organic compounds
1-Furfuryl-3-furoylthiourea
aDepartment of Structure Analysis, Institute of Materials, University of Havana, Cuba, and bGrupo de Cristalografía, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
*Correspondence e-mail: osvaldo@imre.oc.uh.cu
The title compound, C11H10N2O3S, was synthesized from furoyl isothiocyanate and furfurylamine in dry acetone. The thiourea group is in the thioamide form. The trans–cis geometry of the thiourea group is stabilized by intramolecular hydrogen bonding between the carbonyl and cis-thioamide and results in a pseudo-S(6) planar ring which makes dihedral angles of 2.5 (3) and 88.1 (2)° with the furoyl and furfuryl groups, respectively. There is also an intramolecular hydrogen bond between the furan O atom and the other thioamide H atom. In the molecules are linked by two intermolecular N—H⋯O hydrogen bonds, forming dimers. These dimers are stacked within the along the [010] direction.
Related literature
For general background, see: Dhooghe et al. (2005); Aly et al. (2007); Estévez-Hernández et al. (2007). For related structures, see: Koch (2001); Yamin & Hassan (2004). For the synthesis, see: Otazo et al. (2001).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: COLLECT (Enraf–Nonius, 2000); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536808015250/xu2426sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808015250/xu2426Isup2.hkl
The title compound was synthesized according to a previous report (Otazo et al., 2001), by converting furoyl chloride into furoyl isothiocyanate and then condensing with furfurylamine. The resulting solid product was crystallized from ethanol yielding X-ray quality single crystals (m.p 79–80 ° C). Elemental analysis (%) for C11H10N2O3S calculated: C 52.80, H 4.00, N 11.20, S 12.80; found: C 52.83, H 4.07, N 11.21, S 12.81.
H atoms were placed in calculated positions with N—H = 0.88 Å and C—H = 0.93 (aromatic) or 0.97 Å (methylene), and refined in riding model with Uiso(H) = 1.2Ueq(C,N).
Data collection: COLLECT (Enraf–Nonius, 2000); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C11H10N2O3S | Z = 2 |
Mr = 250.27 | F(000) = 260 |
Triclinic, P1 | Dx = 1.428 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 4.5999 (2) Å | Cell parameters from 2356 reflections |
b = 11.3792 (6) Å | θ = 2.9–26.7° |
c = 12.0556 (5) Å | µ = 0.28 mm−1 |
α = 68.351 (3)° | T = 294 K |
β = 83.187 (4)° | Prism, colourless |
γ = 89.367 (3)° | 0.16 × 0.15 × 0.08 mm |
V = 582.01 (5) Å3 |
Nonius KappaCCD diffractometer | Rint = 0.028 |
ω scans | θmax = 26.6°, θmin = 3.1° |
4433 measured reflections | h = −5→5 |
2427 independent reflections | k = −14→14 |
1753 reflections with I > 2σ(I) | l = −15→13 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.048 | w = 1/[σ2(Fo2) + (0.0698P)2 + 0.1199P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.135 | (Δ/σ)max < 0.001 |
S = 1.05 | Δρmax = 0.32 e Å−3 |
2427 reflections | Δρmin = −0.28 e Å−3 |
154 parameters |
C11H10N2O3S | γ = 89.367 (3)° |
Mr = 250.27 | V = 582.01 (5) Å3 |
Triclinic, P1 | Z = 2 |
a = 4.5999 (2) Å | Mo Kα radiation |
b = 11.3792 (6) Å | µ = 0.28 mm−1 |
c = 12.0556 (5) Å | T = 294 K |
α = 68.351 (3)° | 0.16 × 0.15 × 0.08 mm |
β = 83.187 (4)° |
Nonius KappaCCD diffractometer | 1753 reflections with I > 2σ(I) |
4433 measured reflections | Rint = 0.028 |
2427 independent reflections |
R[F2 > 2σ(F2)] = 0.048 | 0 restraints |
wR(F2) = 0.135 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.32 e Å−3 |
2427 reflections | Δρmin = −0.28 e Å−3 |
154 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | −0.16463 (15) | 0.45844 (5) | 0.35901 (6) | 0.0578 (2) | |
O1 | 0.1719 (4) | 0.07028 (14) | 0.56626 (15) | 0.0540 (4) | |
O2 | 0.4479 (4) | 0.28509 (15) | 0.68097 (15) | 0.0565 (4) | |
N2 | −0.1523 (4) | 0.21274 (16) | 0.39894 (15) | 0.0417 (4) | |
H2 | −0.0911 | 0.139 | 0.4381 | 0.05* | |
O3 | 0.0164 (5) | 0.1731 (2) | 0.16872 (17) | 0.0793 (6) | |
N1 | 0.1109 (4) | 0.28290 (16) | 0.51574 (15) | 0.0421 (4) | |
H1 | 0.1601 | 0.3461 | 0.5332 | 0.05* | |
C8 | −0.1860 (5) | 0.2555 (2) | 0.1856 (2) | 0.0476 (5) | |
C7 | −0.3440 (5) | 0.2252 (2) | 0.30733 (19) | 0.0461 (5) | |
H7A | −0.4809 | 0.2911 | 0.3054 | 0.055* | |
H7B | −0.4567 | 0.1465 | 0.3299 | 0.055* | |
C3 | 0.3974 (5) | 0.17197 (19) | 0.67285 (18) | 0.0415 (5) | |
C1 | 0.2185 (5) | 0.16912 (19) | 0.58107 (18) | 0.0411 (5) | |
C2 | −0.0679 (5) | 0.30996 (19) | 0.42464 (18) | 0.0396 (5) | |
C4 | 0.5302 (6) | 0.0818 (2) | 0.7549 (2) | 0.0606 (7) | |
H4 | 0.5303 | −0.004 | 0.7676 | 0.073* | |
C9 | −0.2028 (7) | 0.3500 (3) | 0.0816 (3) | 0.0771 (9) | |
H9 | −0.3219 | 0.4193 | 0.068 | 0.092* | |
C6 | 0.6146 (6) | 0.2632 (3) | 0.7713 (2) | 0.0611 (7) | |
H6 | 0.6806 | 0.325 | 0.7966 | 0.073* | |
C5 | 0.6702 (6) | 0.1424 (3) | 0.8184 (2) | 0.0607 (7) | |
H5 | 0.7805 | 0.1043 | 0.8814 | 0.073* | |
C10 | 0.0005 (8) | 0.3236 (4) | −0.0059 (3) | 0.0850 (10) | |
H10 | 0.0366 | 0.3725 | −0.0875 | 0.102* | |
C11 | 0.1238 (8) | 0.2192 (4) | 0.0502 (3) | 0.0893 (10) | |
H11 | 0.2657 | 0.1811 | 0.0144 | 0.107* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0793 (5) | 0.0362 (3) | 0.0594 (4) | 0.0082 (3) | −0.0299 (3) | −0.0131 (3) |
O1 | 0.0709 (11) | 0.0387 (8) | 0.0580 (10) | 0.0093 (7) | −0.0252 (8) | −0.0195 (7) |
O2 | 0.0688 (11) | 0.0463 (9) | 0.0608 (10) | 0.0043 (8) | −0.0235 (8) | −0.0225 (8) |
N2 | 0.0499 (10) | 0.0363 (9) | 0.0390 (9) | 0.0019 (7) | −0.0114 (8) | −0.0122 (7) |
O3 | 0.0938 (15) | 0.0759 (13) | 0.0589 (12) | 0.0162 (11) | 0.0080 (10) | −0.0197 (10) |
N1 | 0.0512 (10) | 0.0335 (8) | 0.0426 (9) | 0.0010 (7) | −0.0137 (8) | −0.0128 (7) |
C8 | 0.0536 (13) | 0.0444 (12) | 0.0467 (12) | −0.0013 (10) | −0.0165 (10) | −0.0158 (10) |
C7 | 0.0458 (12) | 0.0479 (12) | 0.0472 (12) | 0.0008 (9) | −0.0131 (10) | −0.0185 (10) |
C3 | 0.0437 (11) | 0.0406 (11) | 0.0420 (11) | 0.0019 (9) | −0.0077 (9) | −0.0167 (9) |
C1 | 0.0428 (11) | 0.0400 (11) | 0.0384 (11) | 0.0012 (9) | −0.0034 (9) | −0.0125 (9) |
C2 | 0.0413 (11) | 0.0399 (11) | 0.0350 (10) | 0.0013 (9) | −0.0052 (8) | −0.0107 (9) |
C4 | 0.0782 (17) | 0.0469 (13) | 0.0612 (15) | 0.0147 (12) | −0.0309 (13) | −0.0189 (11) |
C9 | 0.098 (2) | 0.0648 (17) | 0.0581 (17) | −0.0002 (16) | −0.0300 (16) | −0.0041 (14) |
C6 | 0.0649 (16) | 0.0689 (17) | 0.0599 (15) | −0.0010 (13) | −0.0212 (13) | −0.0317 (13) |
C5 | 0.0655 (16) | 0.0704 (17) | 0.0512 (14) | 0.0123 (13) | −0.0272 (12) | −0.0229 (12) |
C10 | 0.102 (2) | 0.106 (3) | 0.0390 (15) | −0.034 (2) | −0.0080 (15) | −0.0166 (16) |
C11 | 0.108 (3) | 0.098 (3) | 0.0561 (19) | −0.010 (2) | 0.0174 (18) | −0.0309 (19) |
S1—C2 | 1.661 (2) | C7—H7A | 0.97 |
O1—C1 | 1.227 (2) | C7—H7B | 0.97 |
O2—C3 | 1.351 (3) | C3—C4 | 1.336 (3) |
O2—C6 | 1.353 (3) | C3—C1 | 1.465 (3) |
N2—C2 | 1.327 (3) | C4—C5 | 1.412 (4) |
N2—C7 | 1.460 (3) | C4—H4 | 0.93 |
N2—H2 | 0.86 | C9—C10 | 1.439 (5) |
O3—C11 | 1.359 (3) | C9—H9 | 0.93 |
O3—C8 | 1.366 (3) | C6—C5 | 1.314 (4) |
N1—C1 | 1.367 (3) | C6—H6 | 0.93 |
N1—C2 | 1.392 (3) | C5—H5 | 0.93 |
N1—H1 | 0.86 | C10—C11 | 1.294 (5) |
C8—C9 | 1.327 (3) | C10—H10 | 0.93 |
C8—C7 | 1.476 (3) | C11—H11 | 0.93 |
C3—O2—C6 | 106.57 (19) | N1—C1—C3 | 115.07 (18) |
C2—N2—C7 | 123.03 (18) | N2—C2—N1 | 116.40 (17) |
C2—N2—H2 | 118.5 | N2—C2—S1 | 125.21 (16) |
C7—N2—H2 | 118.5 | N1—C2—S1 | 118.38 (15) |
C11—O3—C8 | 107.1 (2) | C3—C4—C5 | 106.4 (2) |
C1—N1—C2 | 128.53 (18) | C3—C4—H4 | 126.8 |
C1—N1—H1 | 115.7 | C5—C4—H4 | 126.8 |
C2—N1—H1 | 115.7 | C8—C9—C10 | 106.1 (3) |
C9—C8—O3 | 109.2 (2) | C8—C9—H9 | 126.9 |
C9—C8—C7 | 132.7 (3) | C10—C9—H9 | 126.9 |
O3—C8—C7 | 118.09 (19) | C5—C6—O2 | 110.6 (2) |
N2—C7—C8 | 113.74 (18) | C5—C6—H6 | 124.7 |
N2—C7—H7A | 108.8 | O2—C6—H6 | 124.7 |
C8—C7—H7A | 108.8 | C6—C5—C4 | 106.7 (2) |
N2—C7—H7B | 108.8 | C6—C5—H5 | 126.6 |
C8—C7—H7B | 108.8 | C4—C5—H5 | 126.6 |
H7A—C7—H7B | 107.7 | C11—C10—C9 | 107.2 (3) |
C4—C3—O2 | 109.73 (19) | C11—C10—H10 | 126.4 |
C4—C3—C1 | 132.6 (2) | C9—C10—H10 | 126.4 |
O2—C3—C1 | 117.69 (18) | C10—C11—O3 | 110.3 (3) |
O1—C1—N1 | 123.86 (19) | C10—C11—H11 | 124.8 |
O1—C1—C3 | 121.08 (19) | O3—C11—H11 | 124.8 |
C11—O3—C8—C9 | −0.4 (3) | C7—N2—C2—S1 | 0.2 (3) |
C11—O3—C8—C7 | 178.2 (2) | C1—N1—C2—N2 | 1.8 (3) |
C2—N2—C7—C8 | 88.1 (2) | C1—N1—C2—S1 | −179.47 (17) |
C9—C8—C7—N2 | −122.7 (3) | O2—C3—C4—C5 | 0.4 (3) |
O3—C8—C7—N2 | 59.2 (3) | C1—C3—C4—C5 | −179.9 (2) |
C6—O2—C3—C4 | −0.5 (3) | O3—C8—C9—C10 | 0.7 (3) |
C6—O2—C3—C1 | 179.72 (19) | C7—C8—C9—C10 | −177.6 (2) |
C2—N1—C1—O1 | 0.9 (4) | C3—O2—C6—C5 | 0.4 (3) |
C2—N1—C1—C3 | −178.86 (19) | O2—C6—C5—C4 | −0.2 (3) |
C4—C3—C1—O1 | −2.1 (4) | C3—C4—C5—C6 | −0.1 (3) |
O2—C3—C1—O1 | 177.7 (2) | C8—C9—C10—C11 | −0.7 (3) |
C4—C3—C1—N1 | 177.7 (2) | C9—C10—C11—O3 | 0.5 (4) |
O2—C3—C1—N1 | −2.5 (3) | C8—O3—C11—C10 | −0.1 (4) |
C7—N2—C2—N1 | 178.88 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2 | 0.86 | 2.24 | 2.672 (3) | 111 |
N2—H2···O1 | 0.86 | 2.00 | 2.677 (3) | 135 |
N2—H2···O1i | 0.86 | 2.43 | 3.091 (3) | 133 |
Symmetry code: (i) −x, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C11H10N2O3S |
Mr | 250.27 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 294 |
a, b, c (Å) | 4.5999 (2), 11.3792 (6), 12.0556 (5) |
α, β, γ (°) | 68.351 (3), 83.187 (4), 89.367 (3) |
V (Å3) | 582.01 (5) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.28 |
Crystal size (mm) | 0.16 × 0.15 × 0.08 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4433, 2427, 1753 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.630 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.135, 1.05 |
No. of reflections | 2427 |
No. of parameters | 154 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.32, −0.28 |
Computer programs: COLLECT (Enraf–Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
S1—C2 | 1.661 (2) | N2—C7 | 1.460 (3) |
O1—C1 | 1.227 (2) | N1—C1 | 1.367 (3) |
N2—C2 | 1.327 (3) | N1—C2 | 1.392 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2 | 0.86 | 2.24 | 2.672 (3) | 111 |
N2—H2···O1 | 0.86 | 2.00 | 2.677 (3) | 135 |
N2—H2···O1i | 0.86 | 2.43 | 3.091 (3) | 133 |
Symmetry code: (i) −x, −y, −z+1. |
Acknowledgements
The authors thank the Crystallography Group, São Carlos Physics Institute, USP, and acknowledge financial support from the Brazilian agency CNPq.
References
Aly, A. A., Ahmed, E. K., El-Mokadem, K. M. & Hegazy, M. E. F. (2007). J. Sulfur Chem. 28, 73–93. CrossRef CAS Google Scholar
Dhooghe, M., Waterinckx, A. & De Kimpe, N. (2005). J. Org. Chem. 70, 227–232. Web of Science PubMed CAS Google Scholar
Enraf–Nonius (2000). COLLECT. Enraf–Nonius BV, Delft, The Netherlands. Google Scholar
Estévez-Hernández, O., Hidalgo, J. L., Reguera, E. & Naranjo, I. (2007). Sens. Actuators B, 120, 766–772. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Koch, K. R. (2001). Coord. Chem. Rev. 216–217, 473–488. Web of Science CrossRef CAS Google Scholar
Otazo, E., Pérez, L., Estévez, O., Rojas, S. & Alonso, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211–2218. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yamin, B. M. & Hassan, I. N. (2004). Acta Cryst. E60, o2513–o2514. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Thiourea and its derivatives have found extensive applications in the fields of medicine, agriculture and analytical chemistry. Thioureas are also widely used in heterocyclic syntheses (Dhooghe et al., 2005). Aroylthioureas have also been found to have applications in metal complexes and molecular electronics (Aly et al., 2007). The title compound (Fig. 1), has been successfully used as ionophore in amperometric sensors for Cd(II) (Estévez-Hernández et al., 2007).
The title compound crystallizes in the thioamide form. The furoyl and furfuryl groups are trans and cis, respectively, to the S atom across the thiourea C—N bonds (Fig. 1). The main bond lengths and torsion angles are within the ranges obtained for similar compounds (Koch et al., 2001). The C2—S1 and C1—O1 bonds show a typical double bond character with bond lengths (Table 1) of 1.661 (2) and 1.227 (2) Å respectively, closely related to other thiourea derivatives (Yamin & Hassan, 2004). However, all the C—N bonds (Table 1) of thiourea fragment C1—N1, C2—N1 and C2—N2 are in the range 1.392 (3)–1,327 (3) Å, intermediate between those expected for single and double C—N bonds (1.47 and 1.27 Å respectively). It is deduced that this thiourea moiety makes up a multi-electron conjugated π bond. The central thiourea fragment makes torsion angles of 2.5 (3)° and 88.1 (2)° with the furan carbonyl ring (O2-C3-C1-N1) and the furfuryl group (C2-N2-C7-C8), respectively. The trans-cis geometry in the thiourea moiety is stabilized by the N2—H2···O1 intramolecular hydrogen bond (Fig.1 and Table 2). An additional intramolecular hydrogen bond N1—H1···O2 is observed. In the crystal structure symmetry related molecules are linked by two N2—H2···O1 intermolecular hydrogen bonds to form dimers along the [010] direction (Fig. 2 and Table 2).