metal-organic compounds
Poly[bis(N,N-dimethylformamide)tris(μ4-trans-stilbene-4,4′-dicarboxylato)tricadmium(II)]: a two-dimensional network with an unusual 36 topology
aDepartment of Chemistry, Chonbuk National University, Jeonju, Chonbuk 561-756, Republic of Korea, and bDepartment of Chemistry, Kunsan National University, Kusan, Chonbuk 573-701, Republic of Korea
*Correspondence e-mail: parkg@kunsan.ac.kr
In the title compound, [Cd3(C16H10O4)3(C3H7NO)2]n or [Cd3(SDA)3(DMF)2]n (H2SDA is trans-stilbene-4,4′-dicarboxylic acid and DMF is dimethylformamide), the linear dicarboxylate ligand forms a two-dimensionally layered metal–organic network with the relatively uncommon 36 topology. The structure reveals trinuclear secondary building units and has an octahedral geometry at a central metal ion (occupying a symmetry site) and tetrahedral geometries at two surrounding symmetrically equivalent metal ions lying on a threefold axis. The six-connected planar trinuclear CdII centers, Cd3(O2CR)6, play a role as potential nodes in generation of the relatively uncommon 36 topology. The coordinated DMF unit is disordered around the threefold axis.
Related literature
For related literature, see: Chi et al. (2006); Dincâ & Long (2005); Dybtsev et al. (2004); Eddaoudi et al. (2002); Edgar et al. (2001); Hawxwell et al. (2006); Hill et al. (2005); Luan et al. (2006); Park et al. (2006); Rosi et al. (2003); Saalfrank et al. (2001); Seo et al. (2000); Wang et al. (2006); Williams et al. (2005).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 1997); cell SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808016267/bg2189sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808016267/bg2189Isup2.hkl
A mixture of Cd(NO3)2.6H2O (0.122 g, 3.95 x 10 -4 mol) and H2SDA (0.106 g,3.95 x 10 -4 mol) was suspended in DMF (1.3 ml), placed in a sealed-glasstube,and heated at 90°C for 3 days. Upon cooling to room temperature, the pale-yellow crystalline was formed, collected by filtration, washed with DMF,and driedunder a reduced pressure at room temperature for 5 h to give the product (0.178 g, 78%). Anal. Calcd. for [Cd3(SDA)3(DMF)2]: C,50.59; H, 3.75; N, 2.18. Found: C, 50.69; H, 3.72; N, 2.12
All the non-hydrogen atoms were refined anisotropically, and hydrogen atoms were added to their geometrically ideal positions with distances C—H = 0.94 Å (aromatic H), C—H = 0.94 Å (attached to carboxylic C in DMF) and C—H = 0.97 Å (attached to methyl C in DMF). Coordinated DMF is disordered over three sites around the threefold axis. Even if oxygen O1S was refined with a unique position, the large displacement factor attained suggests some kind of unresolved splitting. Similarity restraints in distances and thermal parameters were used in order to attain a reasonable geometry of the (disordered) coordinated DMF.
Data collection: SMART (Bruker, 1997); cell
SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cd3(C16H10O4)3(C3H7NO)2] | Dx = 1.616 Mg m−3 |
Mr = 1282.11 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, R3 | Cell parameters from 6604 reflections |
Hall symbol: -R 3 | θ = 1.9–28.4° |
a = 16.4881 (5) Å | µ = 1.27 mm−1 |
c = 16.7919 (10) Å | T = 223 K |
V = 3953.4 (3) Å3 | Cubic, colourless |
Z = 3 | 0.30 × 0.30 × 0.30 mm |
F(000) = 1914 |
Siemens SMART CCD diffractometer | 2105 independent reflections |
Radiation source: fine-focus sealed tube | 1782 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.104 |
ω scans | θmax = 28.4°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −21→21 |
Tmin = 0.69, Tmax = 0.69 | k = −21→18 |
6604 measured reflections | l = −21→22 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.057 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.181 | H-atom parameters constrained |
S = 1.18 | w = 1/[σ2(Fo2) + (0.0995P)2 + 4.8382P] where P = (Fo2 + 2Fc2)/3 |
2105 reflections | (Δ/σ)max = 0.001 |
136 parameters | Δρmax = 1.70 e Å−3 |
92 restraints | Δρmin = −1.53 e Å−3 |
[Cd3(C16H10O4)3(C3H7NO)2] | Z = 3 |
Mr = 1282.11 | Mo Kα radiation |
Trigonal, R3 | µ = 1.27 mm−1 |
a = 16.4881 (5) Å | T = 223 K |
c = 16.7919 (10) Å | 0.30 × 0.30 × 0.30 mm |
V = 3953.4 (3) Å3 |
Siemens SMART CCD diffractometer | 2105 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1782 reflections with I > 2σ(I) |
Tmin = 0.69, Tmax = 0.69 | Rint = 0.104 |
6604 measured reflections |
R[F2 > 2σ(F2)] = 0.057 | 92 restraints |
wR(F2) = 0.181 | H-atom parameters constrained |
S = 1.18 | Δρmax = 1.70 e Å−3 |
2105 reflections | Δρmin = −1.53 e Å−3 |
136 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cd1 | 0.0000 | 1.0000 | 1.0000 | 0.0302 (2) | |
Cd2 | 0.0000 | 1.0000 | 0.79310 (3) | 0.0424 (2) | |
O1 | 0.1245 (2) | 1.0679 (2) | 0.9162 (2) | 0.0521 (7) | |
O2 | 0.1222 (2) | 1.1401 (2) | 0.8067 (2) | 0.0599 (9) | |
C1 | 0.1562 (3) | 1.1402 (3) | 0.8740 (3) | 0.0458 (9) | |
C2 | 0.2391 (3) | 1.2283 (3) | 0.9015 (3) | 0.0579 (12) | |
C3 | 0.2624 (5) | 1.3134 (4) | 0.8665 (4) | 0.0748 (17) | |
H3A | 0.2259 | 1.3142 | 0.8238 | 0.090* | |
C4 | 0.3368 (6) | 1.3965 (5) | 0.8918 (5) | 0.109 (3) | |
H4A | 0.3496 | 1.4531 | 0.8677 | 0.131* | |
C5 | 0.3911 (6) | 1.3967 (5) | 0.9510 (5) | 0.112 (3) | |
C6 | 0.4698 (8) | 1.4929 (7) | 0.9730 (7) | 0.138 (4) | |
H6 | 0.4748 | 1.5449 | 0.9456 | 0.166* | |
C7 | 0.3714 (7) | 1.3114 (7) | 0.9864 (6) | 0.133 (4) | |
H7A | 0.4095 | 1.3120 | 1.0283 | 0.159* | |
C8 | 0.2968 (5) | 1.2260 (5) | 0.9610 (4) | 0.099 (3) | |
H8A | 0.2859 | 1.1690 | 0.9831 | 0.118* | |
O1S | 0.0000 | 1.0000 | 0.6625 (11) | 0.186 (4) | |
N1S | 0.106 (2) | 1.082 (2) | 0.5571 (18) | 0.188 (5) | 0.33 |
C1S | 0.067 (4) | 1.086 (4) | 0.625 (2) | 0.190 (6) | 0.33 |
H1S | 0.0825 | 1.1436 | 0.6479 | 0.228* | 0.33 |
C2S | 0.136 (3) | 1.014 (3) | 0.547 (3) | 0.188 (5) | 0.33 |
H2S1 | 0.1426 | 0.9916 | 0.5985 | 0.282* | 0.33 |
H2S2 | 0.1958 | 1.0429 | 0.5194 | 0.282* | 0.33 |
H2S3 | 0.0899 | 0.9616 | 0.5156 | 0.282* | 0.33 |
C3S | 0.144 (3) | 1.160 (3) | 0.502 (2) | 0.190 (5) | 0.33 |
H3S1 | 0.0964 | 1.1771 | 0.4909 | 0.284* | 0.33 |
H3S2 | 0.1615 | 1.1420 | 0.4531 | 0.284* | 0.33 |
H3S3 | 0.1980 | 1.2129 | 0.5257 | 0.284* | 0.33 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.0307 (3) | 0.0307 (3) | 0.0291 (4) | 0.01536 (14) | 0.000 | 0.000 |
Cd2 | 0.0414 (3) | 0.0414 (3) | 0.0443 (4) | 0.02070 (14) | 0.000 | 0.000 |
O1 | 0.0407 (15) | 0.0402 (15) | 0.068 (2) | 0.0147 (13) | 0.0172 (14) | 0.0081 (13) |
O2 | 0.0493 (17) | 0.061 (2) | 0.0463 (17) | 0.0106 (15) | 0.0029 (13) | 0.0043 (14) |
C1 | 0.0361 (19) | 0.044 (2) | 0.047 (2) | 0.0117 (16) | 0.0112 (16) | 0.0003 (16) |
C2 | 0.052 (3) | 0.048 (2) | 0.048 (2) | 0.006 (2) | 0.0016 (19) | 0.0048 (18) |
C3 | 0.062 (3) | 0.047 (3) | 0.090 (4) | 0.008 (3) | −0.004 (3) | 0.013 (3) |
C4 | 0.093 (5) | 0.045 (3) | 0.134 (7) | −0.006 (3) | −0.026 (5) | 0.008 (4) |
C5 | 0.108 (6) | 0.067 (4) | 0.091 (5) | −0.008 (4) | −0.016 (4) | −0.006 (4) |
C6 | 0.137 (8) | 0.095 (6) | 0.130 (8) | 0.018 (5) | −0.037 (6) | 0.024 (5) |
C7 | 0.113 (7) | 0.112 (7) | 0.094 (5) | −0.003 (5) | −0.057 (5) | 0.013 (5) |
C8 | 0.090 (4) | 0.075 (4) | 0.075 (4) | −0.001 (3) | −0.032 (3) | 0.025 (3) |
O1S | 0.192 (4) | 0.192 (4) | 0.174 (6) | 0.096 (2) | 0.000 | 0.000 |
N1S | 0.186 (6) | 0.190 (6) | 0.181 (6) | 0.089 (4) | 0.000 (4) | 0.000 (4) |
C1S | 0.192 (8) | 0.191 (7) | 0.178 (7) | 0.088 (6) | −0.002 (5) | −0.006 (5) |
C2S | 0.186 (6) | 0.190 (6) | 0.183 (6) | 0.090 (4) | −0.001 (4) | 0.001 (4) |
C3S | 0.189 (6) | 0.190 (6) | 0.184 (6) | 0.090 (4) | 0.000 (4) | 0.001 (4) |
Cd1—O1i | 2.269 (3) | C5—C7 | 1.408 (13) |
Cd1—O1ii | 2.269 (3) | C5—C6 | 1.509 (12) |
Cd1—O1iii | 2.269 (3) | C6—C6vi | 1.279 (19) |
Cd1—O1 | 2.269 (3) | C6—H6 | 0.9400 |
Cd1—O1iv | 2.269 (3) | C7—C8 | 1.395 (10) |
Cd1—O1v | 2.269 (3) | C7—H7A | 0.9400 |
Cd1—Cd2v | 3.4742 (5) | C8—H8A | 0.9400 |
Cd1—Cd2 | 3.4742 (5) | O1S—C1Siii | 1.43 (4) |
Cd2—O2 | 2.189 (3) | O1S—C1Si | 1.43 (4) |
Cd2—O2iii | 2.189 (3) | O1S—C1S | 1.43 (4) |
Cd2—O2i | 2.189 (3) | N1S—C1S | 1.323 (9) |
Cd2—O1S | 2.193 (19) | N1S—C3S | 1.445 (9) |
O1—C1 | 1.255 (5) | N1S—C2S | 1.448 (9) |
O2—C1 | 1.262 (6) | C1S—H1S | 0.9400 |
C1—C2 | 1.484 (6) | C2S—H2S1 | 0.9700 |
C2—C3 | 1.386 (8) | C2S—H2S2 | 0.9700 |
C2—C8 | 1.394 (8) | C2S—H2S3 | 0.9700 |
C3—C4 | 1.373 (9) | C3S—H3S1 | 0.9700 |
C3—H3A | 0.9400 | C3S—H3S2 | 0.9700 |
C4—C5 | 1.336 (12) | C3S—H3S3 | 0.9700 |
C4—H4A | 0.9400 | ||
O1i—Cd1—O1ii | 180.00 (13) | C3—C2—C1 | 120.9 (5) |
O1i—Cd1—O1iii | 85.62 (14) | C8—C2—C1 | 120.1 (5) |
O1ii—Cd1—O1iii | 94.38 (14) | C4—C3—C2 | 122.4 (7) |
O1i—Cd1—O1 | 85.62 (14) | C4—C3—H3A | 118.8 |
O1ii—Cd1—O1 | 94.38 (14) | C2—C3—H3A | 118.8 |
O1iii—Cd1—O1 | 85.62 (14) | C5—C4—C3 | 119.8 (7) |
O1i—Cd1—O1iv | 94.38 (14) | C5—C4—H4A | 120.1 |
O1ii—Cd1—O1iv | 85.62 (14) | C3—C4—H4A | 120.1 |
O1iii—Cd1—O1iv | 180.000 (1) | C4—C5—C7 | 119.5 (6) |
O1—Cd1—O1iv | 94.38 (14) | C4—C5—C6 | 114.1 (8) |
O1i—Cd1—O1v | 94.38 (14) | C7—C5—C6 | 126.4 (8) |
O1ii—Cd1—O1v | 85.62 (14) | C6vi—C6—C5 | 123.3 (13) |
O1iii—Cd1—O1v | 94.38 (14) | C6vi—C6—H6 | 118.4 |
O1—Cd1—O1v | 180.000 (1) | C5—C6—H6 | 118.4 |
O1iv—Cd1—O1v | 85.62 (14) | C8—C7—C5 | 121.7 (7) |
O1i—Cd1—Cd2v | 128.30 (9) | C8—C7—H7A | 119.1 |
O1ii—Cd1—Cd2v | 51.70 (9) | C5—C7—H7A | 119.1 |
O1iii—Cd1—Cd2v | 128.30 (9) | C7—C8—C2 | 117.4 (7) |
O1—Cd1—Cd2v | 128.30 (9) | C7—C8—H8A | 121.3 |
O1iv—Cd1—Cd2v | 51.70 (9) | C2—C8—H8A | 121.3 |
O1v—Cd1—Cd2v | 51.70 (9) | C1Siii—O1S—C1Si | 102 (3) |
O1i—Cd1—Cd2 | 51.70 (9) | C1Siii—O1S—C1S | 102 (3) |
O1ii—Cd1—Cd2 | 128.30 (9) | C1Si—O1S—C1S | 102 (3) |
O1iii—Cd1—Cd2 | 51.70 (9) | C1Siii—O1S—Cd2 | 116 (2) |
O1—Cd1—Cd2 | 51.70 (9) | C1Si—O1S—Cd2 | 116 (2) |
O1iv—Cd1—Cd2 | 128.30 (9) | C1S—O1S—Cd2 | 116 (2) |
O1v—Cd1—Cd2 | 128.30 (9) | C1S—N1S—C3S | 120.7 (11) |
Cd2v—Cd1—Cd2 | 180.0 | C1S—N1S—C2S | 120.1 (11) |
O2—Cd2—O2iii | 118.93 (3) | C3S—N1S—C2S | 116.8 (10) |
O2—Cd2—O2i | 118.93 (3) | N1S—C1S—O1S | 119 (4) |
O2iii—Cd2—O2i | 118.93 (3) | N1S—C1S—H1S | 120.4 |
O2—Cd2—O1S | 95.98 (9) | O1S—C1S—H1S | 120.4 |
O2iii—Cd2—O1S | 95.98 (9) | N1S—C2S—H2S1 | 109.5 |
O2i—Cd2—O1S | 95.98 (9) | N1S—C2S—H2S2 | 109.5 |
O2—Cd2—Cd1 | 84.02 (9) | H2S1—C2S—H2S2 | 109.5 |
O2iii—Cd2—Cd1 | 84.02 (9) | N1S—C2S—H2S3 | 109.5 |
O2i—Cd2—Cd1 | 84.02 (9) | H2S1—C2S—H2S3 | 109.5 |
O1S—Cd2—Cd1 | 180.000 (4) | H2S2—C2S—H2S3 | 109.5 |
C1—O1—Cd1 | 131.5 (3) | N1S—C3S—H3S1 | 109.5 |
C1—O2—Cd2 | 105.6 (3) | N1S—C3S—H3S2 | 109.5 |
O1—C1—O2 | 122.1 (4) | H3S1—C3S—H3S2 | 109.5 |
O1—C1—C2 | 119.8 (4) | N1S—C3S—H3S3 | 109.5 |
O2—C1—C2 | 118.1 (4) | H3S1—C3S—H3S3 | 109.5 |
C3—C2—C8 | 119.0 (5) | H3S2—C3S—H3S3 | 109.5 |
Symmetry codes: (i) −x+y−1, −x+1, z; (ii) x−y+1, x+1, −z+2; (iii) −y+1, x−y+2, z; (iv) y−1, −x+y, −z+2; (v) −x, −y+2, −z+2; (vi) −x+1, −y+3, −z+2. |
Experimental details
Crystal data | |
Chemical formula | [Cd3(C16H10O4)3(C3H7NO)2] |
Mr | 1282.11 |
Crystal system, space group | Trigonal, R3 |
Temperature (K) | 223 |
a, c (Å) | 16.4881 (5), 16.7919 (10) |
V (Å3) | 3953.4 (3) |
Z | 3 |
Radiation type | Mo Kα |
µ (mm−1) | 1.27 |
Crystal size (mm) | 0.30 × 0.30 × 0.30 |
Data collection | |
Diffractometer | Siemens SMART CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.69, 0.69 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6604, 2105, 1782 |
Rint | 0.104 |
(sin θ/λ)max (Å−1) | 0.668 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.057, 0.181, 1.18 |
No. of reflections | 2105 |
No. of parameters | 136 |
No. of restraints | 92 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.70, −1.53 |
Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Acknowledgements
The authors acknowledge Professor Kimoon Kim and Mr Hyunuk Kim for the crystallographic work and helpful discussions.
References
Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chi, Y.-N., Huang, K.-L., Cui, F.-Y., Xu, Y.-Q. & Hu, C.-W. (2006). Inorg. Chem. 45, 10605–10612. Web of Science CSD CrossRef PubMed CAS Google Scholar
Dincâ, M. & Long, J. R. (2005). J. Am. Chem. Soc. 127, 9376–9377. Web of Science PubMed Google Scholar
Dybtsev, D. N., Chun, H., Yoon, S. H., Kim, D. & Kim, K. (2004). J. Am. Chem. Soc. 126, 32–33. Web of Science CrossRef PubMed CAS Google Scholar
Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O'Keeffe, M. & Yaghi, O. M. (2002). Science, 295, 469–472. Web of Science CSD CrossRef PubMed CAS Google Scholar
Edgar, M., Mitchell, R., Slawin, A. M. Z., Lightfoot, P. & Wright, P. A. (2001). Chem. Eur. J. 7, 5168–5175. CrossRef PubMed CAS Google Scholar
Hawxwell, S. M., Adams, H. & Brammer, L. (2006). Acta Cryst. B62, 808–814. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Hill, R. J., Long, D., Champness, N. R., Hubberstey, P. & Schröder, M. (2005). Acc. Chem. Res. 38, 337–350. Web of Science CrossRef Google Scholar
Luan, X.-J., Cai, X.-H., Wang, Y.-Y., Li, D.-S., Wang, C.-J., Liu, P., Hu, H.-M., Shi, Q.-Z. & Peng, S.-M. (2006). Chem. Eur. J. 12, 6281–6289. Web of Science CSD CrossRef PubMed CAS Google Scholar
Park, G., Kim, H., Lee, G. H., Park, S. & Kim, K. (2006). Bull. Korean Chem. Soc. 27, 443–446. CAS Google Scholar
Rosi, N. L., Eckert, J., Eddaoudi, M., Vodak, D. T., Kim, J., O'Keeffe, M. & Yaghi, O. M. (2003). Science, 300, 1127–1129. Web of Science CrossRef PubMed CAS Google Scholar
Saalfrank, R. W., Bernt, I., Chowdhry, M. M., Hampel, F. & Vaughan, G. B. M. (2001). Chem. Eur. J. 7, 2765–2769. CrossRef PubMed CAS Google Scholar
Seo, J. S., Wang, D., Lee, H., Jun, S. I., Oh, J., Jeon, Y. & Kim, K. (2000). Nature (London), 404, 982–986. PubMed CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, X.-Y., Wang, L., Wang, Z.-M. & Gao, S. (2006). J. Am. Chem. Soc. 128, 674–675. Web of Science CSD CrossRef PubMed CAS Google Scholar
Williams, C. A., Blake, A. J., Hubberstey, P. & Schröder, M. (2005). Chem. Commun. pp. 5435–5437. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The study of one, two or three dimensional metal-organic frameworks (MOFs) has attracted much attention in the past decade due to their various intriguing framework topologies but also for their potential applications in gas storage (Rosi et al., 2003), separation (Dybtsev et al., 2004) and catalysis (Seo et al., 2000) etc. Many factors play important role in the synthesis of MOFs such as the coordination geometry of metal ions (Chi et al.,2006), the structure of organic ligands (Wang et al.,2006), the solvent system (Eddaoudi et al., 2002),the counteranion (Luan et al., 2006), and the ratio of ligands to metal ions (Saalfrank et al., 2001). The simplest 2D sheets are those which comprise just one kind of regular polygon based upon hexagons, squares and triangles. Since three hexagons, four squares and six triangles meet at a node in a 2D network with angles of 120°, 90° and 60°,respectively, the corresponding Schläfli topology symbols are 63, 44 and 36, respectively (Hill et al., 2005). Although there were many examples of uninodal regularly tiled 2D metal–organic frameworks comprising linked squares or hexagons, however, a few examples comprising linked and tiled triangles have been reported only very recently (Edgar et al., 2001; Williams et al., 2005; Hawxwell et al., 2006; Dincâ & Long, 2005). Herein the formation of a two-dimensional metal-organic framework with an uncommon 36 tessellated topology, [Cd3(SDA)3(DMF)2], (I), constructed from tri-nuclear cadmium SBUs (secondary building units) linked by a novel 4,4'-stilbenedicarboxylate ligand (Park et al., 2006) is reported.
The two-dimensional 36 tessellated network structure of 1 with the atomic numbering scheme is shown in Fig. 1 in which the coordinated DMF molecules are shown in only one of its three disordered components. The crystal structure of 1 is constructed from the tri-nuclear Cd3(O2CR)6 SBUs cluster which contains two crystallographically equivalent four-coordinate terminal metal centers (Cd2) in which the O atom (O1S) of the DMF is axially coordinated and a six-coordinate central metal atom (Cd1). The coordination environment around the central CdII atom, Cd1, in the trinuclear center is an octahedron with all six positions occupied by one carboxylate oxygen, O1, from each half unit of six SDA ligands (Fig. 1) and that of the two symmetry equivalent neighbouring CdII atoms, Cd2, is a tetrahedron with three coordination sites occupied by the other carboxylate oxygen, O2, from a half unit of three SDA ligands and the vacant site occupied by an oxygen atom, O1S in the DMF molecule.