organic compounds
1,4-Bis[(2,6-dimethoxyphenyl)ethynyl]benzene
aDepartment of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan, and bInstitute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan
*Correspondence e-mail: ono.katsuhiko@nitech.ac.jp
The title compound, C26H22O4, is a derivative of 1,4-bis(phenylethynyl)benzene substituted by four methoxy groups at the terminal benzene rings. The consists of two half-molecules; one centrosymmetric molecule is planar but the other is non-planar, with dihedral angles of 67.7 (1)° between the central benzene ring and the terminal benzene rings. In the molecules form a zigzag molecular network due to π–π [the interplanar and centroid–centroid distances between the benzene rings are 3.50 (1) and 3.57 (1) Å, respectively] and C—H⋯π interactions (2.75 Å). Introduction of the four methoxy groups results in the supramolecular architecture.
Related literature
The synthetic research of ethynylated aromatic compounds has attracted considerable attention because of interest in their molecular structures (Bunz et al., 1999; Kawase et al., 2003), optical properties (Beeby et al., 2002; Bunz, 2000) and molecular electronics (Tour, 2000). 1,4-Bis(phenylethynyl)benzene is used as a building block in applications such as liquid-crystalline materials (Dai et al., 1999) and electron-conducting molecular wires (Moore et al., 2006). For related molecular structures, including a 1,4-bis(phenylethynyl)benzene system, see: Watt et al. (2004); Li et al. (1998); Filatov & Petrukhina (2005).
Experimental
Crystal data
|
Data collection: CrystalClear (Rigaku/MSC, 2001); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536808013664/xu2425sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808013664/xu2425Isup2.hkl
The title compound (I) was prepared as follows: Bis(triphenylphosphine)palladium(II) dichloride [Pd(PPh3)2Cl2] (10 mg, 0.014 mmol) was added to a mixture of 1-ethynyl-2,6-dimethoxybenzene (76 mg, 0.47 mmol), 1,4-diiodobenzene (77 mg, 0.23 mmol), and copper(I) iodide (3 mg, 0.014 mmol) in dry DMF (5 ml) and dry triethylamine (5 ml) under nitrogen. The reaction mixture was stirred for 16 h at 80 °C. After removal of the solvent, dichloromethane (30 ml) and aqueous disodium ethylenediaminetetraacetate (Na2edta) solution (5%, 30 ml) were added. The organic layer was separated and washed with water (30 ml). The organic solution was dried over Na2SO4 and concentrated. The residue was separated by
on silica gel (CH2Cl2/hexane = 9: 1) to afford compound (I) (52 mg, 56%) as a yellow powder. Yellow crystals of (I) suitable for X-ray analysis were grown from a dichloromethane solution.All the H atoms were placed in geometrically calculated positions, with C—H = 0.95 (phenyl) and 0.98 (methyl) Å, and refined using a riding model with Uiso(H) = 1.2Ueq(C) (phenyl) and 1.5Ueq(C) (methyl).
Data collection: CrystalClear (Rigaku/MSC, 2001); cell
CrystalClear (Rigaku/MSC, 2001); data reduction: CrystalClear (Rigaku/MSC, 2001); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).C26H22O4 | F(000) = 840 |
Mr = 398.44 | Dx = 1.252 Mg m−3 |
Monoclinic, P21/c | Melting point = 528–529 K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 12.391 (4) Å | Cell parameters from 5564 reflections |
b = 10.313 (3) Å | θ = 3.2–27.5° |
c = 16.611 (5) Å | µ = 0.08 mm−1 |
β = 95.323 (4)° | T = 173 K |
V = 2113.5 (11) Å3 | Block, yellow |
Z = 4 | 0.47 × 0.35 × 0.10 mm |
Rigaku/MSC Mercury CCD diffractometer | 4206 reflections with I > 2σ(I) |
Radiation source: rotating-anode X-ray tube | Rint = 0.028 |
Graphite Monochromator monochromator | θmax = 27.5°, θmin = 3.2° |
Detector resolution: 14.6199 pixels mm-1 | h = −16→11 |
ϕ and ω scans | k = −13→11 |
16248 measured reflections | l = −21→21 |
4775 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.055 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.120 | H-atom parameters constrained |
S = 1.12 | w = 1/[σ2(Fo2) + (0.044P)2 + 0.7208P] where P = (Fo2 + 2Fc2)/3 |
4775 reflections | (Δ/σ)max < 0.001 |
271 parameters | Δρmax = 0.20 e Å−3 |
0 restraints | Δρmin = −0.16 e Å−3 |
C26H22O4 | V = 2113.5 (11) Å3 |
Mr = 398.44 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 12.391 (4) Å | µ = 0.08 mm−1 |
b = 10.313 (3) Å | T = 173 K |
c = 16.611 (5) Å | 0.47 × 0.35 × 0.10 mm |
β = 95.323 (4)° |
Rigaku/MSC Mercury CCD diffractometer | 4206 reflections with I > 2σ(I) |
16248 measured reflections | Rint = 0.028 |
4775 independent reflections |
R[F2 > 2σ(F2)] = 0.055 | 0 restraints |
wR(F2) = 0.120 | H-atom parameters constrained |
S = 1.12 | Δρmax = 0.20 e Å−3 |
4775 reflections | Δρmin = −0.16 e Å−3 |
271 parameters |
Experimental. IR (KBr, cm-1): 3002, 2836, 2209, 1582, 1514, 1474, 1429, 1300, 1258, 1113, 1034, 843, 772, 718; 1H NMR (CDCl3, δ p.p.m.): 3.92 (s, 12H), 6.56 (d, J = 8.4 Hz, 4H), 7.25 (t, J = 8.4 Hz, 2H), 7.54 (s, 4H); 13C NMR (CDCl3, δ p.p.m.): 56.1, 83.5, 97.8, 101.5, 103.5, 123.4, 130.0, 131.5, 161.5; MS (EI): m/z 399 (M+ + 1), 161. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.78035 (10) | −0.11242 (15) | 0.26308 (8) | 0.0283 (3) | |
C2 | 0.78339 (11) | −0.21811 (16) | 0.31655 (9) | 0.0316 (3) | |
C3 | 0.86038 (12) | −0.22279 (19) | 0.38320 (10) | 0.0417 (4) | |
H3 | 0.8632 | −0.2949 | 0.4189 | 0.050* | |
C4 | 0.93251 (13) | −0.1214 (2) | 0.39674 (10) | 0.0476 (5) | |
H4 | 0.9849 | −0.1250 | 0.4422 | 0.057* | |
C5 | 0.93074 (12) | −0.0146 (2) | 0.34601 (10) | 0.0437 (4) | |
H5 | 0.9809 | 0.0542 | 0.3567 | 0.052* | |
C6 | 0.85420 (11) | −0.00986 (16) | 0.27909 (9) | 0.0332 (3) | |
C7 | 0.70162 (11) | −0.10222 (14) | 0.19462 (8) | 0.0269 (3) | |
C8 | 0.63967 (11) | −0.08077 (13) | 0.13629 (8) | 0.0270 (3) | |
C9 | 0.56837 (10) | −0.04176 (13) | 0.06729 (8) | 0.0238 (3) | |
C10 | 0.47959 (11) | −0.11676 (14) | 0.03736 (8) | 0.0274 (3) | |
H10 | 0.4653 | −0.1967 | 0.0628 | 0.033* | |
C11 | 0.58769 (11) | 0.07592 (14) | 0.02880 (8) | 0.0269 (3) | |
H11 | 0.6476 | 0.1281 | 0.0484 | 0.032* | |
C12 | 0.70206 (18) | −0.4179 (2) | 0.35277 (12) | 0.0591 (5) | |
H12A | 0.6438 | −0.4770 | 0.3325 | 0.089* | |
H12B | 0.6878 | −0.3857 | 0.4063 | 0.089* | |
H12C | 0.7714 | −0.4643 | 0.3568 | 0.089* | |
C13 | 0.90402 (17) | 0.2050 (2) | 0.24194 (13) | 0.0617 (6) | |
H13A | 0.8873 | 0.2678 | 0.1983 | 0.093* | |
H13B | 0.9815 | 0.1843 | 0.2460 | 0.093* | |
H13C | 0.8854 | 0.2423 | 0.2931 | 0.093* | |
C14 | 0.70955 (10) | 0.10378 (14) | 0.44408 (9) | 0.0280 (3) | |
C15 | 0.70353 (11) | 0.00310 (15) | 0.50009 (10) | 0.0333 (3) | |
C16 | 0.62828 (13) | −0.09645 (16) | 0.48519 (11) | 0.0414 (4) | |
H16 | 0.6247 | −0.1658 | 0.5225 | 0.050* | |
C17 | 0.55901 (13) | −0.09237 (17) | 0.41523 (12) | 0.0451 (4) | |
H17 | 0.5071 | −0.1597 | 0.4054 | 0.054* | |
C18 | 0.56229 (12) | 0.00605 (17) | 0.35890 (10) | 0.0401 (4) | |
H18 | 0.5134 | 0.0065 | 0.3114 | 0.048* | |
C19 | 0.63847 (11) | 0.10420 (14) | 0.37318 (9) | 0.0302 (3) | |
C20 | 0.78731 (11) | 0.20559 (14) | 0.45872 (9) | 0.0281 (3) | |
C21 | 0.85122 (11) | 0.29250 (14) | 0.46985 (9) | 0.0287 (3) | |
C22 | 0.92644 (10) | 0.39768 (13) | 0.48466 (8) | 0.0251 (3) | |
C23 | 0.91450 (11) | 0.48457 (15) | 0.54763 (9) | 0.0311 (3) | |
H23 | 0.8561 | 0.4744 | 0.5803 | 0.037* | |
C24 | 1.01269 (11) | 0.41447 (15) | 0.43720 (9) | 0.0320 (3) | |
H24 | 1.0215 | 0.3561 | 0.3941 | 0.038* | |
C25 | 0.76768 (17) | −0.0831 (2) | 0.62854 (14) | 0.0679 (7) | |
H25A | 0.8233 | −0.0663 | 0.6732 | 0.102* | |
H25B | 0.7787 | −0.1696 | 0.6063 | 0.102* | |
H25C | 0.6958 | −0.0787 | 0.6485 | 0.102* | |
C26 | 0.58057 (15) | 0.21684 (19) | 0.25079 (11) | 0.0494 (5) | |
H26A | 0.5990 | 0.2945 | 0.2209 | 0.074* | |
H26B | 0.5055 | 0.2231 | 0.2644 | 0.074* | |
H26C | 0.5886 | 0.1399 | 0.2173 | 0.074* | |
O1 | 0.70668 (9) | −0.31087 (11) | 0.29821 (6) | 0.0383 (3) | |
O2 | 0.84253 (9) | 0.08962 (12) | 0.22507 (7) | 0.0428 (3) | |
O3 | 0.77520 (9) | 0.01165 (12) | 0.56704 (7) | 0.0462 (3) | |
O4 | 0.65148 (8) | 0.20675 (11) | 0.32338 (6) | 0.0374 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0245 (6) | 0.0386 (8) | 0.0220 (7) | 0.0056 (6) | 0.0025 (5) | −0.0012 (6) |
C2 | 0.0286 (7) | 0.0411 (9) | 0.0249 (7) | 0.0099 (6) | 0.0010 (5) | 0.0001 (6) |
C3 | 0.0373 (8) | 0.0587 (11) | 0.0279 (8) | 0.0169 (8) | −0.0038 (6) | 0.0035 (7) |
C4 | 0.0310 (8) | 0.0764 (14) | 0.0334 (9) | 0.0144 (8) | −0.0082 (6) | −0.0078 (9) |
C5 | 0.0270 (7) | 0.0650 (12) | 0.0391 (9) | −0.0019 (7) | 0.0031 (6) | −0.0161 (9) |
C6 | 0.0294 (7) | 0.0447 (9) | 0.0263 (7) | 0.0011 (6) | 0.0077 (6) | −0.0052 (7) |
C7 | 0.0307 (7) | 0.0261 (7) | 0.0240 (7) | 0.0023 (5) | 0.0028 (5) | 0.0014 (5) |
C8 | 0.0315 (7) | 0.0251 (7) | 0.0244 (7) | 0.0023 (5) | 0.0021 (5) | 0.0016 (6) |
C9 | 0.0260 (6) | 0.0248 (7) | 0.0206 (6) | 0.0037 (5) | 0.0023 (5) | −0.0001 (5) |
C10 | 0.0320 (7) | 0.0230 (7) | 0.0272 (7) | −0.0013 (5) | 0.0023 (5) | 0.0050 (5) |
C11 | 0.0267 (6) | 0.0255 (7) | 0.0278 (7) | −0.0030 (5) | −0.0006 (5) | 0.0005 (6) |
C12 | 0.0762 (13) | 0.0491 (12) | 0.0504 (12) | −0.0019 (10) | −0.0032 (10) | 0.0238 (9) |
C13 | 0.0676 (12) | 0.0600 (13) | 0.0596 (13) | −0.0301 (10) | 0.0166 (10) | −0.0093 (10) |
C14 | 0.0229 (6) | 0.0256 (7) | 0.0358 (8) | −0.0026 (5) | 0.0049 (5) | −0.0056 (6) |
C15 | 0.0274 (6) | 0.0305 (8) | 0.0426 (9) | −0.0034 (6) | 0.0054 (6) | −0.0011 (7) |
C16 | 0.0392 (8) | 0.0315 (8) | 0.0552 (11) | −0.0087 (7) | 0.0129 (7) | −0.0013 (8) |
C17 | 0.0361 (8) | 0.0408 (10) | 0.0597 (11) | −0.0162 (7) | 0.0118 (8) | −0.0179 (9) |
C18 | 0.0286 (7) | 0.0485 (10) | 0.0432 (9) | −0.0069 (7) | 0.0033 (6) | −0.0195 (8) |
C19 | 0.0254 (6) | 0.0314 (8) | 0.0343 (8) | 0.0004 (5) | 0.0056 (6) | −0.0098 (6) |
C20 | 0.0256 (6) | 0.0285 (7) | 0.0300 (7) | 0.0002 (5) | 0.0012 (5) | −0.0003 (6) |
C21 | 0.0274 (6) | 0.0284 (7) | 0.0295 (7) | −0.0016 (5) | −0.0018 (5) | 0.0024 (6) |
C22 | 0.0245 (6) | 0.0252 (7) | 0.0244 (7) | −0.0023 (5) | −0.0042 (5) | 0.0049 (5) |
C23 | 0.0289 (7) | 0.0376 (8) | 0.0271 (7) | −0.0072 (6) | 0.0044 (5) | −0.0015 (6) |
C24 | 0.0325 (7) | 0.0346 (8) | 0.0289 (7) | −0.0055 (6) | 0.0031 (6) | −0.0072 (6) |
C25 | 0.0531 (11) | 0.0773 (16) | 0.0714 (14) | −0.0161 (10) | −0.0051 (10) | 0.0420 (13) |
C26 | 0.0521 (10) | 0.0511 (11) | 0.0417 (10) | 0.0142 (8) | −0.0138 (8) | −0.0071 (8) |
O1 | 0.0445 (6) | 0.0364 (6) | 0.0326 (6) | 0.0021 (5) | −0.0033 (5) | 0.0101 (5) |
O2 | 0.0515 (7) | 0.0427 (7) | 0.0349 (6) | −0.0140 (5) | 0.0081 (5) | −0.0049 (5) |
O3 | 0.0429 (6) | 0.0470 (7) | 0.0468 (7) | −0.0138 (5) | −0.0057 (5) | 0.0164 (6) |
O4 | 0.0366 (5) | 0.0418 (7) | 0.0326 (6) | 0.0005 (5) | −0.0035 (4) | −0.0025 (5) |
C1—C2 | 1.404 (2) | C14—C15 | 1.401 (2) |
C1—C6 | 1.408 (2) | C14—C19 | 1.404 (2) |
C1—C7 | 1.4318 (19) | C14—C20 | 1.4306 (19) |
C2—O1 | 1.3630 (19) | C15—O3 | 1.3601 (19) |
C2—C3 | 1.394 (2) | C15—C16 | 1.394 (2) |
C3—C4 | 1.380 (3) | C16—C17 | 1.380 (3) |
C3—H3 | 0.9500 | C16—H16 | 0.9500 |
C4—C5 | 1.386 (3) | C17—C18 | 1.384 (3) |
C4—H4 | 0.9500 | C17—H17 | 0.9500 |
C5—C6 | 1.394 (2) | C18—C19 | 1.389 (2) |
C5—H5 | 0.9500 | C18—H18 | 0.9500 |
C6—O2 | 1.362 (2) | C19—O4 | 1.3614 (19) |
C7—C8 | 1.1996 (19) | C20—C21 | 1.199 (2) |
C8—C9 | 1.4382 (18) | C21—C22 | 1.4364 (19) |
C9—C10 | 1.3979 (19) | C22—C23 | 1.396 (2) |
C9—C11 | 1.4026 (19) | C22—C24 | 1.3964 (19) |
C10—C11i | 1.3821 (19) | C23—C24ii | 1.385 (2) |
C10—H10 | 0.9500 | C23—H23 | 0.9500 |
C11—C10i | 1.3821 (19) | C24—C23ii | 1.385 (2) |
C11—H11 | 0.9500 | C24—H24 | 0.9500 |
C12—O1 | 1.433 (2) | C25—O3 | 1.423 (2) |
C12—H12A | 0.9800 | C25—H25A | 0.9800 |
C12—H12B | 0.9800 | C25—H25B | 0.9800 |
C12—H12C | 0.9800 | C25—H25C | 0.9800 |
C13—O2 | 1.427 (2) | C26—O4 | 1.4284 (19) |
C13—H13A | 0.9800 | C26—H26A | 0.9800 |
C13—H13B | 0.9800 | C26—H26B | 0.9800 |
C13—H13C | 0.9800 | C26—H26C | 0.9800 |
C2—C1—C6 | 119.00 (13) | C19—C14—C20 | 120.04 (13) |
C2—C1—C7 | 122.39 (13) | O3—C15—C16 | 124.64 (15) |
C6—C1—C7 | 118.55 (13) | O3—C15—C14 | 115.09 (13) |
O1—C2—C3 | 124.40 (15) | C16—C15—C14 | 120.27 (15) |
O1—C2—C1 | 115.23 (12) | C17—C16—C15 | 118.74 (16) |
C3—C2—C1 | 120.37 (15) | C17—C16—H16 | 120.6 |
C4—C3—C2 | 119.23 (16) | C15—C16—H16 | 120.6 |
C4—C3—H3 | 120.4 | C16—C17—C18 | 122.47 (15) |
C2—C3—H3 | 120.4 | C16—C17—H17 | 118.8 |
C3—C4—C5 | 121.97 (15) | C18—C17—H17 | 118.8 |
C3—C4—H4 | 119.0 | C17—C18—C19 | 118.76 (15) |
C5—C4—H4 | 119.0 | C17—C18—H18 | 120.6 |
C4—C5—C6 | 118.97 (16) | C19—C18—H18 | 120.6 |
C4—C5—H5 | 120.5 | O4—C19—C18 | 125.39 (14) |
C6—C5—H5 | 120.5 | O4—C19—C14 | 114.32 (12) |
O2—C6—C5 | 125.10 (15) | C18—C19—C14 | 120.29 (15) |
O2—C6—C1 | 114.47 (13) | C21—C20—C14 | 178.63 (16) |
C5—C6—C1 | 120.43 (15) | C20—C21—C22 | 178.69 (16) |
C8—C7—C1 | 173.14 (15) | C23—C22—C24 | 118.91 (12) |
C7—C8—C9 | 174.33 (15) | C23—C22—C21 | 120.06 (12) |
C10—C9—C11 | 118.60 (12) | C24—C22—C21 | 121.03 (13) |
C10—C9—C8 | 122.25 (13) | C24ii—C23—C22 | 120.42 (13) |
C11—C9—C8 | 119.15 (12) | C24ii—C23—H23 | 119.8 |
C11i—C10—C9 | 120.72 (13) | C22—C23—H23 | 119.8 |
C11i—C10—H10 | 119.6 | C23ii—C24—C22 | 120.68 (13) |
C9—C10—H10 | 119.6 | C23ii—C24—H24 | 119.7 |
C10i—C11—C9 | 120.68 (13) | C22—C24—H24 | 119.7 |
C10i—C11—H11 | 119.7 | O3—C25—H25A | 109.5 |
C9—C11—H11 | 119.7 | O3—C25—H25B | 109.5 |
O1—C12—H12A | 109.5 | H25A—C25—H25B | 109.5 |
O1—C12—H12B | 109.5 | O3—C25—H25C | 109.5 |
H12A—C12—H12B | 109.5 | H25A—C25—H25C | 109.5 |
O1—C12—H12C | 109.5 | H25B—C25—H25C | 109.5 |
H12A—C12—H12C | 109.5 | O4—C26—H26A | 109.5 |
H12B—C12—H12C | 109.5 | O4—C26—H26B | 109.5 |
O2—C13—H13A | 109.5 | H26A—C26—H26B | 109.5 |
O2—C13—H13B | 109.5 | O4—C26—H26C | 109.5 |
H13A—C13—H13B | 109.5 | H26A—C26—H26C | 109.5 |
O2—C13—H13C | 109.5 | H26B—C26—H26C | 109.5 |
H13A—C13—H13C | 109.5 | C2—O1—C12 | 117.87 (13) |
H13B—C13—H13C | 109.5 | C6—O2—C13 | 118.48 (14) |
C15—C14—C19 | 119.45 (13) | C15—O3—C25 | 117.46 (14) |
C15—C14—C20 | 120.51 (13) | C19—O4—C26 | 118.12 (13) |
C6—C1—C2—O1 | 177.73 (12) | O3—C15—C16—C17 | 179.04 (15) |
C7—C1—C2—O1 | 0.57 (19) | C14—C15—C16—C17 | −1.2 (2) |
C6—C1—C2—C3 | −1.7 (2) | C15—C16—C17—C18 | 0.8 (2) |
C7—C1—C2—C3 | −178.89 (13) | C16—C17—C18—C19 | 0.3 (2) |
O1—C2—C3—C4 | −178.42 (14) | C17—C18—C19—O4 | 179.83 (14) |
C1—C2—C3—C4 | 1.0 (2) | C17—C18—C19—C14 | −0.8 (2) |
C2—C3—C4—C5 | 0.1 (2) | C15—C14—C19—O4 | 179.83 (12) |
C3—C4—C5—C6 | −0.4 (2) | C20—C14—C19—O4 | −0.16 (18) |
C4—C5—C6—O2 | 179.10 (14) | C15—C14—C19—C18 | 0.4 (2) |
C4—C5—C6—C1 | −0.4 (2) | C20—C14—C19—C18 | −179.56 (13) |
C2—C1—C6—O2 | −178.13 (12) | C15—C14—C20—C21 | −160 (7) |
C7—C1—C6—O2 | −0.85 (18) | C19—C14—C20—C21 | 20 (7) |
C2—C1—C6—C5 | 1.4 (2) | C14—C20—C21—C22 | 91 (11) |
C7—C1—C6—C5 | 178.71 (13) | C20—C21—C22—C23 | 2 (7) |
C2—C1—C7—C8 | 171.6 (11) | C20—C21—C22—C24 | −179 (100) |
C6—C1—C7—C8 | −5.6 (12) | C24—C22—C23—C24ii | −0.2 (2) |
C1—C7—C8—C9 | −13 (2) | C21—C22—C23—C24ii | 179.38 (13) |
C7—C8—C9—C10 | −158.3 (14) | C23—C22—C24—C23ii | 0.2 (2) |
C7—C8—C9—C11 | 21.2 (15) | C21—C22—C24—C23ii | −179.37 (14) |
C11—C9—C10—C11i | 0.1 (2) | C3—C2—O1—C12 | 2.6 (2) |
C8—C9—C10—C11i | 179.59 (13) | C1—C2—O1—C12 | −176.88 (14) |
C10—C9—C11—C10i | −0.1 (2) | C5—C6—O2—C13 | −7.5 (2) |
C8—C9—C11—C10i | −179.60 (12) | C1—C6—O2—C13 | 171.99 (14) |
C19—C14—C15—O3 | −179.60 (13) | C16—C15—O3—C25 | −4.4 (2) |
C20—C14—C15—O3 | 0.4 (2) | C14—C15—O3—C25 | 175.75 (16) |
C19—C14—C15—C16 | 0.6 (2) | C18—C19—O4—C26 | 1.0 (2) |
C20—C14—C15—C16 | −179.42 (14) | C14—C19—O4—C26 | −178.37 (13) |
Symmetry codes: (i) −x+1, −y, −z; (ii) −x+2, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C26H22O4 |
Mr | 398.44 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 173 |
a, b, c (Å) | 12.391 (4), 10.313 (3), 16.611 (5) |
β (°) | 95.323 (4) |
V (Å3) | 2113.5 (11) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.47 × 0.35 × 0.10 |
Data collection | |
Diffractometer | Rigaku/MSC Mercury CCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16248, 4775, 4206 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.055, 0.120, 1.12 |
No. of reflections | 4775 |
No. of parameters | 271 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.20, −0.16 |
Computer programs: CrystalClear (Rigaku/MSC, 2001), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).
Acknowledgements
This work was supported by a Grant-in-Aid for Scientific Research (grant No. 19550034) from the Ministry of Education, Culture, Sports, Science and Technology, Japan. The authors thank the Instrument Center of the Institute for Molecular Science for the X-ray structure analysis.
References
Beeby, A., Findlay, K., Low, P. J. & Marder, T. B. (2002). J. Am. Chem. Soc. 124, 8280–8284. Web of Science CrossRef PubMed CAS Google Scholar
Bunz, U. H. F. (2000). Chem. Rev. 100, 1605–1644. Web of Science CrossRef PubMed CAS Google Scholar
Bunz, U. H. F., Rubin, Y. & Tobe, Y. (1999). Chem. Soc. Rev. 28, 107–119. Web of Science CrossRef CAS Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dai, C., Nguyen, P., Marder, T. B., Scott, A. J., Clegg, W. & Viney, C. (1999). Chem. Commun. pp. 2493–2494. Web of Science CSD CrossRef Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Filatov, A. S. & Petrukhina, M. A. (2005). Acta Cryst. C61, o193–o194. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Kawase, T., Seirai, Y., Darabi, H. R., Oda, M., Sarakai, Y. & Tashiro, K. (2003). Angew. Chem. Int. Ed. 42, 1621–1624. Web of Science CSD CrossRef CAS Google Scholar
Li, H., Powell, D. R., Firman, T. K. & West, R. (1998). Macromolecules, 31, 1093–1098. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Moore, A. M., Dameron, A. A., Mantooth, B. A., Smith, R. K., Fuchs, D. J., Ciszek, J. W., Maya, F., Yao, Y., Tour, J. M. & Weiss, P. S. (2006). J. Am. Chem. Soc. 128, 1959–1967. Web of Science CrossRef PubMed CAS Google Scholar
Rigaku/MSC (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tour, J. M. (2000). Acc. Chem. Res. 33, 791–804. Web of Science CrossRef PubMed CAS Google Scholar
Watt, S. W., Dai, C., Scott, A. J., Burke, J. M., Thomas, R. Ll., Collings, J. C., Viney, C., Clegg, W. & Marder, T. B. (2004). Angew. Chem. Int. Ed. 43, 3061–3063. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The synthetic research of ethynylated aromatic compounds has attracted considerable attention because of interests in their molecular structures (Bunz et al., 1999; Kawase et al., 2003), optical properties (Beeby et al., 2002; Bunz, 2000) and molecular electronics (Tour, 2000). Among these ethynylated aromatic compounds, 1,4-bis(phenylethynyl)benzene derivatives have been extensively studied. These compounds have stiff, linear molecular structures and are used as building blocks in the applications such as liquid-crystalline materials (Dai et al., 1999) and electron-conducting molecular wires (Moore et al., 2006). According to the X-ray crystallographic analyses of 1,4-bis(phenylethynyl)benzene, the molecules crystallize in two crystal forms with the P1 and Pbcn space groups (Watt et al., 2004; Li et al., 1998). In both crystals, the molecules are linear and planar. In P1, the molecules are aggregated by the face-to-edge interactions based on C—H···π contacts (2.74–2.89 Å). In Pbcn, the molecules form π-dimers with an intermolecular distance of 3.49 Å. The π-dimers are aggregated by the face-to-face interactions based on π···π contacts (3.45 Å) and the face-to-edge interactions based on C—H···π contacts (benzene ring) (2.85–2.88 Å) and C—H···π contacts (C≡C bond) (2.79–2.87 Å). Furthermore, the X-ray crystallographic analysis carried out on 1,4-bis(p-tolylethynyl)benzene in P21/c (Filatov & Petrukhina, 2005) again showed the molecule to be linear and planar. The molecules are stacked along the b axis to form a column with intermolecular distances of 3.51 and 3.56 Å. This result indicates that the introduction of two methyl groups to the terminal benzene rings provides the modification of molecular assembly. With regard to this, we investigated the molecular and crystal structure of the title compound, (I), which is a derivative substituted by four methoxy groups at the terminal benzene rings.
Single crystals of (I) were grown by recrystallization from dichloromethane. These produce a structure in P21/c that shows two crystallographically independent molecules, each possessing an inversion centre (Fig. 1). One molecule is planar and strained at the C≡C bonds. The other molecule is a linear, nonplanar structure with a dihedral angle of 67.7 (1)° between the central benzene ring and the terminal benzene rings. The C≡C bond lengths are 1.200 (2) Å (C7—C8) and 1.199 (2) Å (C20—C21). These values are analogous to those of 1,4-bis(phenylethynyl)benzene (1.202–1.205 Å). The C≡C—C bond angles are 173.1 (2)° (C1—C7—C8), 174.3 (2)° (C7—C8—C9), 178.6 (2)° (C14—C20—C21) and 178.7 (2)° (C20—C21—C22). The bond angles of C1—C7—C8 and C7—C8—C9 are strained as compared to those of 1,4-bis(phenylethynyl)benzene (176.9°–179.5°). Both the molecules alternately arrange to form a zigzag molecular chain due to the π···π and C—H···π interactions (Fig. 2). The terminal benzene rings overlap each other to form a π-stacking (Fig. 3). The interplanar and centroid-centroid distances between the benzene rings are 3.50 (1) and 3.57 (1) Å, respectively. The C—H···π contact between the H26C atom and the C8 atom is observed (2.75 Å). This contact affords the strained structure at the C≡C bonds between the C7 and C8 atoms. Furthermore, the four methoxy groups lock the benzene dimer to provide the zigzag molecular network (Fig. 4). Thus, the introduction of four methoxy groups to the terminal benzene rings forms a supramolecular architecture of 1,4-bis(phenylethynyl)benzene.
In summary, we studied the molecular and crystal structure of 1,4-bis[(2,6-dimethoxyphenyl)ethynyl]benzene, which is a 1,4-bis(phenylethynyl)benzene derivative substituted by four methoxy groups at the terminal benzene rings. The methoxy groups fixed a π-stacking geometry between the terminal benzene rings resulting in the formation of the zigzag molecular network. The introduction of methoxy groups provided a supramolecular architecture of 1,4-bis(phenylethynyl)benzene.