organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[5-(4-Fluoro­phen­yl)-1,3,4-thia­diazol-2-yl]-2-(4-meth­oxy­phen­yl)-1,3-thia­zolidin-4-one

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: rwan@njut.edu.cn

(Received 22 June 2008; accepted 24 June 2008; online 28 June 2008)

The title compound, C18H14FN3O2S2, was synthesized by the reaction of 5-(4-fluoro­phen­yl)-N-(4-methoxy­benzyl­idene)-1,3,4-thia­diazol-2-amine and mercaptoacetic acid. The thia­zolidinone ring adopts a twist conformation. The 4-methoxy­phenyl ring is almost perpendicular to the thia­diazole ring, making a dihedral angle of 88.4 (3)°. The 4-fluoro­phenyl ring is nearly coplanar with the thia­diazole ring, the dihedral angle being 6.8 (3)°. The crystal structure involves C—H⋯N, C—H⋯O and C—H⋯S hydrogen bonds.

Related literature

For related literature, see: Arun et al. (1999[Arun, K. P., Nag, V. L. & Panda, C. S. (1999). Indian J. Chem. Sect. B, 38, 998-1001.]); Chen et al. (2000[Chen, H. S., Li, Z. M. & Han, Y. F. (2000). J. Agric. Food Chem. 48, 5312-5315.]); Kidwai et al. (2000[Kidwai, M., Negi, N. & Misra, P. (2000). J. Indian Chem. Soc. 77, 46-48.]); Vicentini et al. (1998[Vicentini, C. B., Manfrini, M., Veronese, A. C. & Guarneri, M. (1998). J. Heterocycl. Chem. 35, 29-36.]); Wasfy et al. (1996[Wasfy, A. A., Nassar, S. A. & Eissa, A. M. (1996). Indian J. Chem. Sect. B, 35, 1218-1220.]); Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C18H14FN3O2S2

  • Mr = 387.44

  • Triclinic, [P \overline 1]

  • a = 6.4550 (13) Å

  • b = 8.9200 (18) Å

  • c = 16.483 (3) Å

  • α = 75.78 (3)°

  • β = 82.44 (3)°

  • γ = 71.11 (3)°

  • V = 869.0 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 298 (2) K

  • 0.10 × 0.05 × 0.05 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.967, Tmax = 0.984

  • 3421 measured reflections

  • 3120 independent reflections

  • 2054 reflections with I > 2σ(I)

  • Rint = 0.023

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.186

  • S = 1.00

  • 3120 reflections

  • 229 parameters

  • 48 restraints

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯N1 0.93 2.60 2.917 (9) 101
C8—H8A⋯O2i 0.98 2.52 3.233 (7) 129
C14—H14A⋯S2 0.93 2.74 3.146 (6) 107
C18—H18A⋯N3 0.93 2.57 2.881 (7) 100
Symmetry code: (i) x-1, y, z.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,3,4-Thiadiazole derivatives containing the thiazolidinone unit are of great interest because of their chemical and pharmaceutical properties. Some derivatives have fungicidal activities and exhibit certain herbicidal activities (Chen et al., 2000; Kidwai et al., 2000; Vicentini et al., 1998). Some show insecticidal activities (Arun et al., 1999; Wasfy et al., 1996).

We report here the crystal structure of the titled compound, (I). The molecular strucutre of (I) is shown in Fig.1. In this structure, the thiazolidinone adopts a twist conformation, the dihedral angle between the C9/S1/C10 and C9/N1/C10 is 15.5 (7)°. The thiadiazole ring is an aromatic heterocyclic ring, all atoms are in the same plane. The angle between the thiadiazole ring and the 4-fluorophenyl ring is 6.8 (3)°. The 4-methoxyphenyl ring is nearly perpendicular to the thiadiazole ring, with the dihedral angle being 88.4 (3)°. There are intramolecular C—H···S and C—H···N hydrogen bonding interactions in the molecule structure. In the crystal structure, intermolecular C—H···O hydrogen bonding interactionss link the molecules (Table 1 and Fig. 2).

Related literature top

For related literature, see: Arun et al. (1999); Chen et al. (2000); Kidwai et al. (2000); Vicentini et al. (1998); Wasfy et al. (1996); Allen et al. (1987).

Experimental top

5-(4-Fluorophenyl)-N-(4-methoxybenzylidene)-1,3,4-thiadiazol -2-amine(5 mmol) and mercapto-acetic acid (5 mmol) were added in toluene (50 ml). The water was removed by distillation for 5 h. The reaction mixture was left to cool to room temperature, filtered, and the filter cake was crystallized from acetone to give pure compound (I) [m.p. 341–345 K]). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an acetone solution.

Refinement top

All H atoms were positioned geometrically, with C—H = 0.98, 0.97, 0.96 and 0.93 Å for methine, methylene, methyl and aromatic H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H atoms and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate intramolecular C—H···S and C—H···N hydrogen bonding interactions.
[Figure 2] Fig. 2. A packing diagram for (I). Dashed lines indicate intramolecular C—H···S and C—H···N, and intermolecular C—H···O hydrogen bonding interactionss.
3-[5-(4-Fluorophenyl)-1,3,4-thiadiazol-2-yl]-2-(4-methoxyphenyl)- 1,3-thiazolidin-4-one top
Crystal data top
C18H14FN3O2S2Z = 2
Mr = 387.44F(000) = 400
Triclinic, P1Dx = 1.481 Mg m3
Hall symbol: -P 1Melting point = 341–345 K
a = 6.4550 (13) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.9200 (18) ÅCell parameters from 25 reflections
c = 16.483 (3) Åθ = 9–12°
α = 75.78 (3)°µ = 0.34 mm1
β = 82.44 (3)°T = 298 K
γ = 71.11 (3)°Block, colourless
V = 869.0 (3) Å30.10 × 0.05 × 0.05 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2054 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 25.2°, θmin = 1.3°
ω/2θ scansh = 77
Absorption correction: ψ scan
(North et al., 1968)
k = 1010
Tmin = 0.967, Tmax = 0.984l = 019
3421 measured reflections3 standard reflections every 200 reflections
3120 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.186H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.05P)2 + 2.5P]
where P = (Fo2 + 2Fc2)/3
3120 reflections(Δ/σ)max < 0.001
229 parametersΔρmax = 0.41 e Å3
48 restraintsΔρmin = 0.52 e Å3
Crystal data top
C18H14FN3O2S2γ = 71.11 (3)°
Mr = 387.44V = 869.0 (3) Å3
Triclinic, P1Z = 2
a = 6.4550 (13) ÅMo Kα radiation
b = 8.9200 (18) ŵ = 0.34 mm1
c = 16.483 (3) ÅT = 298 K
α = 75.78 (3)°0.10 × 0.05 × 0.05 mm
β = 82.44 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2054 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.023
Tmin = 0.967, Tmax = 0.9843 standard reflections every 200 reflections
3421 measured reflections intensity decay: none
3120 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.07048 restraints
wR(F2) = 0.186H-atom parameters constrained
S = 1.00Δρmax = 0.41 e Å3
3120 reflectionsΔρmin = 0.52 e Å3
229 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.1232 (3)1.32787 (19)0.18123 (10)0.0698 (5)
S20.7085 (2)0.94841 (16)0.40097 (8)0.0525 (4)
F1.1681 (6)0.3585 (4)0.7202 (2)0.0868 (11)
O10.3391 (7)0.6926 (6)0.0237 (3)0.0873 (14)
O20.6785 (6)1.2181 (5)0.2766 (2)0.0669 (11)
N10.4009 (7)1.1081 (5)0.2832 (3)0.0524 (10)
N20.3572 (7)0.8821 (6)0.3839 (3)0.0624 (12)
N30.4550 (7)0.7685 (6)0.4514 (3)0.0615 (12)
C10.1565 (11)0.6619 (9)0.0019 (4)0.084 (2)
H1A0.20710.59210.04100.126*
H1B0.05570.76260.02810.126*
H1C0.08390.61050.04620.126*
C20.2971 (9)0.7920 (7)0.0792 (4)0.0628 (14)
C30.0998 (10)0.8504 (8)0.1184 (4)0.0731 (16)
H3B0.02050.82310.10840.088*
C40.0759 (9)0.9502 (8)0.1733 (4)0.0687 (16)
H4A0.06040.98690.20060.082*
C50.2469 (8)0.9971 (7)0.1889 (3)0.0550 (12)
C60.4424 (11)0.9355 (10)0.1499 (5)0.107 (3)
H6A0.56300.96210.16020.128*
C70.4704 (12)0.8350 (10)0.0956 (5)0.109
H7A0.60790.79590.06970.131*
C80.2051 (8)1.1190 (6)0.2422 (3)0.0544 (13)
H8A0.08901.10420.28520.065*
C90.3907 (10)1.3489 (8)0.1783 (4)0.0770 (18)
H9A0.47071.33040.12580.092*
H9B0.37971.45730.18350.092*
C100.5063 (9)1.2245 (7)0.2508 (3)0.0567 (13)
C110.4717 (8)0.9827 (6)0.3532 (3)0.0505 (12)
C120.6418 (8)0.7842 (6)0.4677 (3)0.0470 (11)
C130.7762 (8)0.6774 (6)0.5357 (3)0.0480 (11)
C140.9628 (9)0.7058 (7)0.5547 (3)0.0608 (14)
H14A1.00090.79660.52430.073*
C151.0908 (10)0.6009 (7)0.6181 (4)0.0668 (15)
H15A1.21140.62230.63240.080*
C161.0368 (9)0.4640 (7)0.6596 (3)0.0613 (15)
C170.8542 (10)0.4310 (7)0.6425 (3)0.0647 (15)
H17A0.81890.33900.67280.078*
C180.7262 (9)0.5372 (6)0.5799 (3)0.0584 (14)
H18A0.60440.51560.56680.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0724 (10)0.0617 (9)0.0743 (10)0.0157 (8)0.0163 (8)0.0123 (8)
S20.0476 (7)0.0587 (8)0.0565 (8)0.0219 (6)0.0011 (6)0.0152 (6)
F0.092 (3)0.081 (2)0.075 (2)0.008 (2)0.022 (2)0.0116 (19)
O10.085 (3)0.102 (3)0.098 (3)0.038 (3)0.013 (3)0.059 (3)
O20.054 (2)0.069 (3)0.081 (3)0.0299 (19)0.005 (2)0.008 (2)
N10.052 (2)0.056 (3)0.056 (3)0.023 (2)0.000 (2)0.017 (2)
N20.057 (3)0.064 (3)0.069 (3)0.029 (2)0.007 (2)0.003 (2)
N30.058 (3)0.068 (3)0.063 (3)0.028 (2)0.007 (2)0.008 (2)
C10.100 (5)0.094 (5)0.075 (4)0.038 (4)0.012 (4)0.032 (4)
C20.064 (3)0.061 (3)0.067 (3)0.015 (3)0.002 (3)0.027 (3)
C30.064 (3)0.089 (4)0.077 (4)0.026 (3)0.003 (3)0.038 (3)
C40.051 (3)0.090 (4)0.072 (4)0.024 (3)0.011 (3)0.035 (3)
C50.050 (3)0.062 (3)0.054 (3)0.016 (2)0.004 (2)0.014 (2)
C60.062 (4)0.139 (6)0.152 (6)0.034 (4)0.011 (4)0.096 (5)
C70.0700.1480.1460.0400.0210.105
C80.046 (3)0.059 (3)0.061 (3)0.018 (2)0.003 (2)0.016 (3)
C90.083 (4)0.081 (4)0.065 (4)0.037 (4)0.005 (3)0.001 (3)
C100.055 (3)0.061 (3)0.058 (3)0.024 (3)0.008 (3)0.017 (3)
C110.049 (3)0.057 (3)0.051 (3)0.021 (2)0.004 (2)0.018 (2)
C120.046 (3)0.047 (3)0.047 (3)0.013 (2)0.005 (2)0.014 (2)
C130.042 (3)0.050 (3)0.048 (3)0.007 (2)0.006 (2)0.016 (2)
C140.060 (3)0.072 (4)0.057 (3)0.028 (3)0.001 (3)0.016 (3)
C150.065 (4)0.075 (4)0.061 (4)0.014 (3)0.015 (3)0.019 (3)
C160.065 (4)0.059 (3)0.045 (3)0.003 (3)0.012 (3)0.008 (3)
C170.074 (4)0.058 (3)0.058 (3)0.018 (3)0.004 (3)0.005 (3)
C180.060 (3)0.059 (3)0.063 (3)0.027 (3)0.000 (3)0.017 (3)
Geometric parameters (Å, º) top
S1—C91.790 (6)C4—H4A0.9300
S1—C81.828 (5)C5—C61.349 (8)
S2—C111.716 (5)C5—C81.497 (7)
S2—C121.741 (5)C6—C71.373 (9)
F—C161.359 (6)C6—H6A0.9300
O1—C21.368 (6)C7—H7A0.9300
O1—C11.428 (7)C8—H8A0.9800
O2—C101.221 (6)C9—C101.504 (8)
N1—C101.384 (6)C9—H9A0.9700
N1—C111.402 (6)C9—H9B0.9700
N1—C81.475 (6)C12—C131.454 (7)
N2—C111.309 (6)C13—C141.396 (7)
N2—N31.371 (6)C13—C181.396 (7)
N3—C121.326 (6)C14—C151.377 (8)
C1—H1A0.9600C14—H14A0.9300
C1—H1B0.9600C15—C161.373 (8)
C1—H1C0.9600C15—H15A0.9300
C2—C31.354 (8)C16—C171.381 (8)
C2—C71.371 (8)C17—C181.372 (7)
C3—C41.380 (8)C17—H17A0.9300
C3—H3B0.9300C18—H18A0.9300
C4—C51.373 (7)
C9—S1—C893.5 (3)C5—C8—H8A109.0
C11—S2—C1285.8 (2)S1—C8—H8A109.0
C2—O1—C1117.6 (5)C10—C9—S1106.9 (4)
C10—N1—C11122.7 (4)C10—C9—H9A110.3
C10—N1—C8118.0 (4)S1—C9—H9A110.3
C11—N1—C8119.3 (4)C10—C9—H9B110.3
C11—N2—N3110.4 (4)S1—C9—H9B110.3
C12—N3—N2113.4 (4)H9A—C9—H9B108.6
O1—C1—H1A109.5O2—C10—N1122.5 (5)
O1—C1—H1B109.5O2—C10—C9125.7 (5)
H1A—C1—H1B109.5N1—C10—C9111.7 (5)
O1—C1—H1C109.5N2—C11—N1119.7 (4)
H1A—C1—H1C109.5N2—C11—S2116.8 (4)
H1B—C1—H1C109.5N1—C11—S2123.4 (4)
C3—C2—O1125.2 (5)N3—C12—C13123.5 (5)
C3—C2—C7118.1 (6)N3—C12—S2113.5 (4)
O1—C2—C7116.7 (5)C13—C12—S2123.0 (4)
C2—C3—C4120.4 (6)C14—C13—C18118.8 (5)
C2—C3—H3B119.8C14—C13—C12121.6 (5)
C4—C3—H3B119.8C18—C13—C12119.5 (5)
C5—C4—C3122.1 (5)C15—C14—C13120.7 (5)
C5—C4—H4A118.9C15—C14—H14A119.7
C3—C4—H4A118.9C13—C14—H14A119.7
C6—C5—C4116.3 (5)C16—C15—C14118.6 (5)
C6—C5—C8124.1 (5)C16—C15—H15A120.7
C4—C5—C8119.5 (5)C14—C15—H15A120.7
C5—C6—C7122.5 (6)F—C16—C15118.2 (5)
C5—C6—H6A118.7F—C16—C17119.3 (6)
C7—C6—H6A118.7C15—C16—C17122.5 (5)
C2—C7—C6120.5 (6)C18—C17—C16118.5 (5)
C2—C7—H7A119.7C18—C17—H17A120.8
C6—C7—H7A119.7C16—C17—H17A120.8
N1—C8—C5113.5 (4)C17—C18—C13120.9 (5)
N1—C8—S1103.5 (3)C17—C18—H18A119.6
C5—C8—S1112.5 (4)C13—C18—H18A119.6
N1—C8—H8A109.0
C11—N2—N3—C121.9 (6)S1—C9—C10—O2168.3 (5)
C1—O1—C2—C37.2 (9)S1—C9—C10—N115.5 (6)
C1—O1—C2—C7172.7 (7)N3—N2—C11—N1179.5 (4)
O1—C2—C3—C4180.0 (6)N3—N2—C11—S21.2 (6)
C7—C2—C3—C40.0 (10)C10—N1—C11—N2175.9 (5)
C2—C3—C4—C51.5 (10)C8—N1—C11—N23.5 (7)
C3—C4—C5—C62.3 (10)C10—N1—C11—S25.9 (7)
C3—C4—C5—C8173.7 (6)C8—N1—C11—S2174.7 (4)
C4—C5—C6—C71.8 (12)C12—S2—C11—N20.2 (4)
C8—C5—C6—C7174.0 (7)C12—S2—C11—N1178.4 (4)
C3—C2—C7—C60.5 (12)N2—N3—C12—C13179.5 (4)
O1—C2—C7—C6179.5 (8)N2—N3—C12—S21.8 (6)
C5—C6—C7—C20.4 (14)C11—S2—C12—N30.9 (4)
C10—N1—C8—C5104.3 (5)C11—S2—C12—C13179.7 (4)
C11—N1—C8—C576.2 (6)N3—C12—C13—C14174.9 (5)
C10—N1—C8—S117.9 (5)S2—C12—C13—C143.7 (7)
C11—N1—C8—S1161.6 (4)N3—C12—C13—C189.1 (7)
C6—C5—C8—N128.9 (9)S2—C12—C13—C18172.3 (4)
C4—C5—C8—N1155.4 (5)C18—C13—C14—C152.4 (8)
C6—C5—C8—S188.3 (7)C12—C13—C14—C15178.4 (5)
C4—C5—C8—S187.4 (6)C13—C14—C15—C162.8 (8)
C9—S1—C8—N122.4 (4)C14—C15—C16—F177.9 (5)
C9—S1—C8—C5100.6 (4)C14—C15—C16—C172.6 (9)
C8—S1—C9—C1022.2 (5)F—C16—C17—C18178.7 (5)
C11—N1—C10—O26.3 (8)C15—C16—C17—C181.9 (9)
C8—N1—C10—O2174.3 (5)C16—C17—C18—C131.4 (8)
C11—N1—C10—C9177.4 (5)C14—C13—C18—C171.6 (8)
C8—N1—C10—C92.1 (7)C12—C13—C18—C17177.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···N10.932.602.917 (9)101
C8—H8A···O2i0.982.523.233 (7)129
C14—H14A···S20.932.743.146 (6)107
C18—H18A···N30.932.572.881 (7)100
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC18H14FN3O2S2
Mr387.44
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)6.4550 (13), 8.9200 (18), 16.483 (3)
α, β, γ (°)75.78 (3), 82.44 (3), 71.11 (3)
V3)869.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.10 × 0.05 × 0.05
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.967, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
3421, 3120, 2054
Rint0.023
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.186, 1.00
No. of reflections3120
No. of parameters229
No. of restraints48
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.52

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···N10.932.602.917 (9)101
C8—H8A···O2i0.982.523.233 (7)129
C14—H14A···S20.932.743.146 (6)107
C18—H18A···N30.932.572.881 (7)100
Symmetry code: (i) x1, y, z.
 

Acknowledgements

The authors thank Professor Hua-Qin Wang of Nanjing University for carrying out the X-ray crystallographic analysis.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationArun, K. P., Nag, V. L. & Panda, C. S. (1999). Indian J. Chem. Sect. B, 38, 998–1001.  Google Scholar
First citationChen, H. S., Li, Z. M. & Han, Y. F. (2000). J. Agric. Food Chem. 48, 5312–5315.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKidwai, M., Negi, N. & Misra, P. (2000). J. Indian Chem. Soc. 77, 46–48.  CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVicentini, C. B., Manfrini, M., Veronese, A. C. & Guarneri, M. (1998). J. Heterocycl. Chem. 35, 29–36.  CrossRef CAS Google Scholar
First citationWasfy, A. A., Nassar, S. A. & Eissa, A. M. (1996). Indian J. Chem. Sect. B, 35, 1218–1220.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds