organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4′-Hy­droxy­bi­phenyl-4-carboxylic acid

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: fengsu60@yahoo.cn

(Received 15 April 2008; accepted 12 May 2008; online 17 May 2008)

The title compound, C13H10O3, has potential oxygen donor and acceptor sites. Inter­molecular hydrogen bonding between neighboring carboxyl­ate groups leads to the formation of hydrogen-bonded dimers [graph-set motif R22(8)]. A second hydrogen-bonding inter­action between the hydr­oxy groups generates a chain and extends the structure into a lamellar layer. One of the benzene rings is disordered over two positions with an occupancy ratio of 0.57 (2):0.43 (2).

Related literature

For related literature, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555-1573.]); Datta & Pati (2006[Datta, A. & Pati, S. K. (2006). Chem. Soc. Rev. pp. 1305-1323.]); Zwier et al. (1996[Zwier, T. S. (1996). Annu. Rev. Phys. Chem. 47, 205-241.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10O3

  • Mr = 214.21

  • Monoclinic, P 21 /n

  • a = 8.6500 (7) Å

  • b = 5.5077 (5) Å

  • c = 20.9655 (18) Å

  • β = 94.145 (3)°

  • V = 996.22 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 (2) K

  • 0.21 × 0.20 × 0.16 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: none

  • 6310 measured reflections

  • 1800 independent reflections

  • 854 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.183

  • S = 1.01

  • 1800 reflections

  • 160 parameters

  • 24 restraints

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 1.82 2.624 (3) 168
O3—H3A⋯O3ii 0.82 2.20 3.0041 (18) 168
Symmetry codes: (i) -x+3, -y, -z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SMART. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrogen-bonding interactions between ligands are specific and directional. When present in metal complexes they usually do not rely on the properties of the metal ions, but they play an important role in the overall structures and functions of the complexes and the way in which they pack in the solid state (Zwier et al., 1996; Datta & Pati, 2006). In this context we report here the crystal structure of the title compound, (I).

The molecular structure of (I) is shown in Fig. 1. The C—O and C—C bond distances show no remarkable features. The title molecular structure acts as both a hydrogen bonding donor and acceptor, forming dimers with neighboring molecules through O—H···O hydrogen bonding with a R22(8) graph set motif (Bernstein et al., 1995). A second hydrogen bonding interaction by the hydroxyl groups forms a chain and extends the structure into a lamellar layer (Table 1, Fig. 2).

Related literature top

For related literature, see: Bernstein et al. (1995); Datta & Pati (2006); Zwier et al. (1996).

Experimental top

4-Hydroxyl-biphenyl-4'-carboxylic acid was dissolved in a hot ethanol-water solution (1:1; v/v) with stirring. Colorless single crystals suitable for X-ray diffraction were obtained at room temperature by slow evaporation of the solvent over a period of several days.

Refinement top

In the initial refinement with disorder not taken into account one of phenyl rings showed significantly elongated thermal ellipsoids indicating disorder, the dihedral angle between two phenyl rings is 5.66 (2) /%A, and the adjacent distances of C-H···C-H interactions in the biphenylene are 2.044 (1) and 2.077 (1) /%A, respectively, thus leading to a static repulsion between two phenyl rings,and the phenyl ring was thus refined as being disordered over two positions. The occupancy ratio refined to 0.57 (2) to 0.43 (2). The adps of the disordered atoms were restrained to be close to isotropic and those of equivalent atoms were set to be identical. Carbon-bound, hydroxyl and carboxylate group H atoms were placed at calculated positions and were treated as riding on their parent C or O atoms with C—H = 0.93 Å, with Uiso(H) = 1.2 Ueq(C); O—H = 0.82 Å and with Uiso(H) = 1.5 Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: APEX2 (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. A layer view of (I).
4'-Hydroxybiphenyl-4-carboxylic acid top
Crystal data top
C13H10O3F(000) = 448
Mr = 214.21Dx = 1.428 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1560 reflections
a = 8.6500 (7) Åθ = 1.4–28.0°
b = 5.5077 (5) ŵ = 0.10 mm1
c = 20.9655 (18) ÅT = 293 K
β = 94.145 (3)°Plate, colorless
V = 996.22 (15) Å30.21 × 0.20 × 0.16 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
854 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.063
Graphite monochromatorθmax = 25.2°, θmin = 2.0°
ϕ and ω scansh = 1010
6310 measured reflectionsk = 56
1800 independent reflectionsl = 2425
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.183H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0772P)2]
where P = (Fo2 + 2Fc2)/3
1800 reflections(Δ/σ)max < 0.001
160 parametersΔρmax = 0.18 e Å3
24 restraintsΔρmin = 0.19 e Å3
Crystal data top
C13H10O3V = 996.22 (15) Å3
Mr = 214.21Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.6500 (7) ŵ = 0.10 mm1
b = 5.5077 (5) ÅT = 293 K
c = 20.9655 (18) Å0.21 × 0.20 × 0.16 mm
β = 94.145 (3)°
Data collection top
Bruker APEXII area-detector
diffractometer
854 reflections with I > 2σ(I)
6310 measured reflectionsRint = 0.063
1800 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05824 restraints
wR(F2) = 0.183H-atom parameters constrained
S = 1.01Δρmax = 0.18 e Å3
1800 reflectionsΔρmin = 0.19 e Å3
160 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C11.3074 (3)0.0387 (7)0.03781 (15)0.0499 (9)
C80.7212 (3)0.1508 (6)0.15024 (14)0.0448 (8)
C90.6208 (3)0.3440 (6)0.13452 (16)0.0578 (10)
H90.64990.45970.10540.069*
C100.4806 (3)0.3688 (7)0.16071 (17)0.0593 (10)
H100.41670.49990.14930.071*
C110.4352 (3)0.2019 (7)0.20337 (15)0.0525 (9)
C120.5302 (4)0.0092 (7)0.22074 (16)0.0596 (10)
H120.50010.10520.25000.072*
C130.6703 (4)0.0119 (6)0.19414 (15)0.0545 (9)
H130.73390.14240.20640.065*
O11.3852 (2)0.1522 (5)0.05016 (11)0.0704 (8)
O21.3483 (2)0.2037 (5)0.00069 (12)0.0696 (8)
H21.43420.17170.01120.104*
O30.2936 (3)0.2362 (5)0.22900 (12)0.0720 (8)
H3A0.26720.10990.24580.108*
C21.15866 (19)0.0702 (5)0.06838 (10)0.0480 (8)0.43 (2)
C31.0867 (8)0.2959 (6)0.0682 (6)0.052 (3)0.43 (2)
H31.13270.42880.04980.063*0.43 (2)
C40.9458 (8)0.3228 (6)0.0954 (6)0.045 (2)0.43 (2)
H40.89760.47380.09520.054*0.43 (2)
C50.8770 (2)0.1241 (4)0.12279 (11)0.0441 (8)0.43 (2)
C60.9490 (7)0.1015 (7)0.1230 (5)0.045 (3)0.43 (2)
H60.90290.23450.14130.054*0.43 (2)
C71.0898 (8)0.1285 (7)0.0958 (6)0.052 (3)0.43 (2)
H71.13800.27950.09590.062*0.43 (2)
C2'1.15879 (19)0.0709 (5)0.06822 (10)0.0480 (8)0.57 (2)
C3'1.0571 (7)0.2579 (15)0.0469 (5)0.052 (2)0.57 (2)
H3'1.08450.36470.01530.063*0.57 (2)
C4'0.9160 (7)0.2818 (15)0.0734 (5)0.049 (2)0.57 (2)
H4'0.84850.40450.05880.059*0.57 (2)
C5'0.8725 (2)0.1234 (5)0.12205 (11)0.0441 (8)0.57 (2)
C6'0.9755 (6)0.0581 (16)0.1431 (4)0.048 (2)0.57 (2)
H6'0.95050.16210.17580.057*0.57 (2)
C7'1.1161 (6)0.0845 (15)0.1155 (4)0.047 (2)0.57 (2)
H7'1.18270.20970.12910.056*0.57 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0396 (18)0.061 (2)0.051 (2)0.0010 (18)0.0134 (16)0.0005 (19)
C80.0388 (17)0.044 (2)0.0527 (18)0.0001 (16)0.0113 (15)0.0022 (17)
C90.0445 (19)0.058 (2)0.073 (2)0.0005 (18)0.0159 (17)0.011 (2)
C100.0418 (19)0.057 (2)0.081 (2)0.0079 (18)0.0170 (18)0.008 (2)
C110.0338 (17)0.062 (3)0.064 (2)0.0032 (17)0.0160 (15)0.0135 (19)
C120.049 (2)0.061 (3)0.071 (2)0.0015 (18)0.0214 (18)0.0075 (19)
C130.0448 (19)0.051 (2)0.069 (2)0.0088 (17)0.0183 (17)0.0053 (18)
O10.0529 (15)0.0705 (18)0.0910 (18)0.0171 (13)0.0281 (13)0.0188 (15)
O20.0460 (14)0.083 (2)0.0837 (18)0.0127 (13)0.0307 (13)0.0194 (15)
O30.0418 (13)0.090 (2)0.0882 (18)0.0033 (13)0.0308 (12)0.0057 (16)
C20.0334 (17)0.062 (2)0.050 (2)0.0008 (17)0.0144 (15)0.0031 (18)
C30.040 (5)0.065 (7)0.054 (5)0.002 (5)0.015 (4)0.006 (5)
C40.046 (5)0.047 (6)0.043 (5)0.005 (4)0.012 (4)0.000 (4)
C50.0367 (17)0.049 (2)0.0476 (19)0.0041 (16)0.0129 (14)0.0004 (17)
C60.045 (5)0.052 (5)0.039 (5)0.002 (4)0.002 (4)0.008 (4)
C70.041 (5)0.061 (7)0.052 (5)0.003 (4)0.001 (4)0.001 (5)
C2'0.0334 (17)0.062 (2)0.050 (2)0.0008 (17)0.0144 (15)0.0031 (18)
C3'0.044 (4)0.057 (5)0.058 (4)0.004 (3)0.014 (4)0.008 (4)
C4'0.042 (4)0.049 (4)0.057 (4)0.012 (3)0.014 (3)0.000 (4)
C5'0.0367 (17)0.049 (2)0.0476 (19)0.0041 (16)0.0129 (14)0.0004 (17)
C6'0.036 (4)0.068 (5)0.039 (4)0.007 (3)0.010 (3)0.009 (4)
C7'0.029 (3)0.063 (5)0.049 (4)0.011 (3)0.005 (3)0.007 (4)
Geometric parameters (Å, º) top
C1—O21.264 (4)C3—C41.3900
C1—O11.265 (4)C3—H30.9300
C1—C21.488 (4)C4—C51.3900
C8—C131.379 (4)C4—H40.9300
C8—C91.398 (4)C5—C61.3900
C8—C51.510 (3)C6—C71.3900
C9—C101.374 (4)C6—H60.9300
C9—H90.9300C7—H70.9300
C10—C111.360 (5)C2'—C7'1.3793
C10—H100.9300C2'—C3'1.4061
C11—C121.375 (4)C3'—C4'1.3820
C11—O31.386 (4)C3'—H3'0.9300
C12—C131.375 (4)C4'—C5'1.4147
C12—H120.9300C4'—H4'0.9300
C13—H130.9300C5'—C6'1.3903
O2—H20.8200C6'—C7'1.3923
O3—H3A0.8200C6'—H6'0.9300
C2—C31.3900C7'—H7'0.9300
C2—C71.3900
O2—C1—O1123.7 (3)C3—C4—C5120.0
O2—C1—C2118.1 (3)C3—C4—H4120.0
O1—C1—C2118.2 (3)C5—C4—H4120.0
C13—C8—C9115.4 (3)C6—C5—C4120.0
C13—C8—C5121.9 (3)C6—C5—C8119.8 (2)
C9—C8—C5122.7 (3)C4—C5—C8120.1 (2)
C10—C9—C8122.2 (3)C5—C6—C7120.0
C10—C9—H9118.9C5—C6—H6120.0
C8—C9—H9118.9C7—C6—H6120.0
C11—C10—C9120.1 (3)C6—C7—C2120.0
C11—C10—H10120.0C6—C7—H7120.0
C9—C10—H10120.0C2—C7—H7120.0
C10—C11—C12120.1 (3)C7'—C2'—C3'119.2
C10—C11—O3117.9 (3)C4'—C3'—C2'119.5
C12—C11—O3122.0 (3)C4'—C3'—H3'120.2
C11—C12—C13119.0 (3)C2'—C3'—H3'120.2
C11—C12—H12120.5C3'—C4'—C5'121.3
C13—C12—H12120.5C3'—C4'—H4'119.4
C12—C13—C8123.3 (3)C5'—C4'—H4'119.4
C12—C13—H13118.4C6'—C5'—C4'118.4
C8—C13—H13118.4C5'—C6'—C7'120.1
C3—C2—C7120.0C5'—C6'—H6'120.0
C3—C2—C1120.3 (2)C7'—C6'—H6'120.0
C7—C2—C1119.7 (2)C2'—C7'—C6'121.5
C4—C3—C2120.0C2'—C7'—H7'119.3
C4—C3—H3120.0C6'—C7'—H7'119.3
C2—C3—H3120.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.822.624 (3)168
O3—H3A···O3ii0.822.203.0041 (18)168
Symmetry codes: (i) x+3, y, z; (ii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H10O3
Mr214.21
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.6500 (7), 5.5077 (5), 20.9655 (18)
β (°) 94.145 (3)
V3)996.22 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.21 × 0.20 × 0.16
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6310, 1800, 854
Rint0.063
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.183, 1.01
No. of reflections1800
No. of parameters160
No. of restraints24
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.19

Computer programs: APEX2 (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.822.624 (3)167.6
O3—H3A···O3ii0.822.203.0041 (18)167.6
Symmetry codes: (i) x+3, y, z; (ii) x+1/2, y1/2, z+1/2.
 

Acknowledgements

The author thanks South China Normal University for supporting this study.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SMART. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationDatta, A. & Pati, S. K. (2006). Chem. Soc. Rev. pp. 1305–1323.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZwier, T. S. (1996). Annu. Rev. Phys. Chem. 47, 205–241.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds