
C150.0274 (6)0.0305 (8)0.0426 (9)0.0034 (6)0.0054 (6)0.0011 (7)
C160.0392 (8)0.0315 (8)0.0552 (11)0.0087 (7)0.0129 (7)0.0013 (8)
C170.0361 (8)0.0408 (10)0.0597 (11)0.0162 (7)0.0118 (8)0.0179 (9)
C180.0286 (7)0.0485 (10)0.0432 (9)0.0069 (7)0.0033 (6)0.0195 (8)
C190.0254 (6)0.0314 (8)0.0343 (8)0.0004 (5)0.0056 (6)0.0098 (6)
C200.0256 (6)0.0285 (7)0.0300 (7)0.0002 (5)0.0012 (5)0.0003 (6)
C210.0274 (6)0.0284 (7)0.0295 (7)0.0016 (5)0.0018 (5)0.0024 (6)
C220.0245 (6)0.0252 (7)0.0244 (7)0.0023 (5)0.0042 (5)0.0049 (5)
C230.0289 (7)0.0376 (8)0.0271 (7)0.0072 (6)0.0044 (5)0.0015 (6)
C240.0325 (7)0.0346 (8)0.0289 (7)0.0055 (6)0.0031 (6)0.0072 (6)
C250.0531 (11)0.0773 (16)0.0714 (14)0.0161 (10)0.0051 (10)0.0420 (13)
C260.0521 (10)0.0511 (11)0.0417 (10)0.0142 (8)0.0138 (8)0.0071 (8)
O10.0445 (6)0.0364 (6)0.0326 (6)0.0021 (5)0.0033 (5)0.0101 (5)
O20.0515 (7)0.0427 (7)0.0349 (6)0.0140 (5)0.0081 (5)0.0049 (5)
O30.0429 (6)0.0470 (7)0.0468 (7)0.0138 (5)0.0057 (5)0.0164 (6)
O40.0366 (5)0.0418 (7)0.0326 (6)0.0005 (5)0.0035 (4)0.0025 (5)
Geometric parameters (Å, º) top
C1—C21.404 (2)C14—C151.401 (2)
C1—C61.408 (2)C14—C191.404 (2)
C1—C71.4318 (19)C14—C201.4306 (19)
C2—O11.3630 (19)C15—O31.3601 (19)
C2—C31.394 (2)C15—C161.394 (2)
C3—C41.380 (3)C16—C171.380 (3)
C3—H30.9500C16—H160.9500
C4—C51.386 (3)C17—C181.384 (3)
C4—H40.9500C17—H170.9500
C5—C61.394 (2)C18—C191.389 (2)
C5—H50.9500C18—H180.9500
C6—O21.362 (2)C19—O41.3614 (19)
C7—C81.1996 (19)C20—C211.199 (2)
C8—C91.4382 (18)C21—C221.4364 (19)
C9—C101.3979 (19)C22—C231.396 (2)
C9—C111.4026 (19)C22—C241.3964 (19)
C10—C11i1.3821 (19)C23—C24ii1.385 (2)
C10—H100.9500C23—H230.9500
C11—C10i1.3821 (19)C24—C23ii1.385 (2)
C11—H110.9500C24—H240.9500
C12—O11.433 (2)C25—O31.423 (2)
C12—H12A0.9800C25—H25A0.9800
C12—H12B0.9800C25—H25B0.9800
C12—H12C0.9800C25—H25C0.9800
C13—O21.427 (2)C26—O41.4284 (19)
C13—H13A0.9800C26—H26A0.9800
C13—H13B0.9800C26—H26B0.9800
C13—H13C0.9800C26—H26C0.9800
C2—C1—C6119.00 (13)C19—C14—C20120.04 (13)
C2—C1—C7122.39 (13)O3—C15—C16124.64 (15)
C6—C1—C7118.55 (13)O3—C15—C14115.09 (13)
O1—C2—C3124.40 (15)C16—C15—C14120.27 (15)
O1—C2—C1115.23 (12)C17—C16—C15118.74 (16)
C3—C2—C1120.37 (15)C17—C16—H16120.6
C4—C3—C2119.23 (16)C15—C16—H16120.6
C4—C3—H3120.4C16—C17—C18122.47 (15)
C2—C3—H3120.4C16—C17—H17118.8
C3—C4—C5121.97 (15)C18—C17—H17118.8
C3—C4—H4119.0C17—C18—C19118.76 (15)
C5—C4—H4119.0C17—C18—H18120.6
C4—C5—C6118.97 (16)C19—C18—H18120.6
C4—C5—H5120.5O4—C19—C18125.39 (14)
C6—C5—H5120.5O4—C19—C14114.32 (12)
O2—C6—C5125.10 (15)C18—C19—C14120.29 (15)
O2—C6—C1114.47 (13)C21—C20—C14178.63 (16)
C5—C6—C1120.43 (15)C20—C21—C22178.69 (16)
C8—C7—C1173.14 (15)C23—C22—C24118.91 (12)
C7—C8—C9174.33 (15)C23—C22—C21120.06 (12)
C10—C9—C11118.60 (12)C24—C22—C21121.03 (13)
C10—C9—C8122.25 (13)C24ii—C23—C22120.42 (13)
C11—C9—C8119.15 (12)C24ii—C23—H23119.8
C11i—C10—C9120.72 (13)C22—C23—H23119.8
C11i—C10—H10119.6C23ii—C24—C22120.68 (13)
C9—C10—H10119.6C23ii—C24—H24119.7
C10i—C11—C9120.68 (13)C22—C24—H24119.7
C10i—C11—H11119.7O3—C25—H25A109.5
C9—C11—H11119.7O3—C25—H25B109.5
O1—C12—H12A109.5H25A—C25—H25B109.5
O1—C12—H12B109.5O3—C25—H25C109.5
H12A—C12—H12B109.5H25A—C25—H25C109.5
O1—C12—H12C109.5H25B—C25—H25C109.5
H12A—C12—H12C109.5O4—C26—H26A109.5
H12B—C12—H12C109.5O4—C26—H26B109.5
O2—C13—H13A109.5H26A—C26—H26B109.5
O2—C13—H13B109.5O4—C26—H26C109.5
H13A—C13—H13B109.5H26A—C26—H26C109.5
O2—C13—H13C109.5H26B—C26—H26C109.5
H13A—C13—H13C109.5C2—O1—C12117.87 (13)
H13B—C13—H13C109.5C6—O2—C13118.48 (14)
C15—C14—C19119.45 (13)C15—O3—C25117.46 (14)
C15—C14—C20120.51 (13)C19—O4—C26118.12 (13)
C6—C1—C2—O1177.73 (12)O3—C15—C16—C17179.04 (15)
C7—C1—C2—O10.57 (19)C14—C15—C16—C171.2 (2)
C6—C1—C2—C31.7 (2)C15—C16—C17—C180.8 (2)
C7—C1—C2—C3178.89 (13)C16—C17—C18—C190.3 (2)
O1—C2—C3—C4178.42 (14)C17—C18—C19—O4179.83 (14)
C1—C2—C3—C41.0 (2)C17—C18—C19—C140.8 (2)
C2—C3—C4—C50.1 (2)C15—C14—C19—O4179.83 (12)
C3—C4—C5—C60.4 (2)C20—C14—C19—O40.16 (18)
C4—C5—C6—O2179.10 (14)C15—C14—C19—C180.4 (2)
C4—C5—C6—C10.4 (2)C20—C14—C19—C18179.56 (13)
C2—C1—C6—O2178.13 (12)C15—C14—C20—C21160 (7)
C7—C1—C6—O20.85 (18)C19—C14—C20—C2120 (7)
C2—C1—C6—C51.4 (2)C14—C20—C21—C2291 (11)
C7—C1—C6—C5178.71 (13)C20—C21—C22—C232 (7)
C2—C1—C7—C8171.6 (11)C20—C21—C22—C24179 (100)
C6—C1—C7—C85.6 (12)C24—C22—C23—C24ii0.2 (2)
C1—C7—C8—C913 (2)C21—C22—C23—C24ii179.38 (13)
C7—C8—C9—C10158.3 (14)C23—C22—C24—C23ii0.2 (2)
C7—C8—C9—C1121.2 (15)C21—C22—C24—C23ii179.37 (14)
C11—C9—C10—C11i0.1 (2)C3—C2—O1—C122.6 (2)
C8—C9—C10—C11i179.59 (13)C1—C2—O1—C12176.88 (14)
C10—C9—C11—C10i0.1 (2)C5—C6—O2—C137.5 (2)
C8—C9—C11—C10i179.60 (12)C1—C6—O2—C13171.99 (14)
C19—C14—C15—O3179.60 (13)C16—C15—O3—C254.4 (2)
C20—C14—C15—O30.4 (2)C14—C15—O3—C25175.75 (16)
C19—C14—C15—C160.6 (2)C18—C19—O4—C261.0 (2)
C20—C14—C15—C16179.42 (14)C14—C19—O4—C26178.37 (13)
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC26H22O4
Mr398.44
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)12.391 (4), 10.313 (3), 16.611 (5)
β (°) 95.323 (4)
V3)2113.5 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.47 × 0.35 × 0.10
Data collection
DiffractometerRigaku/MSC Mercury CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
16248, 4775, 4206
Rint0.028
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.120, 1.12
No. of reflections4775
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.16

Computer programs: CrystalClear (Rigaku/MSC, 2001), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

 

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (grant No. 19550034) from the Ministry of Education, Culture, Sports, Science and Technology, Japan. The authors thank the Instrument Center of the Institute for Molecular Science for the X-ray structure analysis.

References

First citationBeeby, A., Findlay, K., Low, P. J. & Marder, T. B. (2002). J. Am. Chem. Soc. 124, 8280–8284.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBunz, U. H. F. (2000). Chem. Rev. 100, 1605–1644.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBunz, U. H. F., Rubin, Y. & Tobe, Y. (1999). Chem. Soc. Rev. 28, 107–119.  Web of Science CrossRef CAS Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDai, C., Nguyen, P., Marder, T. B., Scott, A. J., Clegg, W. & Viney, C. (1999). Chem. Commun. pp. 2493–2494.  Web of Science CSD CrossRef Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFilatov, A. S. & Petrukhina, M. A. (2005). Acta Cryst. C61, o193–o194.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKawase, T., Seirai, Y., Darabi, H. R., Oda, M., Sarakai, Y. & Tashiro, K. (2003). Angew. Chem. Int. Ed. 42, 1621–1624.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, H., Powell, D. R., Firman, T. K. & West, R. (1998). Macromolecules, 31, 1093–1098.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMoore, A. M., Dameron, A. A., Mantooth, B. A., Smith, R. K., Fuchs, D. J., Ciszek, J. W., Maya, F., Yao, Y., Tour, J. M. & Weiss, P. S. (2006). J. Am. Chem. Soc. 128, 1959–1967.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku/MSC (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTour, J. M. (2000). Acc. Chem. Res. 33, 791–804.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWatt, S. W., Dai, C., Scott, A. J., Burke, J. M., Thomas, R. Ll., Collings, J. C., Viney, C., Clegg, W. & Marder, T. B. (2004). Angew. Chem. Int. Ed. 43, 3061–3063.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds