organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Iodo­phen­yl)-5,7-di­methyl-3-methyl­sulfinyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong, Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 8 May 2008; accepted 11 May 2008; online 17 May 2008)

The title compound, C17H15IO2S, was prepared by the oxidation of 2-(4-iodo­phen­yl)-5,7-dimethyl-3-methyl­sulfanyl-1-benzofuran using 3-chloro­peroxy­benzoic acid. The 4-iodo­phenyl ring makes a dihedral angle of 26.0 (1)° with the plane of the benzofuran fragment, and the O atom and the methyl group of the methyl­sulfinyl substituent lie on opposite sides of this plane. The crystal structure is stabilized by inter- and intra­molecular C—H⋯O hydrogen bonds, and by an I⋯O halogen bond with an I⋯O distance of 3.145 (2) Å and a nearly linear C—I⋯O angle of 164.01 (9)°.

Related literature

For the crystal structures of similar 2-aryl-3-methyl­sulfinyl-1-benzofuran compounds, see: Choi et al. (2007a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007a). Acta Cryst. E63, o3295.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007b). Acta Cryst. E63, o4282.]). For a review of halogen bonding, see: Politzer et al. (2007[Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305-311.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15IO2S

  • Mr = 410.25

  • Triclinic, [P \overline 1]

  • a = 8.6320 (9) Å

  • b = 8.917 (1) Å

  • c = 11.638 (1) Å

  • α = 94.580 (2)°

  • β = 100.949 (2)°

  • γ = 113.725 (2)°

  • V = 792.90 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.15 mm−1

  • T = 293 (2) K

  • 0.40 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.594, Tmax = 0.647

  • 6882 measured reflections

  • 3408 independent reflections

  • 3214 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.080

  • S = 1.22

  • 3408 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16B⋯O1 0.96 2.55 2.975 (4) 107
C16—H16A⋯O2i 0.96 2.39 3.288 (4) 156
C17—H17B⋯O1ii 0.96 2.51 3.422 (4) 159
Symmetry codes: (i) x, y+1, z; (ii) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our ongoing studies on the synthesis and structure of 2-aryl-3-methylsulfinyl-1-benzofuran analogues, the crystal structure of 2-(4-bromophenyl)-5-methyl-3-methylsulfinyl-1-benzofuran (Choi et al., 2007a) and 2-(4-bromophenyl)-5,7-dimethyl-3-methylsulfinyl-1-benzofuran (Choi et al., 2007b) have been described in the literature. Here we report the crystal structure of the title compound, 2-(4-iodophenyl)-5,7-dimethyl-3-methylsulfinyl-1-benzofuran (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.01 Å from the least-squares plane defined by the nine constituent atoms. The molecular packing (Fig. 2) is stabilized by three different C—H···O hydrogen bonds; one between a methyl H atom and the furan O atom, i.e. C16—H16B···O1, and a second between a methyl H atom and the oxygen of a neighbouring SO unit, i.e. C16—H16A···O2i, and a third between a methyl H atom of the methylsulfinyl substituent and the furan O atom of neighbouring molecules, i.e. C17—H17B···O1ii, (Fig. 2 and Table 1; symmetry code as in Fig. 2). Further stabilization of the structure comes from a weak I···O halogen bond (Fig. 2) (Politzer et al., 2007) between the iodine atom and the oxygen of a neighbouring SO unit, with an I···O2iii distance of 3.145 (2) Å (Symmetry code as in Fig. 2).

Related literature top

For the crystal structures of similar 2-aryl-3-methylsulfinyl-1-benzofuran compounds, see: Choi et al. (2007a,b). For a review of halogen bonding, see: Politzer et al. (2007).

Experimental top

77% 3-chloroperoxybenzoic acid (359 mg, 1.60 mmol) was added in small portions to a stirred solution of 2-(4-iodophenyl)-5,7-dimethyl-3-methylsulfanyl-1-benzofuran (591 mg, 1.50 mmol) in dichloromethane (30 ml) at 273 K. After being stirred at room temperature for 2 h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (ethyl acetate) to afford the title compound as a colorless solid [yield 80%, m.p. 450–451 K; Rf = 0.57 (ethyl acetate)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in tetrahydrofuran at room temperature. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 2.44 (s, 3H), 2.53 (s, 3H), 3.10 (s, 3H), 7.03 (s, 1H), 7.59 (d, J = 8.44 Hz, 2H), 7.80 (s, 1H), 7.84 (d, J = 8.44 Hz, 2H); EI—MS 410 [M+].

Refinement top

All H atoms were geometrically located in ideal positions and refined using a riding model, with C—H = 0.95 Å for aromatic H atoms and 0.98 Å for methyl H atoms, and with Uiso(H) = 1.2Ueq(C) for aromatic H atoms, and 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. C—H···O hydrogen bond and I···O halogen bond (dotted lines) in the title compound. [Symmetry codes: (i) x, y + 1, z; (ii) -x, -y + 1, -z + 1; (iii) x, y, z - 1; (iv) x, y, z + 1; (v) x, y - 1, z.]
2-(4-Iodophenyl)-5,7-dimethyl-3-methylsulfinyl-1-benzofuran top
Crystal data top
C17H15IO2SZ = 2
Mr = 410.25F(000) = 404
Triclinic, P1Dx = 1.718 Mg m3
Hall symbol: -p_1Melting point = 450–451 K
a = 8.6320 (9) ÅMo Kα radiation, λ = 0.71069 Å
b = 8.917 (1) ÅCell parameters from 5631 reflections
c = 11.638 (1) Åθ = 2.5–28.3°
α = 94.580 (2)°µ = 2.15 mm1
β = 100.949 (2)°T = 293 K
γ = 113.725 (2)°Block, colorless
V = 792.90 (14) Å30.40 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD
diffractometer
3408 independent reflections
Radiation source: fine-focus sealed tube3214 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 10.0 pixels mm-1θmax = 27.0°, θmin = 1.8°
ϕ and ω scansh = 1110
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
k = 1111
Tmin = 0.594, Tmax = 0.647l = 1414
6882 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.22 w = 1/[σ2(Fo2) + (0.0374P)2 + 0.4132P]
where P = (Fo2 + 2Fc2)/3
3408 reflections(Δ/σ)max = 0.001
192 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.66 e Å3
Crystal data top
C17H15IO2Sγ = 113.725 (2)°
Mr = 410.25V = 792.90 (14) Å3
Triclinic, P1Z = 2
a = 8.6320 (9) ÅMo Kα radiation
b = 8.917 (1) ŵ = 2.15 mm1
c = 11.638 (1) ÅT = 293 K
α = 94.580 (2)°0.40 × 0.20 × 0.20 mm
β = 100.949 (2)°
Data collection top
Bruker SMART CCD
diffractometer
3408 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
3214 reflections with I > 2σ(I)
Tmin = 0.594, Tmax = 0.647Rint = 0.029
6882 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.22Δρmax = 0.50 e Å3
3408 reflectionsΔρmin = 0.66 e Å3
192 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I0.26443 (2)0.23987 (2)0.006964 (16)0.03233 (9)
S0.10120 (10)0.19886 (8)0.60394 (7)0.02931 (16)
O10.3173 (3)0.6586 (2)0.54519 (18)0.0262 (4)
O20.2055 (3)0.1813 (3)0.7150 (2)0.0374 (5)
C10.1717 (4)0.4134 (3)0.6002 (3)0.0262 (6)
C20.2089 (4)0.5443 (3)0.6979 (3)0.0259 (5)
C30.1802 (4)0.5533 (4)0.8114 (3)0.0294 (6)
H30.11970.45690.83930.035*
C40.2430 (4)0.7078 (4)0.8822 (3)0.0309 (6)
C50.3335 (4)0.8521 (4)0.8378 (3)0.0307 (6)
H50.37380.95480.88620.037*
C60.3655 (4)0.8489 (4)0.7256 (3)0.0282 (6)
C70.2995 (4)0.6914 (3)0.6586 (3)0.0256 (6)
C80.2386 (4)0.4876 (3)0.5117 (3)0.0256 (5)
C90.2460 (4)0.4269 (3)0.3936 (2)0.0247 (5)
C100.1189 (4)0.2744 (4)0.3281 (3)0.0286 (6)
H100.02800.20980.35990.034*
C110.1279 (4)0.2191 (4)0.2158 (3)0.0292 (6)
H110.04380.11690.17280.035*
C120.2623 (4)0.3162 (4)0.1674 (3)0.0268 (6)
C130.3902 (4)0.4699 (4)0.2319 (3)0.0289 (6)
H130.48030.53480.19970.035*
C140.3811 (4)0.5239 (3)0.3437 (3)0.0274 (6)
H140.46560.62590.38660.033*
C150.2162 (5)0.7226 (5)1.0062 (3)0.0416 (8)
H15A0.09370.67061.00290.062*
H15B0.26330.83801.04090.062*
H15C0.27450.66871.05380.062*
C160.4651 (4)1.0036 (4)0.6797 (3)0.0387 (7)
H16A0.39791.06710.66820.058*
H16B0.48670.97300.60540.058*
H16C0.57421.06930.73620.058*
C170.1093 (4)0.1531 (4)0.6283 (4)0.0471 (9)
H17A0.16750.03680.63140.071*
H17B0.17640.18010.56460.071*
H17C0.09760.21760.70220.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I0.03823 (13)0.03425 (13)0.02494 (12)0.01616 (9)0.00863 (8)0.00135 (8)
S0.0364 (4)0.0219 (3)0.0299 (4)0.0120 (3)0.0091 (3)0.0058 (3)
O10.0313 (10)0.0209 (9)0.0256 (10)0.0103 (8)0.0077 (8)0.0028 (8)
O20.0405 (12)0.0360 (12)0.0384 (13)0.0193 (10)0.0058 (10)0.0135 (10)
C10.0298 (13)0.0227 (13)0.0263 (14)0.0123 (11)0.0052 (11)0.0037 (11)
C20.0287 (13)0.0234 (13)0.0264 (14)0.0126 (11)0.0052 (11)0.0045 (11)
C30.0312 (14)0.0304 (14)0.0289 (15)0.0145 (12)0.0085 (12)0.0075 (12)
C40.0295 (14)0.0385 (16)0.0265 (15)0.0166 (13)0.0069 (11)0.0027 (12)
C50.0298 (14)0.0269 (14)0.0318 (15)0.0109 (12)0.0050 (12)0.0023 (12)
C60.0240 (13)0.0253 (13)0.0339 (15)0.0100 (11)0.0068 (11)0.0011 (11)
C70.0254 (13)0.0250 (13)0.0264 (14)0.0117 (11)0.0049 (11)0.0031 (11)
C80.0260 (13)0.0219 (13)0.0269 (14)0.0097 (10)0.0032 (11)0.0036 (11)
C90.0271 (13)0.0237 (13)0.0224 (13)0.0114 (11)0.0031 (10)0.0042 (10)
C100.0275 (13)0.0271 (14)0.0272 (14)0.0077 (11)0.0060 (11)0.0051 (11)
C110.0294 (14)0.0248 (13)0.0257 (14)0.0067 (11)0.0017 (11)0.0000 (11)
C120.0299 (14)0.0283 (14)0.0233 (13)0.0150 (11)0.0038 (11)0.0031 (11)
C130.0293 (14)0.0277 (14)0.0296 (15)0.0109 (11)0.0091 (12)0.0069 (11)
C140.0276 (13)0.0227 (13)0.0271 (14)0.0078 (11)0.0037 (11)0.0017 (11)
C150.0498 (19)0.0454 (18)0.0279 (17)0.0184 (15)0.0118 (15)0.0014 (14)
C160.0398 (17)0.0259 (15)0.0469 (19)0.0079 (13)0.0182 (15)0.0024 (14)
C170.0318 (16)0.0336 (17)0.076 (3)0.0111 (14)0.0151 (17)0.0201 (18)
Geometric parameters (Å, º) top
I—C122.094 (3)C9—C101.396 (4)
I—O2i3.145 (2)C9—C141.404 (4)
S—O21.486 (2)C10—C111.387 (4)
S—C11.766 (3)C10—H100.9300
S—C171.780 (4)C11—C121.390 (4)
O1—C71.379 (3)C11—H110.9300
O1—C81.382 (3)C12—C131.401 (4)
C1—C81.364 (4)C13—C141.378 (4)
C1—C21.452 (4)C13—H130.9300
C2—C31.391 (4)C14—H140.9300
C2—C71.396 (4)C15—H15A0.9600
C3—C41.385 (4)C15—H15B0.9600
C3—H30.9300C15—H15C0.9600
C4—C51.409 (4)C16—H16A0.9600
C4—C151.508 (4)C16—H16B0.9600
C5—C61.385 (4)C16—H16C0.9600
C5—H50.9300C17—H17A0.9600
C6—C71.385 (4)C17—H17B0.9600
C6—C161.505 (4)C17—H17C0.9600
C8—C91.459 (4)
C12—I—O2i164.01 (9)C11—C10—H10119.9
O2—S—C1107.81 (13)C9—C10—H10119.9
O2—S—C17105.98 (17)C10—C11—C12120.1 (3)
C1—S—C1799.04 (15)C10—C11—H11119.9
C7—O1—C8106.5 (2)C12—C11—H11119.9
C8—C1—C2107.5 (2)C11—C12—C13120.3 (3)
C8—C1—S123.8 (2)C11—C12—I119.8 (2)
C2—C1—S127.1 (2)C13—C12—I119.8 (2)
C3—C2—C7119.0 (3)C14—C13—C12119.4 (3)
C3—C2—C1136.5 (3)C14—C13—H13120.3
C7—C2—C1104.5 (2)C12—C13—H13120.3
C4—C3—C2119.1 (3)C13—C14—C9120.9 (3)
C4—C3—H3120.5C13—C14—H14119.5
C2—C3—H3120.5C9—C14—H14119.5
C3—C4—C5119.4 (3)C4—C15—H15A109.5
C3—C4—C15120.7 (3)C4—C15—H15B109.5
C5—C4—C15119.9 (3)H15A—C15—H15B109.5
C6—C5—C4123.4 (3)C4—C15—H15C109.5
C6—C5—H5118.3H15A—C15—H15C109.5
C4—C5—H5118.3H15B—C15—H15C109.5
C7—C6—C5114.7 (3)C6—C16—H16A109.5
C7—C6—C16122.2 (3)C6—C16—H16B109.5
C5—C6—C16123.0 (3)H16A—C16—H16B109.5
O1—C7—C6124.7 (3)C6—C16—H16C109.5
O1—C7—C2110.9 (2)H16A—C16—H16C109.5
C6—C7—C2124.4 (3)H16B—C16—H16C109.5
C1—C8—O1110.5 (2)S—C17—H17A109.5
C1—C8—C9134.5 (3)S—C17—H17B109.5
O1—C8—C9115.0 (2)H17A—C17—H17B109.5
C10—C9—C14119.2 (3)S—C17—H17C109.5
C10—C9—C8121.0 (3)H17A—C17—H17C109.5
C14—C9—C8119.8 (2)H17B—C17—H17C109.5
C11—C10—C9120.1 (3)
O2—S—C1—C8120.8 (3)C1—C2—C7—O10.7 (3)
C17—S—C1—C8129.1 (3)C3—C2—C7—C60.5 (4)
O2—S—C1—C243.3 (3)C1—C2—C7—C6178.1 (3)
C17—S—C1—C266.8 (3)C2—C1—C8—O10.1 (3)
C8—C1—C2—C3178.7 (3)S—C1—C8—O1166.67 (19)
S—C1—C2—C312.5 (5)C2—C1—C8—C9179.4 (3)
C8—C1—C2—C70.5 (3)S—C1—C8—C912.6 (5)
S—C1—C2—C7165.7 (2)C7—O1—C8—C10.4 (3)
C7—C2—C3—C40.3 (4)C7—O1—C8—C9179.1 (2)
C1—C2—C3—C4177.8 (3)C1—C8—C9—C1027.6 (5)
C2—C3—C4—C50.3 (4)O1—C8—C9—C10153.1 (3)
C2—C3—C4—C15179.4 (3)C1—C8—C9—C14153.4 (3)
C3—C4—C5—C60.6 (5)O1—C8—C9—C1425.9 (4)
C15—C4—C5—C6179.1 (3)C14—C9—C10—C110.8 (4)
C4—C5—C6—C70.7 (4)C8—C9—C10—C11179.8 (3)
C4—C5—C6—C16178.9 (3)C9—C10—C11—C120.8 (4)
C8—O1—C7—C6178.1 (3)C10—C11—C12—C130.4 (4)
C8—O1—C7—C20.7 (3)C10—C11—C12—I175.5 (2)
C5—C6—C7—O1179.4 (3)C11—C12—C13—C140.1 (4)
C16—C6—C7—O10.2 (5)I—C12—C13—C14175.8 (2)
C5—C6—C7—C20.7 (4)C12—C13—C14—C90.2 (4)
C16—C6—C7—C2178.9 (3)C10—C9—C14—C130.5 (4)
C3—C2—C7—O1179.3 (2)C8—C9—C14—C13179.5 (3)
Symmetry code: (i) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16B···O10.962.552.975 (4)107
C16—H16A···O2ii0.962.393.288 (4)156
C17—H17B···O1iii0.962.513.422 (4)159
Symmetry codes: (ii) x, y+1, z; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC17H15IO2S
Mr410.25
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.6320 (9), 8.917 (1), 11.638 (1)
α, β, γ (°)94.580 (2), 100.949 (2), 113.725 (2)
V3)792.90 (14)
Z2
Radiation typeMo Kα
µ (mm1)2.15
Crystal size (mm)0.40 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.594, 0.647
No. of measured, independent and
observed [I > 2σ(I)] reflections
6882, 3408, 3214
Rint0.029
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.080, 1.22
No. of reflections3408
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.66

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16B···O10.962.552.975 (4)107.2
C16—H16A···O2i0.962.393.288 (4)155.5
C17—H17B···O1ii0.962.513.422 (4)159.1
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z+1.
 

Acknowledgements

This work was supported by a grant from Dongeui University (2008 A A098).

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007a). Acta Cryst. E63, o3295.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007b). Acta Cryst. E63, o4282.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationPolitzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305–311.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds