metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m861-m862

Poly[bis­­(N,N-di­methyl­formamide)tris­­(μ4-trans-stilbene-4,4′-di­carboxyl­ato)­tricadmium(II)]: a two-dimensional network with an unusual 36 topology

aDepartment of Chemistry, Chonbuk National University, Jeonju, Chonbuk 561-756, Republic of Korea, and bDepartment of Chemistry, Kunsan National University, Kusan, Chonbuk 573-701, Republic of Korea
*Correspondence e-mail: parkg@kunsan.ac.kr

(Received 21 May 2008; accepted 29 May 2008; online 7 June 2008)

In the title compound, [Cd3(C16H10O4)3(C3H7NO)2]n or [Cd3(SDA)3(DMF)2]n (H2SDA is trans-stilbene-4,4′-dicarboxylic acid and DMF is dimethyl­formamide), the linear dicarboxylate ligand forms a two-dimensionally layered metal–organic network with the relatively uncommon 36 topology. The structure reveals trinuclear secondary building units and has an octa­hedral geometry at a central metal ion (occupying a [\overline{3}] symmetry site) and tetra­hedral geometries at two surrounding symmetrically equivalent metal ions lying on a threefold axis. The six-connected planar trinuclear CdII centers, Cd3(O2CR)6, play a role as potential nodes in generation of the relatively uncommon 36 topology. The coordinated DMF unit is disordered around the threefold axis.

Related literature

For related literature, see: Chi et al. (2006[Chi, Y.-N., Huang, K.-L., Cui, F.-Y., Xu, Y.-Q. & Hu, C.-W. (2006). Inorg. Chem. 45, 10605-10612.]); Dincâ & Long (2005[Dincâ, M. & Long, J. R. (2005). J. Am. Chem. Soc. 127, 9376-9377.]); Dybtsev et al. (2004[Dybtsev, D. N., Chun, H., Yoon, S. H., Kim, D. & Kim, K. (2004). J. Am. Chem. Soc. 126, 32-33.]); Eddaoudi et al. (2002[Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O'Keeffe, M. & Yaghi, O. M. (2002). Science, 295, 469-472.]); Edgar et al. (2001[Edgar, M., Mitchell, R., Slawin, A. M. Z., Lightfoot, P. & Wright, P. A. (2001). Chem. Eur. J. 7, 5168-5175.]); Hawxwell et al. (2006[Hawxwell, S. M., Adams, H. & Brammer, L. (2006). Acta Cryst. B62, 808-814.]); Hill et al. (2005[Hill, R. J., Long, D., Champness, N. R., Hubberstey, P. & Schröder, M. (2005). Acc. Chem. Res. 38, 337-350.]); Luan et al. (2006[Luan, X.-J., Cai, X.-H., Wang, Y.-Y., Li, D.-S., Wang, C.-J., Liu, P., Hu, H.-M., Shi, Q.-Z. & Peng, S.-M. (2006). Chem. Eur. J. 12, 6281-6289.]); Park et al. (2006[Park, G., Kim, H., Lee, G. H., Park, S. & Kim, K. (2006). Bull. Korean Chem. Soc. 27, 443-446.]); Rosi et al. (2003[Rosi, N. L., Eckert, J., Eddaoudi, M., Vodak, D. T., Kim, J., O'Keeffe, M. & Yaghi, O. M. (2003). Science, 300, 1127-1129.]); Saalfrank et al. (2001[Saalfrank, R. W., Bernt, I., Chowdhry, M. M., Hampel, F. & Vaughan, G. B. M. (2001). Chem. Eur. J. 7, 2765-2769.]); Seo et al. (2000[Seo, J. S., Wang, D., Lee, H., Jun, S. I., Oh, J., Jeon, Y. & Kim, K. (2000). Nature (London), 404, 982-986.]); Wang et al. (2006[Wang, X.-Y., Wang, L., Wang, Z.-M. & Gao, S. (2006). J. Am. Chem. Soc. 128, 674-675.]); Williams et al. (2005[Williams, C. A., Blake, A. J., Hubberstey, P. & Schröder, M. (2005). Chem. Commun. pp. 5435-5437.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd3(C16H10O4)3(C3H7NO)2]

  • Mr = 1282.11

  • Trigonal, [R \overline 3]

  • a = 16.4881 (5) Å

  • c = 16.7919 (10) Å

  • V = 3953.4 (3) Å3

  • Z = 3

  • Mo Kα radiation

  • μ = 1.27 mm−1

  • T = 223 (2) K

  • 0.30 × 0.30 × 0.30 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.69, Tmax = 0.69

  • 6604 measured reflections

  • 2105 independent reflections

  • 1782 reflections with I > 2σ(I)

  • Rint = 0.104

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.181

  • S = 1.18

  • 2105 reflections

  • 136 parameters

  • 92 restraints

  • H-atom parameters constrained

  • Δρmax = 1.70 e Å−3

  • Δρmin = −1.53 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The study of one, two or three dimensional metal-organic frameworks (MOFs) has attracted much attention in the past decade due to their various intriguing framework topologies but also for their potential applications in gas storage (Rosi et al., 2003), separation (Dybtsev et al., 2004) and catalysis (Seo et al., 2000) etc. Many factors play important role in the synthesis of MOFs such as the coordination geometry of metal ions (Chi et al.,2006), the structure of organic ligands (Wang et al.,2006), the solvent system (Eddaoudi et al., 2002),the counteranion (Luan et al., 2006), and the ratio of ligands to metal ions (Saalfrank et al., 2001). The simplest 2D sheets are those which comprise just one kind of regular polygon based upon hexagons, squares and triangles. Since three hexagons, four squares and six triangles meet at a node in a 2D network with angles of 120°, 90° and 60°,respectively, the corresponding Schläfli topology symbols are 63, 44 and 36, respectively (Hill et al., 2005). Although there were many examples of uninodal regularly tiled 2D metal–organic frameworks comprising linked squares or hexagons, however, a few examples comprising linked and tiled triangles have been reported only very recently (Edgar et al., 2001; Williams et al., 2005; Hawxwell et al., 2006; Dincâ & Long, 2005). Herein the formation of a two-dimensional metal-organic framework with an uncommon 36 tessellated topology, [Cd3(SDA)3(DMF)2], (I), constructed from tri-nuclear cadmium SBUs (secondary building units) linked by a novel 4,4'-stilbenedicarboxylate ligand (Park et al., 2006) is reported.

The two-dimensional 36 tessellated network structure of 1 with the atomic numbering scheme is shown in Fig. 1 in which the coordinated DMF molecules are shown in only one of its three disordered components. The crystal structure of 1 is constructed from the tri-nuclear Cd3(O2CR)6 SBUs cluster which contains two crystallographically equivalent four-coordinate terminal metal centers (Cd2) in which the O atom (O1S) of the DMF is axially coordinated and a six-coordinate central metal atom (Cd1). The coordination environment around the central CdII atom, Cd1, in the trinuclear center is an octahedron with all six positions occupied by one carboxylate oxygen, O1, from each half unit of six SDA ligands (Fig. 1) and that of the two symmetry equivalent neighbouring CdII atoms, Cd2, is a tetrahedron with three coordination sites occupied by the other carboxylate oxygen, O2, from a half unit of three SDA ligands and the vacant site occupied by an oxygen atom, O1S in the DMF molecule.

Related literature top

For related literature, see: Chi et al. (2006); Dincâ & Long (2005); Dybtsev et al. (2004); Eddaoudi et al. (2002); Edgar et al. (2001); Hawxwell et al. (2006); Hill et al. (2005); Luan et al. (2006); Park et al. (2006); Rosi et al. (2003); Saalfrank et al. (2001); Seo et al. (2000); Wang et al. (2006); Williams et al. (2005).

Experimental top

A mixture of Cd(NO3)2.6H2O (0.122 g, 3.95 x 10 -4 mol) and H2SDA (0.106 g,3.95 x 10 -4 mol) was suspended in DMF (1.3 ml), placed in a sealed-glasstube,and heated at 90°C for 3 days. Upon cooling to room temperature, the pale-yellow crystalline was formed, collected by filtration, washed with DMF,and driedunder a reduced pressure at room temperature for 5 h to give the product (0.178 g, 78%). Anal. Calcd. for [Cd3(SDA)3(DMF)2]: C,50.59; H, 3.75; N, 2.18. Found: C, 50.69; H, 3.72; N, 2.12

Refinement top

All the non-hydrogen atoms were refined anisotropically, and hydrogen atoms were added to their geometrically ideal positions with distances C—H = 0.94 Å (aromatic H), C—H = 0.94 Å (attached to carboxylic C in DMF) and C—H = 0.97 Å (attached to methyl C in DMF). Coordinated DMF is disordered over three sites around the threefold axis. Even if oxygen O1S was refined with a unique position, the large displacement factor attained suggests some kind of unresolved splitting. Similarity restraints in distances and thermal parameters were used in order to attain a reasonable geometry of the (disordered) coordinated DMF.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The trinuclear Cd3(O2CR)6 SBU cluster for 1 showing the bridging SDA ligands and the coordinated DMF molecule. The remainder of the SDA is removed and only one of the threefold disordered DMF molecule is shown for clarity. Cd atoms are shown in green, O atoms in red, N atoms in blue and C atoms in grey.
[Figure 2] Fig. 2. [001] view of the structure showing the 36 topology. (a) A single 2D layer . (b) Two overimposed close-packed layers, A and B. (c) Cubic close-packed layers, in ABC pattern.
Poly[bis(N,N-dimethylformamide)tris(µ4-trans-stilbene-4,4'- dicarboxylato)tricadmium(II)] top
Crystal data top
[Cd3(C16H10O4)3(C3H7NO)2]Dx = 1.616 Mg m3
Mr = 1282.11Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 6604 reflections
Hall symbol: -R 3θ = 1.9–28.4°
a = 16.4881 (5) ŵ = 1.27 mm1
c = 16.7919 (10) ÅT = 223 K
V = 3953.4 (3) Å3Cubic, colourless
Z = 30.30 × 0.30 × 0.30 mm
F(000) = 1914
Data collection top
Siemens SMART CCD
diffractometer
2105 independent reflections
Radiation source: fine-focus sealed tube1782 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.104
ω scansθmax = 28.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2121
Tmin = 0.69, Tmax = 0.69k = 2118
6604 measured reflectionsl = 2122
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.181H-atom parameters constrained
S = 1.18 w = 1/[σ2(Fo2) + (0.0995P)2 + 4.8382P]
where P = (Fo2 + 2Fc2)/3
2105 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 1.70 e Å3
92 restraintsΔρmin = 1.53 e Å3
Crystal data top
[Cd3(C16H10O4)3(C3H7NO)2]Z = 3
Mr = 1282.11Mo Kα radiation
Trigonal, R3µ = 1.27 mm1
a = 16.4881 (5) ÅT = 223 K
c = 16.7919 (10) Å0.30 × 0.30 × 0.30 mm
V = 3953.4 (3) Å3
Data collection top
Siemens SMART CCD
diffractometer
2105 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1782 reflections with I > 2σ(I)
Tmin = 0.69, Tmax = 0.69Rint = 0.104
6604 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05792 restraints
wR(F2) = 0.181H-atom parameters constrained
S = 1.18Δρmax = 1.70 e Å3
2105 reflectionsΔρmin = 1.53 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.00001.00001.00000.0302 (2)
Cd20.00001.00000.79310 (3)0.0424 (2)
O10.1245 (2)1.0679 (2)0.9162 (2)0.0521 (7)
O20.1222 (2)1.1401 (2)0.8067 (2)0.0599 (9)
C10.1562 (3)1.1402 (3)0.8740 (3)0.0458 (9)
C20.2391 (3)1.2283 (3)0.9015 (3)0.0579 (12)
C30.2624 (5)1.3134 (4)0.8665 (4)0.0748 (17)
H3A0.22591.31420.82380.090*
C40.3368 (6)1.3965 (5)0.8918 (5)0.109 (3)
H4A0.34961.45310.86770.131*
C50.3911 (6)1.3967 (5)0.9510 (5)0.112 (3)
C60.4698 (8)1.4929 (7)0.9730 (7)0.138 (4)
H60.47481.54490.94560.166*
C70.3714 (7)1.3114 (7)0.9864 (6)0.133 (4)
H7A0.40951.31201.02830.159*
C80.2968 (5)1.2260 (5)0.9610 (4)0.099 (3)
H8A0.28591.16900.98310.118*
O1S0.00001.00000.6625 (11)0.186 (4)
N1S0.106 (2)1.082 (2)0.5571 (18)0.188 (5)0.33
C1S0.067 (4)1.086 (4)0.625 (2)0.190 (6)0.33
H1S0.08251.14360.64790.228*0.33
C2S0.136 (3)1.014 (3)0.547 (3)0.188 (5)0.33
H2S10.14260.99160.59850.282*0.33
H2S20.19581.04290.51940.282*0.33
H2S30.08990.96160.51560.282*0.33
C3S0.144 (3)1.160 (3)0.502 (2)0.190 (5)0.33
H3S10.09641.17710.49090.284*0.33
H3S20.16151.14200.45310.284*0.33
H3S30.19801.21290.52570.284*0.33
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0307 (3)0.0307 (3)0.0291 (4)0.01536 (14)0.0000.000
Cd20.0414 (3)0.0414 (3)0.0443 (4)0.02070 (14)0.0000.000
O10.0407 (15)0.0402 (15)0.068 (2)0.0147 (13)0.0172 (14)0.0081 (13)
O20.0493 (17)0.061 (2)0.0463 (17)0.0106 (15)0.0029 (13)0.0043 (14)
C10.0361 (19)0.044 (2)0.047 (2)0.0117 (16)0.0112 (16)0.0003 (16)
C20.052 (3)0.048 (2)0.048 (2)0.006 (2)0.0016 (19)0.0048 (18)
C30.062 (3)0.047 (3)0.090 (4)0.008 (3)0.004 (3)0.013 (3)
C40.093 (5)0.045 (3)0.134 (7)0.006 (3)0.026 (5)0.008 (4)
C50.108 (6)0.067 (4)0.091 (5)0.008 (4)0.016 (4)0.006 (4)
C60.137 (8)0.095 (6)0.130 (8)0.018 (5)0.037 (6)0.024 (5)
C70.113 (7)0.112 (7)0.094 (5)0.003 (5)0.057 (5)0.013 (5)
C80.090 (4)0.075 (4)0.075 (4)0.001 (3)0.032 (3)0.025 (3)
O1S0.192 (4)0.192 (4)0.174 (6)0.096 (2)0.0000.000
N1S0.186 (6)0.190 (6)0.181 (6)0.089 (4)0.000 (4)0.000 (4)
C1S0.192 (8)0.191 (7)0.178 (7)0.088 (6)0.002 (5)0.006 (5)
C2S0.186 (6)0.190 (6)0.183 (6)0.090 (4)0.001 (4)0.001 (4)
C3S0.189 (6)0.190 (6)0.184 (6)0.090 (4)0.000 (4)0.001 (4)
Geometric parameters (Å, º) top
Cd1—O1i2.269 (3)C5—C71.408 (13)
Cd1—O1ii2.269 (3)C5—C61.509 (12)
Cd1—O1iii2.269 (3)C6—C6vi1.279 (19)
Cd1—O12.269 (3)C6—H60.9400
Cd1—O1iv2.269 (3)C7—C81.395 (10)
Cd1—O1v2.269 (3)C7—H7A0.9400
Cd1—Cd2v3.4742 (5)C8—H8A0.9400
Cd1—Cd23.4742 (5)O1S—C1Siii1.43 (4)
Cd2—O22.189 (3)O1S—C1Si1.43 (4)
Cd2—O2iii2.189 (3)O1S—C1S1.43 (4)
Cd2—O2i2.189 (3)N1S—C1S1.323 (9)
Cd2—O1S2.193 (19)N1S—C3S1.445 (9)
O1—C11.255 (5)N1S—C2S1.448 (9)
O2—C11.262 (6)C1S—H1S0.9400
C1—C21.484 (6)C2S—H2S10.9700
C2—C31.386 (8)C2S—H2S20.9700
C2—C81.394 (8)C2S—H2S30.9700
C3—C41.373 (9)C3S—H3S10.9700
C3—H3A0.9400C3S—H3S20.9700
C4—C51.336 (12)C3S—H3S30.9700
C4—H4A0.9400
O1i—Cd1—O1ii180.00 (13)C3—C2—C1120.9 (5)
O1i—Cd1—O1iii85.62 (14)C8—C2—C1120.1 (5)
O1ii—Cd1—O1iii94.38 (14)C4—C3—C2122.4 (7)
O1i—Cd1—O185.62 (14)C4—C3—H3A118.8
O1ii—Cd1—O194.38 (14)C2—C3—H3A118.8
O1iii—Cd1—O185.62 (14)C5—C4—C3119.8 (7)
O1i—Cd1—O1iv94.38 (14)C5—C4—H4A120.1
O1ii—Cd1—O1iv85.62 (14)C3—C4—H4A120.1
O1iii—Cd1—O1iv180.000 (1)C4—C5—C7119.5 (6)
O1—Cd1—O1iv94.38 (14)C4—C5—C6114.1 (8)
O1i—Cd1—O1v94.38 (14)C7—C5—C6126.4 (8)
O1ii—Cd1—O1v85.62 (14)C6vi—C6—C5123.3 (13)
O1iii—Cd1—O1v94.38 (14)C6vi—C6—H6118.4
O1—Cd1—O1v180.000 (1)C5—C6—H6118.4
O1iv—Cd1—O1v85.62 (14)C8—C7—C5121.7 (7)
O1i—Cd1—Cd2v128.30 (9)C8—C7—H7A119.1
O1ii—Cd1—Cd2v51.70 (9)C5—C7—H7A119.1
O1iii—Cd1—Cd2v128.30 (9)C7—C8—C2117.4 (7)
O1—Cd1—Cd2v128.30 (9)C7—C8—H8A121.3
O1iv—Cd1—Cd2v51.70 (9)C2—C8—H8A121.3
O1v—Cd1—Cd2v51.70 (9)C1Siii—O1S—C1Si102 (3)
O1i—Cd1—Cd251.70 (9)C1Siii—O1S—C1S102 (3)
O1ii—Cd1—Cd2128.30 (9)C1Si—O1S—C1S102 (3)
O1iii—Cd1—Cd251.70 (9)C1Siii—O1S—Cd2116 (2)
O1—Cd1—Cd251.70 (9)C1Si—O1S—Cd2116 (2)
O1iv—Cd1—Cd2128.30 (9)C1S—O1S—Cd2116 (2)
O1v—Cd1—Cd2128.30 (9)C1S—N1S—C3S120.7 (11)
Cd2v—Cd1—Cd2180.0C1S—N1S—C2S120.1 (11)
O2—Cd2—O2iii118.93 (3)C3S—N1S—C2S116.8 (10)
O2—Cd2—O2i118.93 (3)N1S—C1S—O1S119 (4)
O2iii—Cd2—O2i118.93 (3)N1S—C1S—H1S120.4
O2—Cd2—O1S95.98 (9)O1S—C1S—H1S120.4
O2iii—Cd2—O1S95.98 (9)N1S—C2S—H2S1109.5
O2i—Cd2—O1S95.98 (9)N1S—C2S—H2S2109.5
O2—Cd2—Cd184.02 (9)H2S1—C2S—H2S2109.5
O2iii—Cd2—Cd184.02 (9)N1S—C2S—H2S3109.5
O2i—Cd2—Cd184.02 (9)H2S1—C2S—H2S3109.5
O1S—Cd2—Cd1180.000 (4)H2S2—C2S—H2S3109.5
C1—O1—Cd1131.5 (3)N1S—C3S—H3S1109.5
C1—O2—Cd2105.6 (3)N1S—C3S—H3S2109.5
O1—C1—O2122.1 (4)H3S1—C3S—H3S2109.5
O1—C1—C2119.8 (4)N1S—C3S—H3S3109.5
O2—C1—C2118.1 (4)H3S1—C3S—H3S3109.5
C3—C2—C8119.0 (5)H3S2—C3S—H3S3109.5
Symmetry codes: (i) x+y1, x+1, z; (ii) xy+1, x+1, z+2; (iii) y+1, xy+2, z; (iv) y1, x+y, z+2; (v) x, y+2, z+2; (vi) x+1, y+3, z+2.

Experimental details

Crystal data
Chemical formula[Cd3(C16H10O4)3(C3H7NO)2]
Mr1282.11
Crystal system, space groupTrigonal, R3
Temperature (K)223
a, c (Å)16.4881 (5), 16.7919 (10)
V3)3953.4 (3)
Z3
Radiation typeMo Kα
µ (mm1)1.27
Crystal size (mm)0.30 × 0.30 × 0.30
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.69, 0.69
No. of measured, independent and
observed [I > 2σ(I)] reflections
6604, 2105, 1782
Rint0.104
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.181, 1.18
No. of reflections2105
No. of parameters136
No. of restraints92
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.70, 1.53

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors acknowledge Professor Kimoon Kim and Mr Hyunuk Kim for the crystallographic work and helpful discussions.

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChi, Y.-N., Huang, K.-L., Cui, F.-Y., Xu, Y.-Q. & Hu, C.-W. (2006). Inorg. Chem. 45, 10605–10612.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDincâ, M. & Long, J. R. (2005). J. Am. Chem. Soc. 127, 9376–9377.  Web of Science PubMed Google Scholar
First citationDybtsev, D. N., Chun, H., Yoon, S. H., Kim, D. & Kim, K. (2004). J. Am. Chem. Soc. 126, 32–33.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O'Keeffe, M. & Yaghi, O. M. (2002). Science, 295, 469–472.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationEdgar, M., Mitchell, R., Slawin, A. M. Z., Lightfoot, P. & Wright, P. A. (2001). Chem. Eur. J. 7, 5168–5175.  CrossRef PubMed CAS Google Scholar
First citationHawxwell, S. M., Adams, H. & Brammer, L. (2006). Acta Cryst. B62, 808–814.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHill, R. J., Long, D., Champness, N. R., Hubberstey, P. & Schröder, M. (2005). Acc. Chem. Res. 38, 337–350.  Web of Science CrossRef Google Scholar
First citationLuan, X.-J., Cai, X.-H., Wang, Y.-Y., Li, D.-S., Wang, C.-J., Liu, P., Hu, H.-M., Shi, Q.-Z. & Peng, S.-M. (2006). Chem. Eur. J. 12, 6281–6289.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPark, G., Kim, H., Lee, G. H., Park, S. & Kim, K. (2006). Bull. Korean Chem. Soc. 27, 443–446.  CAS Google Scholar
First citationRosi, N. L., Eckert, J., Eddaoudi, M., Vodak, D. T., Kim, J., O'Keeffe, M. & Yaghi, O. M. (2003). Science, 300, 1127–1129.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSaalfrank, R. W., Bernt, I., Chowdhry, M. M., Hampel, F. & Vaughan, G. B. M. (2001). Chem. Eur. J. 7, 2765–2769.  CrossRef PubMed CAS Google Scholar
First citationSeo, J. S., Wang, D., Lee, H., Jun, S. I., Oh, J., Jeon, Y. & Kim, K. (2000). Nature (London), 404, 982–986.  PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-Y., Wang, L., Wang, Z.-M. & Gao, S. (2006). J. Am. Chem. Soc. 128, 674–675.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWilliams, C. A., Blake, A. J., Hubberstey, P. & Schröder, M. (2005). Chem. Commun. pp. 5435–5437.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m861-m862
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds