metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­aqua­nickel(II) bis­­[4-(2-hy­droxy­benzyl­­idene­amino)benzene­sulfonate]

aDepartment of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, and bWeifang Institute of Supervision and Inspection, on Product Quality, Weifang 261031, People's Republic of China
*Correspondence e-mail: taixishi@lzu.edu.cn

(Received 16 May 2008; accepted 21 May 2008; online 7 June 2008)

In the title compound, [Ni(H2O)6](C(C13H10NO4S)2, the nickel(II) atom, lying on a center of symmetry, is six-coordinated by six aqua O-atom donors. The dihedral angle between the two benzene rings is 33.1 (3)°. The crystal structure is stabilized by aqua–anion O—H⋯O hydrogen bonds. Intra­molecular O—H⋯N and C—H⋯O hydrogen-bonding inter­actions occur in the anion.

Related literature

For related literature, see: Tai & Feng (2008[Tai, X.-S. & Feng, Y.-M. (2008). Acta Cryst. E64, o707.]); Tai et al. (2003[Tai, X.-S., Yin, X.-H., Tan, M.-Y. & Li, Y.-Z. (2003). Acta Cryst. E59, o681-o682.], 2008[Tai, X.-S., Feng, Y.-M. & Zhang, H.-X. (2008). Acta Cryst. E64, m502.]); Tai, Yin & Feng (2007[Tai, X. S., Yin, J. & Feng, Y. M. (2007). Z. Kristallogr. New Cryst. Struct. 222, 398-400.]); Tai, Yin & Hao (2007[Tai, X.-S., Yin, J. & Hao, M.-Y. (2007). Acta Cryst. E63, m1061-m1062.]); Tai, Yin, Feng & Kong (2007[Tai, X.-S., Yin, J. & Hao, M.-Y. (2007). Acta Cryst. E63, m1061-m1062.][Tai, X. S., Yin, J., Feng, Y. M. & Kong, F. Y. (2007). Chin. J. Inorg. Chem. 23, 1812-1814.][Tai, X. S., Yin, J. & Feng, Y. M. (2007). Z. Kristallogr. New Cryst. Struct. 222, 398-400.]); Wang et al. (2007[Wang, L.-H., Yin, J. & Tai, X.-S. (2007). Acta Cryst. E63, m1664.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(H2O)6](C13H10NO4S)2

  • Mr = 719.37

  • Monoclinic, P 21 /c

  • a = 6.3047 (6) Å

  • b = 35.193 (3) Å

  • c = 9.3536 (10) Å

  • β = 131.822 (2)°

  • V = 1546.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.83 mm−1

  • T = 298 (2) K

  • 0.43 × 0.38 × 0.25 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.716, Tmax = 0.819

  • 7465 measured reflections

  • 2661 independent reflections

  • 2428 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.137

  • S = 1.28

  • 2661 reflections

  • 205 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −1.00 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯N1 0.82 1.86 2.595 (9) 148
O5—H5A⋯O1i 0.85 1.96 2.737 (6) 151
O5—H5B⋯O2ii 0.85 1.98 2.751 (6) 150
O6—H6A⋯O3i 0.85 1.95 2.764 (7) 161
O6—H6B⋯O1iii 0.85 1.97 2.768 (8) 156
O7—H7A⋯O2 0.85 2.00 2.757 (8) 148
O7—H7B⋯O3ii 0.85 2.00 2.769 (7) 150
C2—H2⋯O3 0.93 2.56 2.917 (7) 104
Symmetry codes: (i) x, y, z+1; (ii) x-1, y, z; (iii) x+1, y, z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As part of our ongoing studies of the coordination chemistry of Schiffbase ligands (Tai et al., 2003; (Tai, Yin & Feng, 2007; Tai, Yin, Feng & Kong, 2007; Tai, Yin & Hao, 2007; Wang et al., 2007; Tai et al., 2008; Tai et al., 2008), we now report the synthesis and structure of the title compound, (I), (Fig. 1).

In the molecule of (I), the nickel (II) center is six-coordinate with six O donor of H2O. The C7—N1 [1.288 (8) Å] is close to double-bond. Otherwise, the geometrical parameters for (I) are normal. The dihedral angle between the two benzene rings is 33.1°. The packing is stabilized by Owater—H···Oanion hydrogen bonds. The intramolecular O—H···N and C—H···O hydrogen bonding interactions occur in the anion. (Table 1).

Related literature top

For related literature, see: Tai & Feng (2008); Tai et al. (2003, 2008); Tai, Yin & Feng (2007); Tai, Yin & Hao (2007); Tai, Yin et al. (2007); Wang et al. (2007).

Experimental top

1 mmol of Ni(CH3COO)2.4H2O was added to a solution of salicylaldehyde-4-aminobenzene sulfonic acid (1 mmol) in 10 ml of 95% ethanol. The mixture was stirred for 2 h at refluxing temperature. Evaporating some ethanol, clear blocks of (I) were obtained after one weeks.

Refinement top

The H atoms were placed geometrically (C—H = 0.93 Å and O—H = 0.82-0.85Å) and refined as riding with Uiso(H) =1.2 or 1.5Ueq(carrier).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% displacement ellipsoids.
Hexaaquanickel(II) bis[4-(2-hydroxybenzylideneamino)benzenesulfonate] top
Crystal data top
[Ni(H2O)6](C13H10NO4S)2F(000) = 748
Mr = 719.37Dx = 1.545 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4537 reflections
a = 6.3047 (6) Åθ = 2.9–27.7°
b = 35.193 (3) ŵ = 0.83 mm1
c = 9.3536 (10) ÅT = 298 K
β = 131.822 (2)°Block, colourless
V = 1546.6 (3) Å30.43 × 0.38 × 0.25 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
2661 independent reflections
Radiation source: fine-focus sealed tube2428 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 75
Tmin = 0.716, Tmax = 0.819k = 4140
7465 measured reflectionsl = 911
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.28 w = 1/[σ2(Fo2) + (0.0161P)2 + 4.8144P]
where P = (Fo2 + 2Fc2)/3
2661 reflections(Δ/σ)max < 0.001
205 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 1.00 e Å3
Crystal data top
[Ni(H2O)6](C13H10NO4S)2V = 1546.6 (3) Å3
Mr = 719.37Z = 2
Monoclinic, P21/cMo Kα radiation
a = 6.3047 (6) ŵ = 0.83 mm1
b = 35.193 (3) ÅT = 298 K
c = 9.3536 (10) Å0.43 × 0.38 × 0.25 mm
β = 131.822 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2661 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2428 reflections with I > 2σ(I)
Tmin = 0.716, Tmax = 0.819Rint = 0.032
7465 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.28Δρmax = 0.32 e Å3
2661 reflectionsΔρmin = 1.00 e Å3
205 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50001.00001.00000.0310 (2)
N10.4029 (11)0.76969 (14)0.4874 (8)0.0565 (13)
O10.3354 (7)0.95021 (11)0.3248 (5)0.0486 (10)
O20.6843 (8)0.94957 (11)0.6726 (5)0.0462 (9)
O30.8302 (7)0.93929 (10)0.4933 (5)0.0392 (8)
O40.0669 (10)0.71618 (13)0.4256 (8)0.0767 (14)
H40.12570.73790.44000.115*
O50.2072 (7)0.97532 (11)0.9978 (5)0.0474 (9)
H5A0.28190.96211.09750.071*
H5B0.08520.96230.89720.071*
O60.7945 (8)0.96016 (12)1.1929 (6)0.0549 (11)
H6A0.81240.95921.29130.082*
H6B0.95590.96421.22730.082*
O70.3791 (8)0.96590 (13)0.7796 (6)0.0600 (12)
H7A0.47090.97030.74440.090*
H7B0.20090.96650.68380.090*
S10.6046 (2)0.93471 (4)0.49681 (17)0.0319 (3)
C10.5566 (9)0.88532 (14)0.4986 (7)0.0313 (10)
C20.6556 (12)0.86005 (16)0.4406 (8)0.0451 (13)
H20.75240.86890.40390.054*
C30.6082 (14)0.82145 (16)0.4382 (9)0.0529 (15)
H30.67580.80420.40120.063*
C40.4623 (12)0.80853 (16)0.4899 (9)0.0483 (14)
C50.3614 (13)0.83417 (16)0.5454 (9)0.0509 (15)
H50.26140.82530.57950.061*
C60.4079 (12)0.87246 (15)0.5503 (8)0.0438 (13)
H60.34040.88960.58780.053*
C70.5721 (13)0.74368 (17)0.5168 (9)0.0525 (15)
H70.73840.75070.54460.063*
C80.5084 (15)0.70327 (16)0.5074 (9)0.0527 (14)
C90.2544 (14)0.69149 (18)0.4569 (9)0.0589 (17)
C100.1982 (16)0.65268 (18)0.4407 (9)0.0643 (18)
H100.02950.64450.40680.077*
C110.3845 (17)0.6265 (2)0.4733 (9)0.068 (2)
H110.33960.60080.45880.082*
C120.6424 (19)0.6376 (2)0.5281 (11)0.077 (2)
H120.77260.61960.55490.092*
C130.7008 (15)0.67614 (18)0.5417 (9)0.0610 (17)
H130.86890.68400.57390.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0214 (4)0.0436 (5)0.0287 (4)0.0007 (4)0.0170 (4)0.0012 (4)
N10.060 (3)0.044 (3)0.061 (3)0.010 (2)0.038 (3)0.004 (2)
O10.0284 (19)0.064 (2)0.048 (2)0.0099 (18)0.0234 (19)0.0211 (19)
O20.042 (2)0.056 (2)0.051 (2)0.0096 (18)0.035 (2)0.0105 (18)
O30.0269 (17)0.055 (2)0.041 (2)0.0029 (16)0.0250 (16)0.0003 (17)
O40.056 (3)0.059 (3)0.094 (4)0.008 (2)0.042 (3)0.002 (3)
O50.0309 (19)0.074 (3)0.035 (2)0.0104 (19)0.0206 (17)0.0005 (19)
O60.038 (2)0.082 (3)0.055 (3)0.018 (2)0.035 (2)0.025 (2)
O70.036 (2)0.100 (3)0.053 (3)0.023 (2)0.033 (2)0.033 (2)
S10.0229 (6)0.0420 (7)0.0311 (6)0.0014 (5)0.0181 (5)0.0003 (5)
C10.021 (2)0.041 (3)0.027 (2)0.004 (2)0.014 (2)0.002 (2)
C20.053 (3)0.049 (3)0.047 (3)0.003 (3)0.039 (3)0.004 (3)
C30.066 (4)0.046 (3)0.054 (4)0.006 (3)0.043 (3)0.012 (3)
C40.041 (3)0.046 (3)0.049 (3)0.007 (3)0.026 (3)0.001 (3)
C50.054 (4)0.046 (3)0.068 (4)0.004 (3)0.047 (4)0.001 (3)
C60.053 (3)0.044 (3)0.053 (3)0.004 (3)0.043 (3)0.001 (3)
C70.050 (4)0.056 (4)0.048 (4)0.014 (3)0.031 (3)0.009 (3)
C80.059 (4)0.045 (3)0.047 (3)0.008 (3)0.032 (3)0.008 (3)
C90.050 (4)0.049 (4)0.048 (4)0.003 (3)0.021 (3)0.002 (3)
C100.065 (4)0.049 (4)0.055 (4)0.014 (3)0.030 (4)0.002 (3)
C110.082 (5)0.050 (4)0.051 (4)0.013 (4)0.035 (4)0.000 (3)
C120.098 (6)0.049 (4)0.079 (5)0.000 (4)0.057 (5)0.002 (4)
C130.068 (4)0.052 (4)0.063 (4)0.007 (3)0.044 (4)0.007 (3)
Geometric parameters (Å, º) top
Ni1—O5i2.028 (3)C1—C21.388 (7)
Ni1—O52.028 (3)C2—C31.388 (8)
Ni1—O7i2.043 (4)C2—H20.9300
Ni1—O72.043 (4)C3—C41.371 (8)
Ni1—O62.049 (4)C3—H30.9300
Ni1—O6i2.049 (4)C4—C51.389 (8)
N1—C71.288 (8)C5—C61.373 (8)
N1—C41.414 (7)C5—H50.9300
O1—S11.458 (4)C6—H60.9300
O2—S11.459 (4)C7—C81.465 (8)
O3—S11.454 (3)C7—H70.9300
O4—C91.333 (8)C8—C91.397 (9)
O4—H40.8209C8—C131.402 (9)
O5—H5A0.8494C9—C101.394 (8)
O5—H5B0.8492C10—C111.357 (10)
O6—H6A0.8500C10—H100.9300
O6—H6B0.8498C11—C121.396 (10)
O7—H7A0.8497C11—H110.9300
O7—H7B0.8504C12—C131.387 (9)
S1—C11.767 (5)C12—H120.9300
C1—C61.387 (7)C13—H130.9300
O5i—Ni1—O5180.0 (2)C3—C2—H2120.5
O5i—Ni1—O7i90.78 (15)C1—C2—H2120.5
O5—Ni1—O7i89.22 (15)C4—C3—C2120.4 (5)
O5i—Ni1—O789.22 (15)C4—C3—H3119.8
O5—Ni1—O790.78 (15)C2—C3—H3119.8
O7i—Ni1—O7180.000 (2)C3—C4—C5119.9 (5)
O5i—Ni1—O689.99 (15)C3—C4—N1123.2 (6)
O5—Ni1—O690.01 (15)C5—C4—N1116.9 (5)
O7i—Ni1—O690.23 (18)C6—C5—C4120.6 (5)
O7—Ni1—O689.77 (18)C6—C5—H5119.7
O5i—Ni1—O6i90.01 (15)C4—C5—H5119.7
O5—Ni1—O6i89.99 (15)C5—C6—C1119.1 (5)
O7i—Ni1—O6i89.77 (18)C5—C6—H6120.4
O7—Ni1—O6i90.23 (18)C1—C6—H6120.4
O6—Ni1—O6i180.000 (3)N1—C7—C8121.5 (6)
C7—N1—C4120.7 (5)N1—C7—H7119.3
C9—O4—H4109.5C8—C7—H7119.3
Ni1—O5—H5A112.9C9—C8—C13119.8 (6)
Ni1—O5—H5B112.8C9—C8—C7121.0 (6)
H5A—O5—H5B110.6C13—C8—C7119.1 (6)
Ni1—O6—H6A111.7O4—C9—C8122.0 (6)
Ni1—O6—H6B111.9O4—C9—C10119.4 (6)
H6A—O6—H6B109.6C8—C9—C10118.6 (7)
Ni1—O7—H7A113.0C11—C10—C9121.4 (7)
Ni1—O7—H7B112.9C11—C10—H10119.3
H7A—O7—H7B110.5C9—C10—H10119.3
O3—S1—O1111.7 (2)C10—C11—C12120.9 (7)
O3—S1—O2112.3 (2)C10—C11—H11119.5
O1—S1—O2112.5 (2)C12—C11—H11119.5
O3—S1—C1106.6 (2)C13—C12—C11118.7 (8)
O1—S1—C1107.3 (2)C13—C12—H12120.6
O2—S1—C1105.9 (2)C11—C12—H12120.6
C6—C1—C2120.8 (5)C12—C13—C8120.5 (7)
C6—C1—S1119.0 (4)C12—C13—H13119.7
C2—C1—S1120.2 (4)C8—C13—H13119.7
C3—C2—C1119.0 (5)
O3—S1—C1—C6163.8 (4)C2—C1—C6—C50.6 (8)
O1—S1—C1—C676.3 (5)S1—C1—C6—C5177.7 (4)
O2—S1—C1—C644.1 (5)C4—N1—C7—C8177.6 (5)
O3—S1—C1—C219.0 (5)N1—C7—C8—C93.2 (10)
O1—S1—C1—C2100.8 (4)N1—C7—C8—C13179.6 (6)
O2—S1—C1—C2138.8 (4)C13—C8—C9—O4179.1 (6)
C6—C1—C2—C31.1 (8)C7—C8—C9—O43.8 (10)
S1—C1—C2—C3178.2 (4)C13—C8—C9—C100.4 (10)
C1—C2—C3—C40.8 (9)C7—C8—C9—C10176.8 (6)
C2—C3—C4—C50.1 (10)O4—C9—C10—C11179.3 (6)
C2—C3—C4—N1178.9 (6)C8—C9—C10—C110.2 (10)
C7—N1—C4—C329.9 (9)C9—C10—C11—C121.3 (11)
C7—N1—C4—C5151.1 (6)C10—C11—C12—C132.4 (11)
C3—C4—C5—C60.4 (10)C11—C12—C13—C82.2 (10)
N1—C4—C5—C6179.5 (6)C9—C8—C13—C120.8 (10)
C4—C5—C6—C10.2 (9)C7—C8—C13—C12178.0 (6)
Symmetry code: (i) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···N10.821.862.595 (9)148
O5—H5A···O1ii0.851.962.737 (6)151
O5—H5B···O2iii0.851.982.751 (6)150
O6—H6A···O3ii0.851.952.764 (7)161
O6—H6B···O1iv0.851.972.768 (8)156
O7—H7A···O20.852.002.757 (8)148
O7—H7B···O3iii0.852.002.769 (7)150
C2—H2···O30.932.562.917 (7)104
Symmetry codes: (ii) x, y, z+1; (iii) x1, y, z; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Ni(H2O)6](C13H10NO4S)2
Mr719.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)6.3047 (6), 35.193 (3), 9.3536 (10)
β (°) 131.822 (2)
V3)1546.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.83
Crystal size (mm)0.43 × 0.38 × 0.25
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.716, 0.819
No. of measured, independent and
observed [I > 2σ(I)] reflections
7465, 2661, 2428
Rint0.032
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.137, 1.28
No. of reflections2661
No. of parameters205
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 1.00

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···N10.821.862.595 (9)148
O5—H5A···O1i0.851.962.737 (6)151
O5—H5B···O2ii0.851.982.751 (6)150
O6—H6A···O3i0.851.952.764 (7)161
O6—H6B···O1iii0.851.972.768 (8)156
O7—H7A···O20.852.002.757 (8)148
O7—H7B···O3ii0.852.002.769 (7)150
C2—H2···O30.932.562.917 (7)104
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z; (iii) x+1, y, z+1.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (20671073), the Natural Science Foundation of Shandong (Y2007B60), the Science and Technology Foundation of Weifang and Weifang University for research grants.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTai, X.-S. & Feng, Y.-M. (2008). Acta Cryst. E64, o707.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTai, X.-S., Feng, Y.-M. & Zhang, H.-X. (2008). Acta Cryst. E64, m502.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTai, X. S., Yin, J. & Feng, Y. M. (2007). Z. Kristallogr. New Cryst. Struct. 222, 398–400.  CAS Google Scholar
First citationTai, X. S., Yin, J., Feng, Y. M. & Kong, F. Y. (2007). Chin. J. Inorg. Chem. 23, 1812–1814.  CAS Google Scholar
First citationTai, X.-S., Yin, J. & Hao, M.-Y. (2007). Acta Cryst. E63, m1061–m1062.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTai, X.-S., Yin, X.-H., Tan, M.-Y. & Li, Y.-Z. (2003). Acta Cryst. E59, o681–o682.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, L.-H., Yin, J. & Tai, X.-S. (2007). Acta Cryst. E63, m1664.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds