organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-2-(2-Chloro-3,3,3-tri­fluoro­prop-1-en­yl)-6-meth­oxy­phenyl acetate

aNational Analytical Research Center of Electrochemistry and Spectroscopy, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China, and, Graduate School of Chinese Academy of Sciences, Beijing 100039, People's Republic of China
*Correspondence e-mail: jwxu@ciac.jl.cn

(Received 9 April 2008; accepted 16 May 2008; online 30 May 2008)

The crystal structure of the title compound, C12H10ClF3O3, was determined in order to establish the configuration of the C=double bond. The compound was found to be the Z isomer. The crystal structure is dominated by Cl⋯O halogen bonds [Cl⋯O = 3.111 (3) Å], as well as C—H⋯O and C—H⋯F hydrogen-bonding inter­actions, that connect neighboring mol­ecules into a three-dimensional supra­molecular network.

Related literature

For related literature, see: Dmowski (1985[Dmowski, W. (1985). J. Fluorine Chem. 29, 273-286.]); Fujita & Hiyama (1986[Fujita, M. & Hiyama, T. (1986). Tetrahedron Lett. 27, 3655-3658.]); Nenajdenko et al.(2005[Nenajdenko, V. G., Varseev, G. N., Shastin, A. V. & Balenkova, E. S. (2005). J. Fluorine Chem. 126, 907-913.]); Politzer et al. (2007[Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305-311.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10ClF3O3

  • Mr = 294.65

  • Triclinic, [P \overline 1]

  • a = 8.6168 (19) Å

  • b = 8.6850 (19) Å

  • c = 9.723 (2) Å

  • α = 77.323 (3)°

  • β = 70.869 (3)°

  • γ = 84.010 (3)°

  • V = 670.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 293 (2) K

  • 0.16 × 0.10 × 0.09 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.943, Tmax = 0.968

  • 3677 measured reflections

  • 2551 independent reflections

  • 1967 reflections with I > 2σ(I)

  • Rint = 0.009

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.146

  • S = 1.03

  • 2551 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯F1i 0.93 2.64 3.508 (3) 156
C7—H7⋯O2ii 0.93 2.60 3.430 (3) 149
Symmetry codes: (i) x, y, z-1; (ii) -x, -y+1, -z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound is an intermediate in the synthesis of trifluoromethyl substituted benzofurans. The configuration of analogue compounds such as 2-fluoro-3,3,3-trifluoroprop-1-enes (Dmowski, 1985), 2-chloro-3,3,3-trifluoroprop-1-enes (Fujita & Hiyama, 1986) or 2-bromo-3,3,3-trifluoroprop-1-enes (Nenajdenko et al., 2005) were determined by 1H and 19F NMR. The configuration of the title compound, however, could not be determined with enough confidence by 1H and 19F NMR due to lack of data such as hetero-nuclear coupling constants, and its crystal structure was determined instead to determine its configuiration.

As shown in Fig. 1, the title compound is the Z isomer with the phenyl ring and the Cl atom on the same side of the CC double bond. The CC double bond and the ester bond have a large torsional angle with the phenyl ring with a tilting angle of the double bond and a dihedral angle between the planes of the ester and the phenyl ring of 66.01 (4)° and 83.15 (3)°, respectively. The ether bond, on the other hand, is nearly coplanar with the the phenyl ring, with a dihedral angle between the normal of the phenyl ring plane and the ether bond of 87.34 (3)°.

The molecular packing is stablized by Cl···O halogen bonds (Politzer et al., 2007) between the Cl atom and the oxygen of a neighbouring ether bond, with a Cl—O3i distance of 3.111 (3) Å (symmetry code as in Fig. 2) and a nearly linear C—Cl···O3i angle of 178.0 (2)°. In addition, intermolecular C—H···O and C—H···F hydrogen bonds are present (Table 1 and Fig. 2). The two kinds of interactions lead to a three-dimensional supramolecular network. (Fig. 2).

Related literature top

For related literature, see: Dmowski (1985); Fujita & Hiyama (1986); Nenajdenko et al.(2005); Politzer et al. (2007).

Experimental top

The title compound was synthesized by a modified literature procedure (Fujita & Hiyama, 1986). Zinc powder (3.25 g, 50 mmol) and acetic anhydride (3.06 g, 30 mmol) were added into a solution of 2-hydroxy-3-methoxybenzaldehyde (1.52 g,10 mmol) in DMF (20 ml, dried by 4Å molecular sieve) under an argon atmosphere at room temperature. Then 1,1,1-trichloro-2,2,2-trifluoroethane (5.63 g, 30 mmol) was added dropwise to the mixture over ten minutes with fierce stirring. The reaction was monitored by thin layer chromatography. After completion, the reaction mixture was treated with saturated aqueous ammonium chloride solution (150 ml), and extracted with diethyl ether (3 × 50 ml). The organic phase was dried with magnesium sulfate, concentrated, and purification by silica gel column chromatography using petroleum ether as the eluent (Rf = 0.15). The purified product was recrystallized from petroleum ether to obtain colorless platelike crystals (1.47 g, 50%).

Refinement top

H atoms were placed geometrically and refined with fixed individual displacement parameters [Uiso(H) = 1.2Ueq(C,N)] (1.5 for methyl H atoms), using a riding model with C—H distances of 0.93 Å for Csp2 and 0.96 Å for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Perspective view of the packing structure of the title compound along the c axis. For the sake of clarity, H atoms not involved in the motifs shown have been omitted. Symmetry equivalent atoms marked i are created by the operator x, y+ 1, z).
(Z)-2-(2-Chloro-3,3,3-trifluoroprop-1-enyl)-6-methoxyphenyl acetate top
Crystal data top
C12H10ClF3O3Z = 2
Mr = 294.65F(000) = 300
Triclinic, P1Dx = 1.460 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6168 (19) ÅCell parameters from 1359 reflections
b = 8.6850 (19) Åθ = 2.3–24.8°
c = 9.723 (2) ŵ = 0.32 mm1
α = 77.323 (3)°T = 293 K
β = 70.869 (3)°Sheet, colorless
γ = 84.010 (3)°0.16 × 0.10 × 0.09 mm
V = 670.3 (3) Å3
Data collection top
Bruker APEX CCD area-detector
diffractometer
2551 independent reflections
Radiation source: fine-focus sealed tube1967 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.009
ϕ and ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.943, Tmax = 0.968k = 104
3677 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0746P)2 + 0.2352P]
where P = (Fo2 + 2Fc2)/3
2551 reflections(Δ/σ)max = 0.026
174 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C12H10ClF3O3γ = 84.010 (3)°
Mr = 294.65V = 670.3 (3) Å3
Triclinic, P1Z = 2
a = 8.6168 (19) ÅMo Kα radiation
b = 8.6850 (19) ŵ = 0.32 mm1
c = 9.723 (2) ÅT = 293 K
α = 77.323 (3)°0.16 × 0.10 × 0.09 mm
β = 70.869 (3)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
2551 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1967 reflections with I > 2σ(I)
Tmin = 0.943, Tmax = 0.968Rint = 0.009
3677 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.03Δρmax = 0.31 e Å3
2551 reflectionsΔρmin = 0.20 e Å3
174 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.29665 (10)0.96976 (8)0.19741 (8)0.0749 (3)
F10.3028 (3)0.8620 (2)0.5096 (2)0.0953 (6)
F20.5445 (3)0.9077 (3)0.3604 (3)0.1170 (8)
F30.4779 (3)0.6737 (3)0.4667 (2)0.1112 (8)
O10.24346 (19)0.36598 (19)0.26609 (17)0.0504 (4)
O20.0223 (2)0.4383 (3)0.3538 (2)0.0725 (6)
O30.1566 (2)0.2860 (2)0.0539 (2)0.0692 (5)
C10.4235 (4)0.8063 (4)0.4042 (4)0.0719 (8)
C20.3680 (3)0.7914 (3)0.2776 (3)0.0538 (6)
C30.3712 (3)0.6540 (3)0.2383 (3)0.0508 (6)
H30.40710.56720.29660.061*
C40.3255 (3)0.6202 (3)0.1150 (3)0.0481 (5)
C50.3518 (3)0.7237 (3)0.0219 (3)0.0602 (7)
H50.39720.82110.03780.072*
C60.3106 (4)0.6812 (4)0.1326 (3)0.0674 (7)
H60.32870.75090.22340.081*
C70.2429 (3)0.5379 (4)0.1129 (3)0.0630 (7)
H70.21370.51260.18900.076*
C80.2185 (3)0.4316 (3)0.0209 (3)0.0539 (6)
C90.2602 (3)0.4751 (3)0.1335 (2)0.0467 (5)
C100.0917 (3)0.3562 (3)0.3710 (3)0.0519 (6)
C110.0957 (4)0.2335 (4)0.5034 (3)0.0744 (8)
H11A0.01050.25710.58930.112*
H11B0.20060.23230.51840.112*
H11C0.07880.13200.48780.112*
C120.1195 (4)0.2342 (4)0.0610 (4)0.0830 (9)
H12A0.04360.30860.09590.124*
H12B0.07130.13260.02280.124*
H12C0.21880.22660.14160.124*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.1011 (6)0.0514 (4)0.0688 (5)0.0024 (4)0.0266 (4)0.0073 (3)
F10.1230 (16)0.1053 (15)0.0688 (11)0.0132 (12)0.0362 (11)0.0389 (11)
F20.1136 (16)0.1319 (19)0.1389 (19)0.0336 (14)0.0565 (14)0.0555 (16)
F30.173 (2)0.0917 (14)0.1183 (16)0.0367 (14)0.1100 (16)0.0424 (12)
O10.0533 (9)0.0474 (9)0.0512 (9)0.0015 (7)0.0205 (8)0.0064 (7)
O20.0595 (11)0.0929 (15)0.0630 (12)0.0129 (10)0.0226 (9)0.0131 (10)
O30.0895 (14)0.0579 (11)0.0799 (13)0.0021 (10)0.0460 (11)0.0243 (10)
C10.085 (2)0.0677 (18)0.080 (2)0.0004 (16)0.0379 (17)0.0311 (16)
C20.0559 (14)0.0541 (14)0.0538 (14)0.0044 (11)0.0185 (11)0.0126 (11)
C30.0541 (13)0.0516 (13)0.0490 (13)0.0053 (11)0.0194 (11)0.0081 (11)
C40.0474 (12)0.0524 (13)0.0452 (13)0.0021 (10)0.0151 (10)0.0100 (10)
C50.0684 (16)0.0609 (16)0.0483 (14)0.0125 (13)0.0152 (12)0.0050 (12)
C60.0817 (19)0.0748 (19)0.0430 (14)0.0036 (15)0.0201 (13)0.0044 (13)
C70.0689 (17)0.0790 (19)0.0505 (15)0.0093 (14)0.0290 (13)0.0219 (13)
C80.0564 (14)0.0557 (15)0.0586 (15)0.0065 (11)0.0259 (12)0.0217 (12)
C90.0474 (12)0.0484 (13)0.0452 (12)0.0042 (10)0.0177 (10)0.0092 (10)
C100.0590 (15)0.0514 (13)0.0510 (14)0.0020 (12)0.0214 (11)0.0151 (11)
C110.0800 (19)0.0706 (19)0.0617 (17)0.0029 (15)0.0159 (15)0.0005 (14)
C120.091 (2)0.084 (2)0.098 (2)0.0006 (18)0.0437 (19)0.0489 (19)
Geometric parameters (Å, º) top
Cl—C21.724 (3)C5—C61.368 (4)
F1—C11.334 (4)C5—H50.9300
F2—C11.335 (4)C6—C71.378 (4)
F3—C11.297 (4)C6—H60.9300
O1—C101.367 (3)C7—C81.386 (4)
O1—C91.397 (3)C7—H70.9300
O2—C101.188 (3)C8—C91.392 (3)
O3—C81.356 (3)C10—C111.488 (4)
O3—C121.427 (3)C11—H11A0.9600
C1—C21.493 (4)C11—H11B0.9600
C2—C31.325 (3)C11—H11C0.9600
C3—C41.472 (3)C12—H12A0.9600
C3—H30.9300C12—H12B0.9600
C4—C91.385 (3)C12—H12C0.9600
C4—C51.397 (3)
C10—O1—C9117.36 (18)C6—C7—H7120.1
C8—O3—C12117.3 (2)C8—C7—H7120.1
F3—C1—F1107.4 (3)O3—C8—C7125.8 (2)
F3—C1—F2106.7 (3)O3—C8—C9115.7 (2)
F1—C1—F2106.0 (2)C7—C8—C9118.5 (2)
F3—C1—C2113.2 (2)C4—C9—C8121.9 (2)
F1—C1—C2111.7 (3)C4—C9—O1119.1 (2)
F2—C1—C2111.4 (3)C8—C9—O1118.9 (2)
C3—C2—C1122.2 (2)O2—C10—O1122.5 (2)
C3—C2—Cl126.0 (2)O2—C10—C11127.4 (3)
C1—C2—Cl111.8 (2)O1—C10—C11110.1 (2)
C2—C3—C4128.8 (2)C10—C11—H11A109.5
C2—C3—H3115.6C10—C11—H11B109.5
C4—C3—H3115.6H11A—C11—H11B109.5
C9—C4—C5118.3 (2)C10—C11—H11C109.5
C9—C4—C3118.2 (2)H11A—C11—H11C109.5
C5—C4—C3123.4 (2)H11B—C11—H11C109.5
C6—C5—C4119.8 (3)O3—C12—H12A109.5
C6—C5—H5120.1O3—C12—H12B109.5
C4—C5—H5120.1H12A—C12—H12B109.5
C5—C6—C7121.7 (3)O3—C12—H12C109.5
C5—C6—H6119.2H12A—C12—H12C109.5
C7—C6—H6119.2H12B—C12—H12C109.5
C6—C7—C8119.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···F1i0.932.643.508 (3)156
C7—H7···O2ii0.932.603.430 (3)149
Symmetry codes: (i) x, y, z1; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC12H10ClF3O3
Mr294.65
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.6168 (19), 8.6850 (19), 9.723 (2)
α, β, γ (°)77.323 (3), 70.869 (3), 84.010 (3)
V3)670.3 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.16 × 0.10 × 0.09
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.943, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
3677, 2551, 1967
Rint0.009
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.146, 1.03
No. of reflections2551
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.20

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···F1i0.932.643.508 (3)156
C7—H7···O2ii0.932.603.430 (3)149
Symmetry codes: (i) x, y, z1; (ii) x, y+1, z.
 

Acknowledgements

This work was supported by Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, People's Republic of China.

References

First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDmowski, W. (1985). J. Fluorine Chem. 29, 273–286.  CrossRef CAS Web of Science Google Scholar
First citationFujita, M. & Hiyama, T. (1986). Tetrahedron Lett. 27, 3655–3658.  CrossRef CAS Web of Science Google Scholar
First citationNenajdenko, V. G., Varseev, G. N., Shastin, A. V. & Balenkova, E. S. (2005). J. Fluorine Chem. 126, 907–913.  Web of Science CrossRef CAS Google Scholar
First citationPolitzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305–311.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds