metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Chloro­phen­yl)piperazine-1,4-diium tetra­chlorido­zincate(II) monohydrate

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna, Tunisia, and bUniverstié Lyon 1, Centre de Diffractométrie Henri Longchambon, 43 boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
*Correspondence e-mail: cherif_bennasr@yahoo.fr

(Received 22 May 2008; accepted 30 May 2008; online 7 June 2008)

In the crystal structure of the title compound, (C10H15ClN2)[ZnCl4]·H2O, the Zn atom is coordinated by four Cl atoms in a tetrahedral geometry. The water mol­ecules and the 1-(4-chloro­phen­yl)piperazine-1,4-diium cations inter­act with the [ZnCl4]2− anions through O—H⋯Cl, N—H⋯Cl, N—H⋯O and C—H⋯Cl hydrogen bonds (five simple and one bifurcated). Inter­molecular ππ stacking inter­actions are present between adjacent aromatic rings of 1-(4-chloro­phenyl)­piperazine-1,4-diium cations (the centroid–centroid distance is 3.453 Å).

Related literature

For related literature, see: Ben Gharbia et al. (2005[Ben Gharbia, I., Kefi, R., Rayes, A. & Ben Nasr, C. (2005). Z. Kristallogr. New Cryst. Struct. 220, 333-334.]); Guo et al. (2007[Guo, N., Yi, J., Chen, Y., Liao, S. & Fu, Z. (2007). Acta Cryst. E63, m2571.]); Valkonen et al. (2006[Valkonen, A., Ahonen, K. & Kolehmainen, E. (2006). Acta Cryst. C62, m290-m292.]); Janiak (2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]).

[Scheme 1]

Experimental

Crystal data
  • (C10H15ClN2)[ZnCl4]·H2O

  • Mr = 423.90

  • Monoclinic, P 21 /c

  • a = 7.2036 (2) Å

  • b = 15.1575 (5) Å

  • c = 15.4870 (5) Å

  • β = 103.012 (2)°

  • V = 1647.58 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.29 mm−1

  • T = 293 K

  • 0.44 × 0.28 × 0.23 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: analytical (de Meulenaer & Tompa, 1965[Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014-1018.]) Tmin = 0.34, Tmax = 0.59

  • 20612 measured reflections

  • 3901 independent reflections

  • 3369 reflections with I > 2σ(I)

  • Rint = 0.085

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.063

  • S = 0.89

  • 3203 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—Cl1 2.3036 (11)
Zn1—Cl2 2.2937 (11)
Zn1—Cl3 2.2495 (13)
Zn1—Cl4 2.2420 (12)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H15⋯O1 0.89 1.86 2.742 (6) 169
N2—H16⋯Cl4i 0.89 2.53 3.249 (4) 137
N2—H16⋯Cl2i 0.89 2.77 3.352 (3) 123
N2—H17⋯Cl1 0.89 2.42 3.261 (5) 156
O1—H1⋯Cl2ii 0.81 2.61 3.342 (3) 149
O1—H2⋯Cl3iii 0.82 2.52 3.258 (4) 149
C5—H5⋯Cl4iv 0.93 2.76 3.686 (5) 168
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]).; cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

The crystal structure of the title compound, (I), (Fig. 1), contains a [ZnCl4]2- tetrahedral anion, a 1-(4-chlorophenyl)piperazine-1,4-dium (2+) cation and a water molecule. Fig. 2 shows the atomic arrangement, which can be described as built up by [ZnCl4] tetrahedra interconnected through water molecules via a O—H···Cl bond to form chains which evolve along the a direction. These [ZnCl4].[H2O] chains are interconnected into a three-dimensional network by the organic entities through N—H···Cl, C—H···Cl bonds and π-π interactions. Fig.3 shows the way in which two adjacent aromatic rings of the 1-(4-chlorophenyl)piperazine-1,4-dium cations run parallel in the opposite direction and stack each other by turns in a face-to-face mode. The nearest centroid-centroid distance is 3.453 (1) Å, less than 3.8 Å, the maximum value accepted for π-π interactions (Janiak, 2000). Generally, the Zn—Cl bond lengths and Cl—Zn—Cl bond angles in the [ZnCl4]2- anion are not equal to one another but vary with the environment around the Cl atoms (Valkonen et al., 2006). In the title compound, the four chlorine atoms of the [ZnCl4]2- anion are acting as acceptors of the hydrogen bonds. The bond angles Cl—Zn—Cl vary from 103.37 (5) to 115.30 (5)°, and the bond length of the Zn—Cl lie in the range 2.2420 (12) - 2.3036 (11) Å. Owing to these differences in Zn—Cl bond lengths and Cl—Zn—Cl angles, the coordination geometry of the Zn atom can be described as a slightly distorted tetrahedron (as in Guo et al., 2007). The nearst Zn···Zn intra-chain separation is 7.204 (1) Å, while the distance between adjacent chains is 6.370 (2) Å. Examination of the organic cation geometry shows that the piperazine-1,4-dium ring adopts a typical chair conformation and its geometric parameters [dav(C—N) = 1.501 (4) and dav(C—C) = 1.508 (4) Å] are in full agreement with those found in phenylpiperazinium tetrachlorozincate (Ben Gharbia et al., 2005).

Related literature top

For related literature, see: Ben Gharbia et al. (2005); Guo et al. (2007); Valkonen et al. (2006); Janiak (2000).

Experimental top

ZnCl2, aqueous 1M HCl solution and 1-(4-chlorophenyl)piperazine in a 1:2:1 molar ratio were mixed and dissolved in sufficient ethanol. Crystals of (I) grew as the ethanol evaporated at 293 K over the course of a few days.

Refinement top

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 and O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints. The refinement was carried out with 3203 reflections with I>3σ(I). The R factors reported are those calculated for I>2σ(I) (3369 reflections)

Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. A view of (I), showing 40% probability displacement ellipsoids and arbitrary spheres for the H atoms.
[Figure 2] Fig. 2. A stereoview of part of the crystal structure showing the formation of (100) chains formed by [ZnCl4]2- tetrahedral anions interconnected through the water molecules.
[Figure 3] Fig. 3. The packing of (I), viewed down the a axis, showing the N—H···Cl, C—H···Cl and O—H···Cl hydrogen bonds between the 1-(4-chlorophenyl)piperazine-1,4-dium cations, water molecules and [ZnCl4]2- anions.
1-(4-chlorophenyl)piperazine-1,4-diium tetrachloridozincate(II) monohydrate top
Crystal data top
(C10H15ClN2)[ZnCl4]·H2OF(000) = 856
Mr = 423.90Dx = 1.709 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 19642 reflections
a = 7.2036 (2) Åθ = 0.7–27.9°
b = 15.1575 (5) ŵ = 2.29 mm1
c = 15.4870 (5) ÅT = 293 K
β = 103.012 (2)°Plate, colorless
V = 1647.58 (9) Å30.44 × 0.28 × 0.23 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3369 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.085
ϕ and ω scansθmax = 28.0°, θmin = 1.9°
Absorption correction: analytical
(de Meulenaer & Tompa, 1965)
h = 99
Tmin = 0.34, Tmax = 0.59k = 1719
20612 measured reflectionsl = 2020
3901 independent reflections
Refinement top
Refinement on FPrimary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.063 weight = 1.0/[1.57 + 1.32*x + 0.866*(2x2-1)] * [1-(deltaF/6*sigmaF)2]2
where x = F /Fmax
S = 0.90(Δ/σ)max = 0.000411
3203 reflectionsΔρmax = 0.41 e Å3
173 parametersΔρmin = 0.69 e Å3
0 restraints
Crystal data top
(C10H15ClN2)[ZnCl4]·H2OV = 1647.58 (9) Å3
Mr = 423.90Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.2036 (2) ŵ = 2.29 mm1
b = 15.1575 (5) ÅT = 293 K
c = 15.4870 (5) Å0.44 × 0.28 × 0.23 mm
β = 103.012 (2)°
Data collection top
Nonius KappaCCD
diffractometer
3901 independent reflections
Absorption correction: analytical
(de Meulenaer & Tompa, 1965)
3369 reflections with I > 2σ(I)
Tmin = 0.34, Tmax = 0.59Rint = 0.085
20612 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.063H-atom parameters constrained
S = 0.90Δρmax = 0.41 e Å3
3203 reflectionsΔρmin = 0.69 e Å3
173 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.58976 (7)0.36124 (3)0.65838 (3)0.0375
Cl10.29500 (16)0.42310 (8)0.60275 (7)0.0461
Cl20.75399 (15)0.36476 (7)0.54758 (6)0.0415
Cl30.5442 (2)0.22604 (8)0.70986 (10)0.0568
Cl40.7715 (2)0.44230 (9)0.76618 (7)0.0560
Cl50.29277 (18)0.13523 (7)0.48834 (10)0.0558
C10.2020 (5)0.1446 (2)0.4005 (2)0.0312
C20.2558 (6)0.0844 (3)0.3443 (3)0.0410
C30.2866 (7)0.0026 (3)0.3717 (3)0.0442
C40.2642 (6)0.0255 (3)0.4557 (3)0.0404
C50.2183 (7)0.0359 (3)0.5131 (3)0.0441
C60.1869 (7)0.1230 (3)0.4851 (3)0.0399
C70.0002 (6)0.2802 (3)0.3894 (3)0.0404
C80.0229 (6)0.3724 (3)0.3515 (3)0.0433
C90.3249 (7)0.3838 (3)0.3692 (3)0.0468
C100.3479 (6)0.2911 (3)0.4050 (3)0.0406
N10.1724 (5)0.2369 (2)0.3687 (2)0.0313
N20.1516 (6)0.4259 (2)0.3875 (3)0.0466
O10.0861 (5)0.2511 (3)0.1875 (2)0.0530
H10.01990.24010.15740.0730*
H20.18970.24530.17460.0730*
H30.26690.10080.28690.0471*
H40.32130.04430.33500.0503*
H50.20840.01910.57020.0511*
H60.15630.16710.52310.0473*
H70.11330.24650.36320.0448*
H80.01330.28210.45330.0447*
H90.03880.36880.28660.0492*
H100.13290.40270.36540.0493*
H110.31480.38150.30470.0543*
H120.43750.41940.39850.0543*
H130.45800.26430.38870.0434*
H140.37500.29200.47060.0430*
H150.15560.23620.30970.0410*
H160.13610.47920.36230.0620*
H170.16050.43570.44500.0620*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0394 (2)0.0380 (2)0.0350 (2)0.00079 (19)0.00810 (19)0.00223 (18)
Cl10.0445 (5)0.0526 (6)0.0407 (5)0.0090 (5)0.0082 (4)0.0053 (4)
Cl20.0449 (5)0.0428 (5)0.0392 (5)0.0021 (4)0.0146 (4)0.0012 (4)
Cl30.0650 (7)0.0405 (6)0.0698 (7)0.0029 (5)0.0255 (6)0.0136 (5)
Cl40.0704 (7)0.0562 (7)0.0350 (5)0.0084 (6)0.0019 (5)0.0027 (4)
Cl50.0547 (6)0.0338 (5)0.0785 (8)0.0044 (4)0.0140 (6)0.0126 (5)
C10.0360 (16)0.0256 (15)0.0309 (16)0.0002 (14)0.0055 (14)0.0033 (13)
C20.048 (2)0.039 (2)0.0367 (19)0.0017 (17)0.0105 (16)0.0033 (16)
C30.050 (2)0.034 (2)0.047 (2)0.0069 (17)0.0085 (18)0.0077 (17)
C40.0367 (18)0.0305 (18)0.051 (2)0.0021 (15)0.0034 (16)0.0003 (16)
C50.050 (2)0.042 (2)0.041 (2)0.0025 (18)0.0112 (17)0.0089 (17)
C60.050 (2)0.037 (2)0.0339 (19)0.0010 (16)0.0124 (16)0.0005 (15)
C70.0351 (18)0.037 (2)0.051 (2)0.0050 (15)0.0128 (16)0.0027 (17)
C80.042 (2)0.039 (2)0.049 (2)0.0095 (17)0.0085 (17)0.0014 (17)
C90.047 (2)0.035 (2)0.054 (2)0.0055 (17)0.0040 (18)0.0071 (18)
C100.0354 (18)0.033 (2)0.049 (2)0.0031 (15)0.0012 (16)0.0045 (16)
N10.0391 (16)0.0263 (14)0.0274 (13)0.0008 (12)0.0055 (12)0.0007 (11)
N20.065 (2)0.0284 (16)0.0424 (18)0.0037 (15)0.0030 (17)0.0020 (13)
O10.0519 (18)0.067 (2)0.0389 (15)0.0008 (16)0.0065 (14)0.0023 (14)
Geometric parameters (Å, º) top
Zn1—Cl12.3036 (11)C7—H70.970
Zn1—Cl22.2937 (11)C8—N21.494 (6)
Zn1—Cl32.2495 (13)C8—H100.980
Zn1—Cl42.2420 (12)C8—H90.988
Cl5—C41.738 (4)N2—C91.485 (7)
C4—C31.389 (7)N2—H160.893
C4—C51.378 (6)N2—H170.891
C3—C21.388 (6)C9—C101.506 (6)
C3—H40.922C9—H120.995
C2—C11.376 (5)C9—H110.985
C2—H30.943C10—H140.990
C1—N11.482 (5)C10—H130.973
C1—C61.378 (5)C6—C51.392 (6)
N1—C71.504 (5)C6—H60.948
N1—C101.507 (5)C5—H50.938
N1—H150.893O1—H20.820
C7—C81.511 (6)O1—H10.818
C7—H80.973
Cl1—Zn1—Cl2107.34 (4)C7—C8—H10111.7
Cl1—Zn1—Cl3107.92 (5)N2—C8—H10108.6
Cl2—Zn1—Cl3115.30 (5)C7—C8—H9108.8
Cl1—Zn1—Cl4112.95 (5)N2—C8—H9107.7
Cl2—Zn1—Cl4103.37 (5)H10—C8—H9109.7
Cl3—Zn1—Cl4110.04 (5)C8—N2—C9111.6 (3)
Cl5—C4—C3118.7 (3)C8—N2—H16108.4
Cl5—C4—C5119.2 (3)C9—N2—H16109.4
C3—C4—C5122.1 (4)C8—N2—H17109.2
C4—C3—C2118.6 (4)C9—N2—H17112.9
C4—C3—H4120.8H16—N2—H17105.0
C2—C3—H4120.6N2—C9—C10110.9 (4)
C3—C2—C1119.0 (4)N2—C9—H12108.3
C3—C2—H3119.7C10—C9—H12109.1
C1—C2—H3121.2N2—C9—H11109.6
C2—C1—N1117.1 (3)C10—C9—H11108.5
C2—C1—C6122.5 (4)H12—C9—H11110.5
N1—C1—C6120.3 (3)N1—C10—C9111.0 (3)
C1—N1—C7113.9 (3)N1—C10—H14110.2
C1—N1—C10110.1 (3)C9—C10—H14110.2
C7—N1—C10110.3 (3)N1—C10—H13109.9
C1—N1—H15107.8C9—C10—H13108.7
C7—N1—H15107.2H14—C10—H13106.7
C10—N1—H15107.3C1—C6—C5118.7 (4)
N1—C7—C8110.1 (3)C1—C6—H6120.0
N1—C7—H8109.4C5—C6—H6121.2
C8—C7—H8110.2C6—C5—C4119.0 (4)
N1—C7—H7109.7C6—C5—H5120.7
C8—C7—H7108.5C4—C5—H5120.4
H8—C7—H7108.9H2—O1—H1128.4
C7—C8—N2110.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H15···O10.891.862.742 (6)169
N2—H16···Cl4i0.892.533.249 (4)137
N2—H16···Cl2i0.892.773.352 (3)123
N2—H17···Cl10.892.423.261 (5)156
O1—H1···Cl2ii0.812.613.342 (3)149
O1—H2···Cl3iii0.822.523.258 (4)149
C5—H5···Cl4iv0.932.763.686 (5)168
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y+1/2, z1/2; (iii) x, y+1/2, z1/2; (iv) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula(C10H15ClN2)[ZnCl4]·H2O
Mr423.90
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.2036 (2), 15.1575 (5), 15.4870 (5)
β (°) 103.012 (2)
V3)1647.58 (9)
Z4
Radiation typeMo Kα
µ (mm1)2.29
Crystal size (mm)0.44 × 0.28 × 0.23
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionAnalytical
(de Meulenaer & Tompa, 1965)
Tmin, Tmax0.34, 0.59
No. of measured, independent and
observed [I > 2σ(I)] reflections
20612, 3901, 3369
Rint0.085
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.063, 0.90
No. of reflections3203
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.69

Computer programs: COLLECT (Nonius, 2001), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), CRYSTALS (Betteridge et al., 2003), DIAMOND (Brandenburg, 1998).

Selected bond lengths (Å) top
Zn1—Cl12.3036 (11)Zn1—Cl32.2495 (13)
Zn1—Cl22.2937 (11)Zn1—Cl42.2420 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H15···O10.891.862.742 (6)169
N2—H16···Cl4i0.892.533.249 (4)137
N2—H16···Cl2i0.892.773.352 (3)123
N2—H17···Cl10.892.423.261 (5)156
O1—H1···Cl2ii0.812.613.342 (3)149
O1—H2···Cl3iii0.822.523.258 (4)149
C5—H5···Cl4iv0.932.763.686 (5)168
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y+1/2, z1/2; (iii) x, y+1/2, z1/2; (iv) x+1, y1/2, z+3/2.
 

Acknowledgements

We acknowledge the Tunisian Secretariat of State for Scientific Research and Technology for financial support.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBen Gharbia, I., Kefi, R., Rayes, A. & Ben Nasr, C. (2005). Z. Kristallogr. New Cryst. Struct. 220, 333–334.  Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationGuo, N., Yi, J., Chen, Y., Liao, S. & Fu, Z. (2007). Acta Cryst. E63, m2571.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationMeulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014–1018.  CrossRef IUCr Journals Web of Science Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationValkonen, A., Ahonen, K. & Kolehmainen, E. (2006). Acta Cryst. C62, m290–m292.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds