metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
ADDENDA AND ERRATA

A correction has been published for this article. To view the correction, click here.

Tetra­aqua­bis­{5-[2-(1H-tetrazol-5-yl)ethenyl]pyrazolato-κN2}manganese(II) dihydrate

aDepartment of Chemistry, North University of China, Taiyuan, Shanxi 030051, People's Republic of China
*Correspondence e-mail: hutuopingsx@yahoo.com.cn

(Received 8 January 2008; accepted 29 April 2008; online 3 May 2008)

The title compound, [Mn(C4H3N8)2(H2O)4]·2H2O, represents the first structurally characterized transition metal complex of the 1,2-bis­(tetra­zol-5-yl)ethene ligand. The complex mol­ecule occupies a special position on an inversion centre and the Mn atom has a tetra­gonally distorted octa­hedral coordination. The bis­(tetra­zolyl)ethene ligand is planar within 0.0366 (7) Å. All `active' H atoms participate in hydrogen bonds, which link mol­ecules of the complex and the uncoordinated water mol­ecules into an infinite three-dimensional framework.

Related literature

For related literature, see: Huang et al. (2005[Huang, X. F., Song, Y. M., Wu, Q., Ye, Q., Chen, X. B., Xiong, R. G. & You, X. Z. (2005). Inorg. Chem. Commun. 8, 58-60.]); Demko & Sharpless (2001[Demko, Z. P. & Sharpless, K. B. (2001). J. Org. Chem. 66, 7945-7950.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C4H3N8)2(H2O)4]·2H2O

  • Mr = 489.32

  • Triclinic, [P \overline 1]

  • a = 6.2296 (2) Å

  • b = 7.0093 (2) Å

  • c = 12.1212 (3) Å

  • α = 84.405 (1)°

  • β = 89.457 (1)°

  • γ = 67.016 (1)°

  • V = 484.70 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.75 mm−1

  • T = 273 (2) K

  • 0.36 × 0.28 × 0.16 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.717, Tmax = 0.887

  • 9107 measured reflections

  • 3246 independent reflections

  • 3149 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.068

  • S = 1.04

  • 3246 reflections

  • 179 parameters

  • All H-atom parameters refined

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Selected geometric parameters (Å, °)

Mn1—O1 2.1923 (7)
Mn1—O2 2.1835 (8)
Mn1—N2 2.2538 (7)
O2—Mn1—O1 84.57 (3)
O2—Mn1—N2 91.07 (3)
O1—Mn1—N2 90.24 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯N1i 0.833 (18) 2.021 (18) 2.8419 (10) 168.8 (17)
O1—H1A⋯O3ii 0.823 (18) 1.940 (18) 2.7599 (11) 174.0 (16)
O2—H2B⋯O3iii 0.790 (18) 1.996 (19) 2.7797 (11) 171.4 (18)
O2—H2A⋯N6iv 0.81 (2) 2.04 (2) 2.8472 (10) 173.7 (18)
O3—H3A⋯N5v 0.82 (2) 2.09 (2) 2.8922 (11) 164.2 (19)
O3—H3B⋯O1 0.80 (2) 2.30 (2) 3.0693 (12) 160 (2)
N8—H8⋯N4vi 0.926 (18) 1.792 (18) 2.7171 (10) 176.6 (16)
Symmetry codes: (i) x-1, y, z; (ii) -x, -y+1, -z+1; (iii) -x+1, -y+1, -z+1; (iv) x-1, y, z+1; (v) -x+1, -y+1, -z; (vi) x+1, y, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The 1,2-bis(1,2,3,4-tetrazol-5-yl)ethene ligand (H2BTAE) was previously reported in its twice deprotonated form in the cystal structure of its sodium salt pentahydrate (Huang et al., 2005). The present paper provides the fist example of its structurally characterized complex with a transition metal; the ligand in this complex is monodeprotonated.

The molecule of Mn(H-BTAE)2(H2O)4 occupies a special position in the inversion centre (Fig. 1); the Mn1 atom has a tetragonally distorted octahedral coordination (Table 1). The H-BTAE ligand has essentailly planar conformation, the maximum deviation of the N6 atom from its mean plane being 0.0366 (7) Å. The geometry of the ligand is similar to the one observed in Huang et al. (2005).

All "active" hydrogen atoms in the structure participate in the H-bonding (Table 2); the extensive H-bond system links molecules of the complex and non-coordinated water molecules into three-dimensional infinite network (Fig. 2).

Related literature top

For related literature, see: Huang et al. (2005); Demko & Sharpless (2001)

Experimental top

MnCl2.4H2O (0.5 mmol, 99 mg) and 1,2-bis(1,2,3,4-tetrazol-5-yl)ethene (1 mmol, 192 mg) (Demko & Sharpless, 2001) were added to 30 ml of water:MeOH (1:1) mixture. After stirring for 30 min at room temperature, the pH value was adjusted to 7 by 1M NaOH, and clear solution was allowed to evaporate in the air. Nice prism-shaped crystals of the title compound were obtained after 3 days. The crystals were filtered, washed by EtOH and dried in the air.

Refinement top

All H atoms were located in the difference map and refined isotropically [O—H 0.79 (2)–0.83 (2) Å; C—H 0.91 (1) and 0.96 (1) Å; N—H 0.93 (2) Å].

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure showing 50% probability displacement ellipsoids. The unlabeled atoms are derived from the reference atoms by means of the (1 - x, -y, 1 - z) symmetry transformation..
[Figure 2] Fig. 2. Packing diagram viewed down the a axis, The hydrogen bonds are shown as dotted lines.
Tetraaquabis{5-[2-(1H-tetrazol-5-yl)ethenyl]pyrazolato-κN2}manganese(II) dihydrate top
Crystal data top
[Mn(C4H3N8)2(H2O)4]·2H2OZ = 1
Mr = 489.32F(000) = 251
Triclinic, P1Dx = 1.676 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.2296 (2) ÅCell parameters from 7983 reflections
b = 7.0093 (2) Åθ = 3.2–33.5°
c = 12.1212 (3) ŵ = 0.75 mm1
α = 84.405 (1)°T = 273 K
β = 89.457 (1)°Prism, brown
γ = 67.016 (1)°0.36 × 0.28 × 0.16 mm
V = 484.70 (2) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3246 independent reflections
Radiation source: fine-focus sealed tube3149 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ϕ and ω scansθmax = 33.5°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.717, Tmax = 0.887k = 1010
9107 measured reflectionsl = 1618
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022All H-atom parameters refined
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.039P)2 + 0.093P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3246 reflectionsΔρmax = 0.37 e Å3
179 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.022 (3)
Crystal data top
[Mn(C4H3N8)2(H2O)4]·2H2Oγ = 67.016 (1)°
Mr = 489.32V = 484.70 (2) Å3
Triclinic, P1Z = 1
a = 6.2296 (2) ÅMo Kα radiation
b = 7.0093 (2) ŵ = 0.75 mm1
c = 12.1212 (3) ÅT = 273 K
α = 84.405 (1)°0.36 × 0.28 × 0.16 mm
β = 89.457 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3246 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3149 reflections with I > 2σ(I)
Tmin = 0.717, Tmax = 0.887Rint = 0.015
9107 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.068All H-atom parameters refined
S = 1.05Δρmax = 0.37 e Å3
3246 reflectionsΔρmin = 0.22 e Å3
179 parameters
Special details top

Experimental. H atoms were located on intermediate difference Fourier map

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.50000.00000.50000.02323 (6)
O10.13139 (12)0.18659 (13)0.45633 (6)0.03342 (15)
O20.48182 (15)0.26842 (14)0.58308 (6)0.03732 (17)
O30.15295 (14)0.60925 (13)0.38023 (6)0.03452 (15)
H3A0.108 (4)0.639 (3)0.3151 (17)0.063 (5)*
H3B0.180 (4)0.488 (3)0.3935 (17)0.068 (6)*
N10.80858 (13)0.13919 (13)0.30839 (6)0.02546 (14)
N20.60467 (13)0.13162 (13)0.34123 (6)0.02647 (14)
N30.46087 (14)0.17201 (14)0.25572 (6)0.02953 (16)
N40.56698 (13)0.20725 (13)0.16459 (6)0.02663 (15)
N51.08450 (14)0.30165 (13)0.16586 (6)0.02657 (14)
N61.28887 (14)0.30586 (14)0.20234 (6)0.02983 (16)
N71.43373 (14)0.27581 (14)0.12043 (6)0.03067 (16)
N81.32424 (13)0.25048 (12)0.02771 (6)0.02534 (14)
C10.78023 (14)0.18638 (13)0.19858 (6)0.02208 (14)
C20.96111 (15)0.20610 (14)0.12755 (7)0.02469 (15)
C30.93208 (15)0.24900 (14)0.01755 (7)0.02401 (15)
C41.11010 (14)0.26607 (13)0.05597 (6)0.02185 (14)
H30.794 (2)0.271 (2)0.0175 (12)0.035 (3)*
H21.104 (3)0.186 (2)0.1658 (12)0.039 (4)*
H81.405 (3)0.232 (3)0.0389 (15)0.057 (5)*
H1A0.047 (3)0.239 (3)0.5070 (15)0.046 (4)*
H1B0.050 (3)0.155 (3)0.4134 (15)0.055 (5)*
H2B0.587 (3)0.304 (3)0.5865 (15)0.052 (4)*
H2A0.417 (3)0.280 (3)0.6422 (17)0.057 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.02135 (10)0.03467 (10)0.01477 (8)0.01276 (7)0.00178 (6)0.00004 (6)
O10.0225 (3)0.0535 (4)0.0236 (3)0.0133 (3)0.0009 (2)0.0078 (3)
O20.0443 (4)0.0551 (5)0.0264 (3)0.0324 (4)0.0122 (3)0.0141 (3)
O30.0370 (4)0.0392 (4)0.0279 (3)0.0154 (3)0.0016 (3)0.0036 (3)
N10.0241 (3)0.0396 (4)0.0164 (3)0.0169 (3)0.0007 (2)0.0007 (2)
N20.0249 (3)0.0414 (4)0.0161 (3)0.0170 (3)0.0019 (2)0.0003 (3)
N30.0255 (3)0.0484 (4)0.0179 (3)0.0190 (3)0.0011 (2)0.0012 (3)
N40.0250 (3)0.0419 (4)0.0161 (3)0.0174 (3)0.0002 (2)0.0011 (3)
N50.0283 (3)0.0380 (4)0.0167 (3)0.0167 (3)0.0015 (2)0.0020 (3)
N60.0302 (4)0.0437 (4)0.0185 (3)0.0178 (3)0.0051 (3)0.0027 (3)
N70.0268 (4)0.0464 (4)0.0213 (3)0.0174 (3)0.0052 (3)0.0024 (3)
N80.0230 (3)0.0373 (4)0.0172 (3)0.0138 (3)0.0015 (2)0.0006 (3)
C10.0232 (3)0.0296 (3)0.0159 (3)0.0133 (3)0.0014 (2)0.0012 (2)
C20.0236 (4)0.0351 (4)0.0190 (3)0.0158 (3)0.0024 (3)0.0014 (3)
C30.0234 (4)0.0332 (4)0.0189 (3)0.0150 (3)0.0025 (3)0.0019 (3)
C40.0234 (3)0.0277 (3)0.0164 (3)0.0122 (3)0.0017 (2)0.0021 (2)
Geometric parameters (Å, º) top
Mn1—O2i2.1835 (8)N2—N31.3112 (10)
Mn1—O12.1923 (7)N3—N41.3336 (9)
Mn1—O22.1835 (8)N4—C11.3427 (11)
Mn1—O1i2.1923 (7)N5—C41.3304 (10)
Mn1—N2i2.2538 (7)N5—N61.3541 (10)
Mn1—N22.2538 (7)N6—N71.2931 (11)
O1—H1A0.823 (18)N7—N81.3420 (10)
O1—H1B0.833 (18)N8—C41.3403 (11)
O2—H2B0.790 (18)N8—H80.926 (18)
O2—H2A0.81 (2)C1—C21.4526 (11)
O3—H3A0.82 (2)C2—C31.3360 (11)
O3—H3B0.80 (2)C2—H20.963 (15)
N1—C11.3361 (10)C3—C41.4499 (11)
N1—N21.3468 (10)C3—H30.914 (14)
O2i—Mn1—O2180.0N3—N2—N1110.34 (6)
O2i—Mn1—O195.43 (3)N3—N2—Mn1115.77 (5)
O2—Mn1—O184.57 (3)N1—N2—Mn1132.31 (6)
O2i—Mn1—O1i84.57 (3)N2—N3—N4108.57 (7)
O2—Mn1—O1i95.43 (3)N3—N4—C1105.93 (7)
O1—Mn1—O1i180.0C4—N5—N6105.63 (7)
O2i—Mn1—N2i91.07 (3)N7—N6—N5111.07 (7)
O2—Mn1—N2i88.93 (3)N6—N7—N8106.55 (7)
O1—Mn1—N2i89.76 (3)C4—N8—N7108.63 (7)
O1i—Mn1—N2i90.24 (3)C4—N8—H8134.5 (11)
O2i—Mn1—N288.93 (3)N7—N8—H8116.8 (11)
O2—Mn1—N291.07 (3)N1—C1—N4110.73 (7)
O1—Mn1—N290.24 (3)N1—C1—C2123.47 (7)
O1i—Mn1—N289.76 (3)N4—C1—C2125.79 (7)
N2i—Mn1—N2179.999 (2)C3—C2—C1122.84 (8)
Mn1—O1—H1A116.9 (11)C3—C2—H2122.3 (9)
Mn1—O1—H1B125.3 (12)C1—C2—H2114.9 (9)
H1A—O1—H1B106.3 (16)C2—C3—C4124.29 (8)
Mn1—O2—H2B123.3 (13)C2—C3—H3121.3 (9)
Mn1—O2—H2A114.9 (13)C4—C3—H3114.4 (9)
H2B—O2—H2A109.2 (17)N5—C4—N8108.11 (7)
H3A—O3—H3B105.6 (18)N5—C4—C3124.43 (8)
C1—N1—N2104.43 (7)N8—C4—C3127.46 (7)
C1—N1—N2—N30.04 (10)N6—N7—N8—C40.01 (10)
C1—N1—N2—Mn1164.68 (7)N2—N1—C1—N40.02 (10)
O2i—Mn1—N2—N361.58 (7)N2—N1—C1—C2178.57 (8)
O2—Mn1—N2—N3118.42 (7)N3—N4—C1—N10.01 (10)
O1—Mn1—N2—N333.84 (7)N3—N4—C1—C2178.50 (8)
O1i—Mn1—N2—N3146.16 (7)N1—C1—C2—C3178.52 (9)
O2i—Mn1—N2—N1102.42 (8)N4—C1—C2—C30.19 (14)
O2—Mn1—N2—N177.58 (8)C1—C2—C3—C4178.84 (8)
O1—Mn1—N2—N1162.16 (8)N6—N5—C4—N80.29 (10)
O1i—Mn1—N2—N117.84 (8)N6—N5—C4—C3179.93 (8)
N1—N2—N3—N40.05 (11)N7—N8—C4—N50.18 (10)
Mn1—N2—N3—N4167.49 (6)N7—N8—C4—C3179.96 (8)
N2—N3—N4—C10.03 (10)C2—C3—C4—N5177.57 (9)
C4—N5—N6—N70.30 (10)C2—C3—C4—N82.68 (15)
N5—N6—N7—N80.19 (11)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···N1ii0.833 (18)2.021 (18)2.8419 (10)168.8 (17)
O1—H1A···O3iii0.823 (18)1.940 (18)2.7599 (11)174.0 (16)
O2—H2B···O3iv0.790 (18)1.996 (19)2.7797 (11)171.4 (18)
O2—H2A···N6v0.81 (2)2.04 (2)2.8472 (10)173.7 (18)
O3—H3A···N5vi0.82 (2)2.09 (2)2.8922 (11)164.2 (19)
O3—H3B···O10.80 (2)2.30 (2)3.0693 (12)160 (2)
N8—H8···N4vii0.926 (18)1.792 (18)2.7171 (10)176.6 (16)
Symmetry codes: (ii) x1, y, z; (iii) x, y+1, z+1; (iv) x+1, y+1, z+1; (v) x1, y, z+1; (vi) x+1, y+1, z; (vii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Mn(C4H3N8)2(H2O)4]·2H2O
Mr489.32
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)6.2296 (2), 7.0093 (2), 12.1212 (3)
α, β, γ (°)84.405 (1), 89.457 (1), 67.016 (1)
V3)484.70 (2)
Z1
Radiation typeMo Kα
µ (mm1)0.75
Crystal size (mm)0.36 × 0.28 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.717, 0.887
No. of measured, independent and
observed [I > 2σ(I)] reflections
9107, 3246, 3149
Rint0.015
(sin θ/λ)max1)0.777
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.068, 1.05
No. of reflections3246
No. of parameters179
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.37, 0.22

Computer programs: SMART (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Mn1—O12.1923 (7)O3—H3A0.82 (2)
Mn1—O22.1835 (8)O3—H3B0.80 (2)
Mn1—N22.2538 (7)
O2—Mn1—O184.57 (3)O1—Mn1—N290.24 (3)
O2—Mn1—N291.07 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···N1i0.833 (18)2.021 (18)2.8419 (10)168.8 (17)
O1—H1A···O3ii0.823 (18)1.940 (18)2.7599 (11)174.0 (16)
O2—H2B···O3iii0.790 (18)1.996 (19)2.7797 (11)171.4 (18)
O2—H2A···N6iv0.81 (2)2.04 (2)2.8472 (10)173.7 (18)
O3—H3A···N5v0.82 (2)2.09 (2)2.8922 (11)164.2 (19)
O3—H3B···O10.80 (2)2.30 (2)3.0693 (12)160 (2)
N8—H8···N4vi0.926 (18)1.792 (18)2.7171 (10)176.6 (16)
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x1, y, z+1; (v) x+1, y+1, z; (vi) x+1, y, z.
 

Acknowledgements

The author is grateful for funding from the Natural Science Foundation of Shanxi Province (2007011033), the Program of Technological Industrialization in Universities of Shanxi Province (20070308) and the Start-up Fund of the Northern University of China.

References

First citationBruker (2007). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDemko, Z. P. & Sharpless, K. B. (2001). J. Org. Chem. 66, 7945–7950.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHuang, X. F., Song, Y. M., Wu, Q., Ye, Q., Chen, X. B., Xiong, R. G. & You, X. Z. (2005). Inorg. Chem. Commun. 8, 58–60.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds