organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Iodo-7-methyl-3-methyl­sulfinyl-2-phenyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, bDepartment of Molecular Biology, Dongeui University, San 24 Kaya-dong Busanjin-ku, Busan 614-714, Republic of Korea, and cDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 14 May 2008; accepted 15 May 2008; online 21 May 2008)

The title compound, C16H13IO2S, was prepared by the oxidation of 5-iodo-7-methyl-3-methyl­sulfanyl-2-phenyl-1-benzofuran with 3-chloro­peroxy­benzoic acid. The phenyl ring makes a dihedral angle of 27.17 (9)° with the plane of the benzofuran fragment, with the O atom and the methyl group of the methyl­sulfinyl substituent lying on opposite sides of this plane. The crystal structure exhibits inter­molecular C—H⋯I inter­actions, and an I⋯O halogen bond of 3.107 (2) Å with a nearly linear C—I⋯O angle of 173.73 (6)°.

Related literature

For the crystal structures of similar 5-halo-3-methyl­sulfinyl-2-phenyl-1-benzofuran compounds, see: Choi et al. (2007a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007a). Acta Cryst. E63, o1315-o1316.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007b). Acta Cryst. E63, o3745.]). For a review of halogen bonding, see: Politzer et al. (2007[Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305-311.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13IO2S

  • Mr = 396.22

  • Monoclinic, P 21 /c

  • a = 10.385 (5) Å

  • b = 17.174 (8) Å

  • c = 8.943 (4) Å

  • β = 112.847 (7)°

  • V = 1469.9 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.32 mm−1

  • T = 173 (2) K

  • 0.40 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.572, Tmax = 0.623

  • 11429 measured reflections

  • 2877 independent reflections

  • 2706 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.053

  • S = 1.06

  • 2877 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Ii 0.95 3.06 3.954 (3) 157
Symmetry code: (i) -x, -y+1, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

This work is related to our previous communications on the synthesis and structure of 5-halo-3-methylsulfinyl-2-phenyl-1-benzofuran analogues, viz. 5-bromo-3-methylsulfinyl-2-phenyl-1-benzofuran (Choi et al., 2007a) and 5-iodo-3-methylsulfinyl-2-phenyl-1-benzofuran (Choi et al., 2007b). Here we report the crystal structure of the title compound, 5-iodo-7-methyl-3-methylsulfinyl-2-phenyl-1-benzofuran (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.013 Å from the least-squares plane defined by the nine constituent atoms. The phenyl ring (C9-C14) makes a dihedral angle of 27.17 (9)° with the plane of the benzofuran fragment. The molecular packing (Fig. 2) is stabilized by intermolecular C—H···I interactions (Table 1), and by an I···O halogen bond (Politzer et al., 2007) between the iodine atom and the oxygen of a neighbouring SO unit, with an I···O2i distance of 3.107 (2) Å (symmetry code as in Fig. 2).

Related literature top

For the crystal structures of similar 5-halo-3-methylsulfinyl-2-phenyl-1-benzofuran compounds, see: Choi et al. (2007a,b). For a review of halogen bonding, see: Politzer et al. (2007).

Experimental top

77% 3-chloroperoxybenzoic acid (247 mg, 1.1 mmol) was added in small portions to a stirred solution of 5-iodo-7-methyl-3-methylsulfanyl-2-phenyl-1-benzofuran (380 mg, 1.0 mmol) in dichloromethane (30 ml) at 273 K. After being stirred for 4 h at room temperature, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated in vacuum. The residue was purified by column chromatography (hexane-ethyl acetate, 1:1 v/v) to afford the title compound as a colorless solid [yield 79%, m.p. 433-434 K; Rf = 0.51 (hexane-ethyl acetate, 1:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by evaporation of a solution of the title compound in tetrahydrofuran at room temperature. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz) δ 2.53 (s, 3H), 3.11 (s, 3H), 7.49-7.58 (m, 4H), 7.83 (dd, J = 8.04 Hz and 1.84 Hz, 2H), 8.39 (s, 1H); EI-MS 396 [M+].

Refinement top

All H atoms were geometrically positioned and refined using a riding model, with C-H = 0.95 Å for aromatic H atoms, 0.98 Å for methyl H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) for aromatic H atoms and 1.5Ueq(C) for methyl H atoms. The highest peak in the difference map is 0.98 Å from I and the largest hole is 0.92 Å from I.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. C—H···I interaction and I···O halogen bond (dotted lines) in the title compound. [Symmetry code: (i) -x, -y+1, -z.]
5-Iodo-7-methyl-3-methylsulfinyl-2-phenyl-1-benzofuran top
Crystal data top
C16H13IO2SF(000) = 776
Mr = 396.22Dx = 1.790 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9956 reflections
a = 10.385 (5) Åθ = 2.1–28.4°
b = 17.174 (8) ŵ = 2.32 mm1
c = 8.943 (4) ÅT = 173 K
β = 112.847 (7)°Block, colorless
V = 1469.9 (12) Å30.40 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2877 independent reflections
Radiation source: fine-focus sealed tube2706 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 10.0 pixels mm-1θmax = 26.0°, θmin = 2.4°
ϕ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
k = 2121
Tmin = 0.572, Tmax = 0.623l = 1111
11429 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.053H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0278P)2 + 0.8832P]
where P = (Fo2 + 2Fc2)/3
2877 reflections(Δ/σ)max = 0.001
183 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.66 e Å3
Crystal data top
C16H13IO2SV = 1469.9 (12) Å3
Mr = 396.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.385 (5) ŵ = 2.32 mm1
b = 17.174 (8) ÅT = 173 K
c = 8.943 (4) Å0.40 × 0.20 × 0.20 mm
β = 112.847 (7)°
Data collection top
Bruker SMART CCD
diffractometer
2877 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
2706 reflections with I > 2σ(I)
Tmin = 0.572, Tmax = 0.623Rint = 0.032
11429 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.053H-atom parameters constrained
S = 1.07Δρmax = 0.39 e Å3
2877 reflectionsΔρmin = 0.66 e Å3
183 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I0.043288 (13)0.558358 (8)0.210981 (16)0.02333 (7)
S0.36162 (5)0.29269 (3)0.14788 (6)0.02051 (11)
O10.50724 (14)0.38231 (8)0.59241 (16)0.0184 (3)
O20.30733 (17)0.35243 (9)0.01551 (18)0.0280 (3)
C10.3955 (2)0.34115 (11)0.3340 (2)0.0186 (4)
C20.3154 (2)0.40433 (12)0.3616 (2)0.0185 (4)
C30.1901 (2)0.44237 (11)0.2685 (3)0.0199 (4)
H30.13850.42910.15810.024*
C40.1451 (2)0.50027 (12)0.3454 (2)0.0203 (4)
C50.2211 (2)0.52118 (12)0.5084 (2)0.0211 (4)
H50.18660.56140.55560.025*
C60.3460 (2)0.48423 (11)0.6021 (2)0.0195 (4)
C70.3883 (2)0.42659 (12)0.5218 (2)0.0182 (4)
C80.5095 (2)0.32999 (11)0.4756 (2)0.0180 (4)
C90.6257 (2)0.27448 (12)0.5307 (2)0.0184 (4)
C100.7494 (2)0.29442 (13)0.6599 (3)0.0267 (5)
H100.75910.34450.70820.032*
C110.8579 (2)0.24128 (14)0.7177 (3)0.0357 (6)
H110.94170.25500.80610.043*
C120.8452 (2)0.16800 (14)0.6474 (3)0.0333 (5)
H120.91990.13170.68750.040*
C130.7229 (2)0.14820 (13)0.5185 (3)0.0284 (5)
H130.71440.09840.46930.034*
C140.6129 (2)0.20047 (12)0.4608 (3)0.0242 (4)
H140.52870.18610.37380.029*
C150.4267 (2)0.50275 (13)0.7788 (3)0.0265 (5)
H15A0.40920.46240.84600.040*
H15B0.39670.55340.80430.040*
H15C0.52680.50460.80100.040*
C160.2127 (2)0.23678 (14)0.1402 (3)0.0310 (5)
H16A0.13750.27210.13690.046*
H16B0.23910.20370.23690.046*
H16C0.18030.20410.04280.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I0.01881 (9)0.02267 (10)0.02713 (10)0.00497 (5)0.00739 (7)0.00177 (5)
S0.0221 (3)0.0235 (3)0.0161 (2)0.0048 (2)0.00748 (19)0.00083 (18)
O10.0190 (7)0.0184 (7)0.0170 (6)0.0028 (5)0.0060 (6)0.0001 (5)
O20.0330 (9)0.0325 (8)0.0175 (7)0.0065 (7)0.0088 (6)0.0050 (6)
C10.0197 (9)0.0193 (10)0.0179 (9)0.0009 (8)0.0084 (8)0.0004 (7)
C20.0194 (9)0.0184 (9)0.0193 (9)0.0006 (8)0.0094 (8)0.0015 (7)
C30.0199 (10)0.0203 (10)0.0187 (10)0.0017 (8)0.0067 (8)0.0017 (7)
C40.0170 (9)0.0227 (10)0.0215 (10)0.0023 (8)0.0077 (8)0.0038 (8)
C50.0248 (10)0.0186 (10)0.0226 (10)0.0023 (8)0.0123 (9)0.0007 (8)
C60.0233 (10)0.0180 (9)0.0193 (10)0.0003 (8)0.0105 (8)0.0006 (7)
C70.0185 (10)0.0169 (9)0.0194 (10)0.0004 (8)0.0075 (8)0.0025 (7)
C80.0205 (10)0.0174 (9)0.0181 (9)0.0016 (8)0.0096 (8)0.0008 (7)
C90.0177 (9)0.0206 (10)0.0186 (9)0.0003 (8)0.0090 (8)0.0040 (7)
C100.0219 (11)0.0215 (10)0.0324 (12)0.0011 (9)0.0057 (9)0.0006 (9)
C110.0186 (11)0.0308 (12)0.0452 (14)0.0026 (9)0.0013 (10)0.0021 (10)
C120.0233 (11)0.0274 (12)0.0478 (14)0.0080 (9)0.0121 (11)0.0091 (10)
C130.0324 (12)0.0209 (10)0.0338 (12)0.0036 (9)0.0150 (10)0.0013 (9)
C140.0251 (11)0.0232 (10)0.0234 (10)0.0010 (9)0.0086 (9)0.0003 (8)
C150.0320 (12)0.0269 (11)0.0190 (10)0.0020 (9)0.0080 (9)0.0031 (8)
C160.0315 (12)0.0311 (12)0.0278 (11)0.0070 (10)0.0087 (10)0.0055 (9)
Geometric parameters (Å, º) top
I—C42.107 (2)C8—C91.465 (3)
I—O2i3.107 (2)C9—C101.396 (3)
S—O21.501 (2)C9—C141.400 (3)
S—C11.770 (2)C10—C111.385 (3)
S—C161.799 (2)C10—H100.9500
O1—C71.377 (2)C11—C121.390 (4)
O1—C81.385 (2)C11—H110.9500
C1—C81.370 (3)C12—C131.386 (3)
C1—C21.446 (3)C12—H120.9500
C2—C71.389 (3)C13—C141.385 (3)
C2—C31.404 (3)C13—H130.9500
C3—C41.389 (3)C14—H140.9500
C3—H30.9500C15—H15A0.9800
C4—C51.409 (3)C15—H15B0.9800
C5—C61.394 (3)C15—H15C0.9800
C5—H50.9500C16—H16A0.9800
C6—C71.391 (3)C16—H16B0.9800
C6—C151.507 (3)C16—H16C0.9800
C4—I—O2i173.73 (6)C10—C9—C8119.45 (19)
O2—S—C1107.27 (10)C14—C9—C8121.16 (18)
O2—S—C16106.30 (11)C11—C10—C9120.1 (2)
C1—S—C1698.10 (10)C11—C10—H10120.0
C7—O1—C8106.69 (15)C9—C10—H10120.0
C8—C1—C2107.15 (17)C10—C11—C12120.5 (2)
C8—C1—S126.05 (16)C10—C11—H11119.8
C2—C1—S126.59 (15)C12—C11—H11119.8
C7—C2—C3119.48 (19)C13—C12—C11119.6 (2)
C7—C2—C1105.27 (17)C13—C12—H12120.2
C3—C2—C1135.23 (19)C11—C12—H12120.2
C4—C3—C2116.85 (19)C14—C13—C12120.5 (2)
C4—C3—H3121.6C14—C13—H13119.7
C2—C3—H3121.6C12—C13—H13119.7
C3—C4—C5122.24 (19)C13—C14—C9120.0 (2)
C3—C4—I118.20 (15)C13—C14—H14120.0
C5—C4—I119.56 (15)C9—C14—H14120.0
C6—C5—C4121.56 (19)C6—C15—H15A109.5
C6—C5—H5119.2C6—C15—H15B109.5
C4—C5—H5119.2H15A—C15—H15B109.5
C5—C6—C7114.84 (18)C6—C15—H15C109.5
C5—C6—C15122.91 (19)H15A—C15—H15C109.5
C7—C6—C15122.21 (19)H15B—C15—H15C109.5
O1—C7—C2110.71 (17)S—C16—H16A109.5
O1—C7—C6124.27 (18)S—C16—H16B109.5
C2—C7—C6125.00 (19)H16A—C16—H16B109.5
C1—C8—O1110.17 (17)S—C16—H16C109.5
C1—C8—C9134.83 (18)H16A—C16—H16C109.5
O1—C8—C9114.93 (16)H16B—C16—H16C109.5
C10—C9—C14119.33 (19)
O2—S—C1—C8138.12 (18)C5—C6—C7—O1179.08 (18)
C16—S—C1—C8111.9 (2)C15—C6—C7—O11.3 (3)
O2—S—C1—C236.1 (2)C5—C6—C7—C20.8 (3)
C16—S—C1—C273.9 (2)C15—C6—C7—C2176.9 (2)
C8—C1—C2—C70.4 (2)C2—C1—C8—O10.0 (2)
S—C1—C2—C7175.49 (15)S—C1—C8—O1175.08 (14)
C8—C1—C2—C3179.1 (2)C2—C1—C8—C9176.7 (2)
S—C1—C2—C35.9 (3)S—C1—C8—C98.2 (3)
C7—C2—C3—C41.1 (3)C7—O1—C8—C10.5 (2)
C1—C2—C3—C4177.4 (2)C7—O1—C8—C9176.98 (16)
C2—C3—C4—C50.8 (3)C1—C8—C9—C10157.6 (2)
C2—C3—C4—I179.53 (14)O1—C8—C9—C1025.8 (3)
C3—C4—C5—C60.5 (3)C1—C8—C9—C1425.2 (3)
I—C4—C5—C6179.82 (15)O1—C8—C9—C14151.38 (18)
C4—C5—C6—C70.5 (3)C14—C9—C10—C110.0 (3)
C4—C5—C6—C15177.3 (2)C8—C9—C10—C11177.3 (2)
C8—O1—C7—C20.7 (2)C9—C10—C11—C120.4 (4)
C8—O1—C7—C6177.71 (19)C10—C11—C12—C130.0 (4)
C3—C2—C7—O1179.63 (17)C11—C12—C13—C140.8 (4)
C1—C2—C7—O10.7 (2)C12—C13—C14—C91.2 (3)
C3—C2—C7—C61.2 (3)C10—C9—C14—C130.8 (3)
C1—C2—C7—C6177.73 (19)C8—C9—C14—C13178.01 (19)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Ii0.953.063.954 (3)157
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H13IO2S
Mr396.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)10.385 (5), 17.174 (8), 8.943 (4)
β (°) 112.847 (7)
V3)1469.9 (12)
Z4
Radiation typeMo Kα
µ (mm1)2.32
Crystal size (mm)0.40 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.572, 0.623
No. of measured, independent and
observed [I > 2σ(I)] reflections
11429, 2877, 2706
Rint0.032
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.053, 1.07
No. of reflections2877
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.66

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Ii0.953.063.954 (3)156.8
Symmetry code: (i) x, y+1, z.
 

References

First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007a). Acta Cryst. E63, o1315–o1316.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2007b). Acta Cryst. E63, o3745.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationPolitzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model. 13, 305–311.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds