organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[2-(3,4-Di­meth­oxy­phenethyl­amino)prop­­oxy]-2-meth­oxy­benzamide

aDepartment of Medicinal Chemistry, College of Pharmacy, Southern Medical University, Guangzhou 510515, People's Republic of China, and bCenter of Drug Discovery, China Pharmaceutical University, Nanjing 210009, People's Republic of China
*Correspondence e-mail: xibaomin@yahoo.com.cn

(Received 12 May 2008; accepted 19 May 2008; online 24 May 2008)

The title compound, C21H28N2O5, has two intra­molecular N—H⋯O hydrogen bonds. Inter­molecular N—H⋯O hydrogen bonds [graph-set motif R22(8)] give rise to a dimer. Weak N—H⋯N hydrogen bonds between neighboring dimers further extend the crystal structure, which exhibits an infinite chain motif.

Related literature

For related literature, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, S1-19.]); Beduschi & Beduachi (1998[Beduschi, R. & Beduachi, M. C. (1998). J. Geriatrics, 53, 24-40.]); Bernstein et al.(1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Boonnak et al. (2005[Boonnak, N., Chantrapromma, S., Fun, H.-K., Anjum, S., Ali, S., Atta-ur-Rahman, & Karalai, C. (2005). Acta Cryst. E61, o410-o412.]); Gunderman et al. (1995[Gunderman, T., Nurnberg, B. & Schultz, G. (1995). J. Mol. Med. 73, 51-63.]); Hieble et al. (1995[Hieble, J. P., Bondinell, W. E. & Ruolo, R. R. (1995). J. Med. Chem. 38, 3415-3444.]); Kasztreiner et al. (1989[Kasztreiner, E., Mactyus, P., Rabloczky, G. & Jaszlits, L. (1989). Drugs Future, 14, 622-624.]); Ng et al. (2005[Ng, S.-L., Razak, I. A., Fun, H.-K., Boonsri, S., Chantrapromma, S. & Prawat, U. (2005). Acta Cryst. E61, o3656-o3658.]); Xi et al. (2005[Xi, B.-M., Li, H., Zhang, B., Ni, P.-Z., Xia, L. & Jiang, Z.-Z. (2005). Chin. J. Med. Chem. 15, 5-11.]).

[Scheme 1]

Experimental

Crystal data
  • C21H28N2O5

  • Mr = 388.45

  • Monoclinic, P 21 /c

  • a = 7.7564 (3) Å

  • b = 9.3509 (4) Å

  • c = 29.9987 (12) Å

  • β = 95.370 (3)°

  • V = 2166.24 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 (2) K

  • 0.21 × 0.18 × 0.17 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: none

  • 26019 measured reflections

  • 3909 independent reflections

  • 1966 reflections with I > 2σ(I)

  • Rint = 0.069

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.183

  • S = 1.03

  • 3909 reflections

  • 260 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O5i 0.86 2.05 2.909 (3) 178
N2—H2B⋯O4 0.86 2.04 2.684 (3) 131
N2—H2B⋯N1ii 0.86 2.54 3.161 (3) 129
N1—H1⋯O1 0.903 (17) 2.41 (3) 2.798 (3) 106 (2)
Symmetry codes: (i) -x, -y, -z+1; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

α1-Adrenoreceptors (α1-AR) are members of the super family of seven transmembrane G protein coupled receptors (GPCR) (Gunderman et al., 1995) and regulate several important physiological processes (Hieble et al., 1995). In recent years, the search for new α1-adrenoreceptor antagonists has increased in parallel with the development of postsynaptically selective α-adrenoreceptor antagonists due to their importance in the treatment of hypertension (Kasztreiner et al., 1989) and for prostatic hypertrophy (Beduschi & Beduachi, 1998). In the course of our studies on phenoxylalkylamine-phenylethanamine derivatives as potential antagonists of α1-adrenoreceptors, we have synthesized a library of compounds (Xi et al. , 2005) that show good activity. The title compound is one such phenoxylalkylamine-phenylethanamine derivative with α1-adrenoreceptor antagonist properties.

In the title compound (Fig. 1), the C—C bond lengths show normal values (Allen et al., 1987), and the C—O and C=O bond lengths are comparable to those observed in simliar structures (Ng et al., 2005; Boonnak et al., 2005), while the C—N distances in the structure fall in the range of 1.308 (3)–1.469 (4) Å. The title molecular structure acts as hydrogen bonding donor and acceptor with two intramolecular N—H···O hydrogen bonds. The compound forms dimers with neighboring molecules through N—H···O hydrogen bonding with a R22(8) graph set motif (Bernstein et al., 1995), which are further self-assembled by N—H···N hydrogen bonds (table 1) to form an infinite chain (Fig. 2).

Related literature top

For related literature, see: Allen et al. (1987); Beduschi & Beduachi (1998); Bernstein et al.(1995); Boonnak et al. (2005); Gunderman et al. (1995); Hieble et al. (1995); Kasztreiner et al. (1989); Ng et al. (2005); Xi et al. (2005).

Experimental top

A mixture of 2-methoxy-4-(2-oxopropoxy)benzamide (0.4 g), 2-(3,4-dimethoxy- phenyl)ethanamine (0.4 ml), TsOH (3 drops), and methanol (20 ml) were heated to reflux of the solvent for 3 h. After cooling KBH4 (0.2 g) was added to the mixture portion wise over a period of 1 h and the mixture was stirred at room temperature for another 2 h. The methanol was evaporated, and water (15 ml) was added to the residue. The aqueous solution was extracted with ethyl acetate and the extract was dried over MgSO4, and evaporated. The residue was chromatographed on silica gel with petroleum ether and ethyl acetate (1:2 with triethylamine) as the eluent to obtain the colorless block crystals (0.3 g, 69.6%).

Refinement top

H atoms on carbon atoms and N2 were placed in calculated positions and were treated as riding on the parent C or N atoms with C—H = 0.92–0.97 Å and N—H = 0.86 Å. The H atom on N1 atom was tentatively located in a difference electron density Fourier map and was refined with distance restraint of N–H = 0.90 (2) Å. Uiso(H) were set to 1.2 or 1.5 Ueq(C) and 1.2 Ueq(N).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: APEX2 (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure showing the atomic-numbering scheme. Displacement ellipsoids drawn at the 30% probability level. Intramolecular hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The molecular packing showing the intermolecular hydrogen bonding interactions as broken lines.
4-[2-(3,4-Dimethoxyphenethylamino)propoxy]-2-methoxybenzamide top
Crystal data top
C21H28N2O5F(000) = 832
Mr = 388.45Dx = 1.191 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2279 reflections
a = 7.7564 (3) Åθ = 2.3–28.0°
b = 9.3509 (4) ŵ = 0.09 mm1
c = 29.9987 (12) ÅT = 296 K
β = 95.370 (3)°Block, colorless
V = 2166.24 (15) Å30.21 × 0.18 × 0.17 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
1966 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.069
Graphite monochromatorθmax = 25.2°, θmin = 2.3°
ϕ and ω scansh = 89
26019 measured reflectionsk = 1111
3909 independent reflectionsl = 3535
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.183H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0802P)2 + 0.288P]
where P = (Fo2 + 2Fc2)/3
3909 reflections(Δ/σ)max < 0.001
260 parametersΔρmax = 0.24 e Å3
1 restraintΔρmin = 0.22 e Å3
Crystal data top
C21H28N2O5V = 2166.24 (15) Å3
Mr = 388.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.7564 (3) ŵ = 0.09 mm1
b = 9.3509 (4) ÅT = 296 K
c = 29.9987 (12) Å0.21 × 0.18 × 0.17 mm
β = 95.370 (3)°
Data collection top
Bruker APEXII area-detector
diffractometer
1966 reflections with I > 2σ(I)
26019 measured reflectionsRint = 0.069
3909 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0621 restraint
wR(F2) = 0.183H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.24 e Å3
3909 reflectionsΔρmin = 0.22 e Å3
260 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0849 (4)0.9275 (3)0.68939 (10)0.0707 (8)
C21.0775 (4)0.8967 (3)0.73403 (10)0.0730 (9)
H21.00120.82640.74190.088*
C31.1788 (4)0.9662 (3)0.76742 (11)0.0768 (9)
C41.2923 (4)1.0728 (3)0.75616 (13)0.0802 (9)
C51.3002 (4)1.1052 (4)0.71190 (14)0.0894 (10)
H51.37521.17620.70380.107*
C61.1968 (5)1.0324 (4)0.67897 (12)0.0854 (10)
H61.20401.05580.64910.102*
C70.2048 (4)0.3654 (3)0.58051 (10)0.0731 (9)
H70.17680.29410.60020.088*
C80.2697 (4)0.4909 (4)0.59783 (10)0.0786 (9)
H80.28760.50340.62870.094*
C90.3086 (4)0.5986 (3)0.56951 (10)0.0652 (8)
C100.2844 (3)0.5786 (3)0.52359 (9)0.0637 (8)
H100.30930.65210.50430.076*
C110.2230 (3)0.4489 (3)0.50650 (9)0.0571 (7)
C120.1785 (3)0.3388 (3)0.53488 (9)0.0604 (7)
C131.0809 (9)0.8210 (6)0.82400 (14)0.194 (3)
H13A0.96000.84420.81910.292*
H13B1.10950.79840.85500.292*
H13C1.10540.74000.80590.292*
C140.4230 (4)0.8365 (3)0.56233 (10)0.0785 (9)
H14A0.32070.88590.54910.094*
H14B0.48740.80140.53840.094*
C150.5335 (4)0.9363 (3)0.59209 (10)0.0752 (9)
H150.47260.96160.61820.090*
C160.8086 (4)0.9358 (3)0.63960 (10)0.0766 (9)
H16A0.74750.95780.66550.092*
H16B0.84221.02540.62660.092*
C170.9687 (4)0.8500 (4)0.65416 (10)0.0833 (10)
H17A1.03210.83130.62840.100*
H17B0.93480.75880.66600.100*
C181.5228 (7)1.2293 (6)0.78212 (16)0.171 (2)
H18A1.59991.18120.76380.257*
H18B1.58581.25940.80960.257*
H18C1.47381.31130.76640.257*
C190.5701 (5)1.0702 (3)0.56651 (13)0.1053 (12)
H19A0.63201.13710.58630.158*
H19B0.46281.11210.55440.158*
H19C0.63881.04650.54250.158*
C200.2483 (4)0.5301 (3)0.43139 (9)0.0771 (9)
H20A0.17760.61330.43430.116*
H20B0.23030.49450.40130.116*
H20C0.36790.55510.43810.116*
C210.1018 (4)0.1977 (3)0.52065 (11)0.0676 (8)
N10.6938 (3)0.8582 (2)0.60697 (8)0.0666 (7)
H10.662 (4)0.780 (2)0.6217 (8)0.080*
N20.0991 (3)0.1560 (3)0.47879 (8)0.0817 (8)
H2A0.05480.07470.47080.098*
H2B0.14170.21020.45940.098*
O10.3744 (3)0.7205 (2)0.58938 (6)0.0838 (7)
O21.1798 (4)0.9383 (3)0.81226 (8)0.1191 (10)
O31.3892 (3)1.1353 (3)0.79165 (9)0.1160 (9)
O40.2023 (3)0.4228 (2)0.46171 (6)0.0753 (6)
O50.0413 (4)0.1217 (2)0.54918 (8)0.1049 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.063 (2)0.075 (2)0.073 (2)0.0073 (17)0.0014 (16)0.0039 (17)
C20.065 (2)0.071 (2)0.082 (2)0.0139 (16)0.0032 (16)0.0044 (17)
C30.079 (2)0.076 (2)0.076 (2)0.0129 (19)0.0067 (18)0.0039 (17)
C40.072 (2)0.070 (2)0.099 (3)0.0126 (18)0.0079 (19)0.011 (2)
C50.073 (2)0.077 (2)0.120 (3)0.0097 (19)0.019 (2)0.015 (2)
C60.081 (2)0.090 (3)0.086 (2)0.011 (2)0.012 (2)0.018 (2)
C70.082 (2)0.070 (2)0.069 (2)0.0096 (18)0.0146 (16)0.0086 (16)
C80.091 (2)0.083 (2)0.0625 (18)0.0174 (19)0.0095 (17)0.0007 (18)
C90.0610 (19)0.0651 (19)0.069 (2)0.0088 (15)0.0022 (15)0.0018 (16)
C100.0598 (19)0.0609 (18)0.069 (2)0.0022 (15)0.0005 (14)0.0091 (15)
C110.0533 (17)0.0567 (17)0.0608 (18)0.0012 (14)0.0018 (13)0.0001 (14)
C120.0518 (17)0.0616 (18)0.0688 (19)0.0031 (14)0.0103 (14)0.0015 (15)
C130.327 (8)0.172 (5)0.088 (3)0.131 (6)0.039 (4)0.003 (3)
C140.081 (2)0.066 (2)0.085 (2)0.0101 (17)0.0076 (17)0.0068 (17)
C150.069 (2)0.0654 (19)0.088 (2)0.0055 (17)0.0093 (17)0.0026 (17)
C160.074 (2)0.075 (2)0.079 (2)0.0001 (17)0.0057 (17)0.0088 (16)
C170.083 (2)0.087 (2)0.077 (2)0.0133 (19)0.0053 (18)0.0072 (17)
C180.145 (4)0.178 (5)0.192 (5)0.105 (4)0.023 (4)0.035 (4)
C190.101 (3)0.071 (2)0.137 (3)0.008 (2)0.022 (2)0.009 (2)
C200.089 (2)0.073 (2)0.0697 (19)0.0018 (18)0.0097 (17)0.0126 (16)
C210.067 (2)0.0626 (19)0.074 (2)0.0052 (16)0.0160 (16)0.0004 (17)
N10.0687 (17)0.0610 (15)0.0689 (15)0.0033 (13)0.0005 (13)0.0027 (12)
N20.101 (2)0.0681 (16)0.0786 (18)0.0248 (15)0.0219 (15)0.0060 (14)
O10.0948 (17)0.0803 (15)0.0759 (14)0.0244 (13)0.0059 (12)0.0059 (12)
O20.157 (2)0.126 (2)0.0737 (16)0.0677 (19)0.0075 (15)0.0092 (14)
O30.1067 (19)0.113 (2)0.128 (2)0.0478 (17)0.0056 (16)0.0250 (16)
O40.0972 (16)0.0654 (13)0.0627 (13)0.0120 (11)0.0038 (11)0.0065 (10)
O50.147 (2)0.0836 (16)0.0905 (16)0.0453 (16)0.0465 (15)0.0088 (13)
Geometric parameters (Å, º) top
C1—C61.365 (4)C14—C151.503 (4)
C1—C21.376 (4)C14—H14A0.9700
C1—C171.509 (4)C14—H14B0.9700
C2—C31.377 (4)C15—N11.475 (4)
C2—H20.9300C15—C191.509 (4)
C3—O21.369 (4)C15—H150.9800
C3—C41.393 (4)C16—N11.454 (3)
C4—C51.369 (4)C16—C171.508 (4)
C4—O31.375 (4)C16—H16A0.9700
C5—C61.391 (5)C16—H16B0.9700
C5—H50.9300C17—H17A0.9700
C6—H60.9300C17—H17B0.9700
C7—C81.361 (4)C18—O31.408 (4)
C7—C121.387 (4)C18—H18A0.9600
C7—H70.9300C18—H18B0.9600
C8—C91.369 (4)C18—H18C0.9600
C8—H80.9300C19—H19A0.9600
C9—O11.363 (3)C19—H19B0.9600
C9—C101.385 (4)C19—H19C0.9600
C10—C111.383 (4)C20—O41.422 (3)
C10—H100.9300C20—H20A0.9600
C11—O41.360 (3)C20—H20B0.9600
C11—C121.400 (4)C20—H20C0.9600
C12—C211.493 (4)C21—O51.238 (3)
C13—O21.403 (5)C21—N21.313 (3)
C13—H13A0.9600N1—H10.903 (17)
C13—H13B0.9600N2—H2A0.8600
C13—H13C0.9600N2—H2B0.8600
C14—O11.426 (3)
C6—C1—C2117.3 (3)N1—C15—C19111.8 (3)
C6—C1—C17122.4 (3)C14—C15—C19109.7 (3)
C2—C1—C17120.3 (3)N1—C15—H15109.5
C1—C2—C3122.4 (3)C14—C15—H15109.5
C1—C2—H2118.8C19—C15—H15109.5
C3—C2—H2118.8N1—C16—C17111.4 (2)
O2—C3—C2125.1 (3)N1—C16—H16A109.3
O2—C3—C4115.4 (3)C17—C16—H16A109.3
C2—C3—C4119.5 (3)N1—C16—H16B109.3
C5—C4—O3125.9 (3)C17—C16—H16B109.3
C5—C4—C3118.7 (3)H16A—C16—H16B108.0
O3—C4—C3115.4 (3)C16—C17—C1111.6 (3)
C4—C5—C6120.4 (3)C16—C17—H17A109.3
C4—C5—H5119.8C1—C17—H17A109.3
C6—C5—H5119.8C16—C17—H17B109.3
C1—C6—C5121.7 (3)C1—C17—H17B109.3
C1—C6—H6119.1H17A—C17—H17B108.0
C5—C6—H6119.1O3—C18—H18A109.5
C8—C7—C12123.2 (3)O3—C18—H18B109.5
C8—C7—H7118.4H18A—C18—H18B109.5
C12—C7—H7118.4O3—C18—H18C109.5
C7—C8—C9119.5 (3)H18A—C18—H18C109.5
C7—C8—H8120.3H18B—C18—H18C109.5
C9—C8—H8120.3C15—C19—H19A109.5
O1—C9—C8116.0 (3)C15—C19—H19B109.5
O1—C9—C10123.9 (3)H19A—C19—H19B109.5
C8—C9—C10120.0 (3)C15—C19—H19C109.5
C11—C10—C9119.8 (3)H19A—C19—H19C109.5
C11—C10—H10120.1H19B—C19—H19C109.5
C9—C10—H10120.1O4—C20—H20A109.5
O4—C11—C10121.9 (2)O4—C20—H20B109.5
O4—C11—C12117.1 (2)H20A—C20—H20B109.5
C10—C11—C12121.0 (3)O4—C20—H20C109.5
C7—C12—C11116.5 (3)H20A—C20—H20C109.5
C7—C12—C21117.3 (3)H20B—C20—H20C109.5
C11—C12—C21126.2 (3)O5—C21—N2121.2 (3)
O2—C13—H13A109.5O5—C21—C12118.4 (3)
O2—C13—H13B109.5N2—C21—C12120.4 (3)
H13A—C13—H13B109.5C16—N1—C15113.7 (2)
O2—C13—H13C109.5C16—N1—H1104.8 (18)
H13A—C13—H13C109.5C15—N1—H1106.9 (19)
H13B—C13—H13C109.5C21—N2—H2A120.0
O1—C14—C15107.5 (2)C21—N2—H2B120.0
O1—C14—H14A110.2H2A—N2—H2B120.0
C15—C14—H14A110.2C9—O1—C14119.7 (2)
O1—C14—H14B110.2C3—O2—C13116.3 (3)
C15—C14—H14B110.2C4—O3—C18117.9 (3)
H14A—C14—H14B108.5C11—O4—C20119.4 (2)
N1—C15—C14106.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O5i0.862.052.909 (3)178
N2—H2B···O40.862.042.684 (3)131
N2—H2B···N1ii0.862.543.161 (3)129
N1—H1···O10.90 (2)2.41 (3)2.798 (3)106 (2)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC21H28N2O5
Mr388.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.7564 (3), 9.3509 (4), 29.9987 (12)
β (°) 95.370 (3)
V3)2166.24 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.21 × 0.18 × 0.17
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
26019, 3909, 1966
Rint0.069
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.183, 1.03
No. of reflections3909
No. of parameters260
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.22

Computer programs: APEX2 (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O5i0.862.052.909 (3)177.7
N2—H2B···O40.862.042.684 (3)130.6
N2—H2B···N1ii0.862.543.161 (3)129.3
N1—H1···O10.903 (17)2.41 (3)2.798 (3)106 (2)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

The authors acknowledge the National Natural Science Foundation of China for funding (grant No. 30600776).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, S1–19.  CrossRef Google Scholar
First citationBeduschi, R. & Beduachi, M. C. (1998). J. Geriatrics, 53, 24–40.  CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBoonnak, N., Chantrapromma, S., Fun, H.-K., Anjum, S., Ali, S., Atta-ur-Rahman, & Karalai, C. (2005). Acta Cryst. E61, o410–o412.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGunderman, T., Nurnberg, B. & Schultz, G. (1995). J. Mol. Med. 73, 51–63.  PubMed Web of Science Google Scholar
First citationHieble, J. P., Bondinell, W. E. & Ruolo, R. R. (1995). J. Med. Chem. 38, 3415–3444.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKasztreiner, E., Mactyus, P., Rabloczky, G. & Jaszlits, L. (1989). Drugs Future, 14, 622–624.  Google Scholar
First citationNg, S.-L., Razak, I. A., Fun, H.-K., Boonsri, S., Chantrapromma, S. & Prawat, U. (2005). Acta Cryst. E61, o3656–o3658.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXi, B.-M., Li, H., Zhang, B., Ni, P.-Z., Xia, L. & Jiang, Z.-Z. (2005). Chin. J. Med. Chem. 15, 5–11.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds