metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di-μ-chlorido-dicopper(I)]bis­­[μ-η2,σ1-4-(2-allyl-2H-tetra­zol-5-yl)pyridine]]

aOrdered Matter Science Research Center, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: seu_ww@yahoo.com.cn

(Received 7 April 2008; accepted 12 June 2008; online 19 June 2008)

The title polymer, [Cu2Cl2(C9H9N5)2]n, has been prepared by the solvothermal treatment of CuCl with 4-(2-allyl-2H-tetra­zol-5-yl)pyridine. The crystal structure shows that the title compound is a homometallic CuI–olefin coordination polymer, in which the Cu2Cl2 nodes are bridged by two olefin ligands. The asymmetric unit contains one-half of the monomer, the complete monomer having twofold rotation symmetry. The coordination environment of CuI is slightly distorted tetra­hedral, with coordination sites being two μ2-Cl atoms, one pyridine N atom of an organic ligand and one allylic double bond of a symmetry-related ligand. Each organic mol­ecule behaves as a bidentate ligand, connecting two neighboring Cu2Cl2 dimers in the polymeric chain, which runs along [010].

Related literature

For the solvothermal synthesis and for related structures, see: Ye et al. (2005[Ye, Q., Wang, X.-S., Zhao, H. & Xiong, R.-G. (2005). Chem. Soc. Rev. 34, 208-225.], 2007[Ye, Q., Zhao, H., Qu, Z.-R., Xiong, R.-G., Fu, D.-W., Xiong, R.-G., Cui, Y.-P., Akutagawa, T., Chan, P. W. H. & Nakamura, T. (2007). Angew. Chem. Int. Ed. 46, 6852-6856.]). For related structures, see: Wang (2008a,b,c).

[Scheme 1]

Experimental

Crystal data
  • [Cu2Cl2(C9H9N5)2]

  • Mr = 286.21

  • Monoclinic, C 2/c

  • a = 17.270 (3) Å

  • b = 12.040 (2) Å

  • c = 13.064 (3) Å

  • β = 127.94 (3)°

  • V = 2142.3 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.27 mm−1

  • T = 293 (2) K

  • 0.2 × 0.15 × 0.1 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.643, Tmax = 0.800

  • 10753 measured reflections

  • 2451 independent reflections

  • 1814 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.100

  • S = 1.06

  • 2451 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Under hydrothermal or solvothermal conditions, some interesting reactions and compounds can be obtained, while these products could not be synthesized using conventional solution techniques. In sealed tubes, unstable CuI salts can exist under reduced pressure, and then interesting CuI coordination compounds can be obtained. The title compound is obtained through solvothermal treatment of CuCl and 4-(2-allyl-2H-tetrazol-5-yl)pyridine in methanol solvent at 348 K. Colourless block crystals suitable for X-ray diffractions have been isolated.

The CuI ion is coordinated to two olefin ligands and two bridging Cl atoms in a tetrahedral environment (Fig. 1). Two olefin ligands related by a twofold axis link the neighbouring Cu2Cl2 dimers to form an homometallic CuI olefin coordination polymer, developing along the [010] axis, with the Cu2Cl2 dimers acting as nodes. The allyl groups coordinate to CuI centers through N atoms of pyridine rings and double bonds of allyl groups. Unfortunately, the N atoms of tetrazole rings fail to coordinate CuI ions (Fig. 2).

Related literature top

For the solvothermal synthesis and for related structures, see: Ye et al. (2005, 2007). For related structures, see: Wang (2008a,b,c).

Experimental top

A mixture of 4-(2-allyl-2H-tetrazol-5-yl)pyridine (20 mg, 0.2 mmol), CuCl (36 mg, 0.4 mmol), and methanol (2 ml) sealed in a glass tube were maintained at 348 K. Crystals suitable for X-ray analysis were obtained after 5 days.

Refinement top

All H atoms were placed geometrically and treated as riding with C—H = 0.93 (aromatic), 0.97 (methylene) or 0.96 Å (methyl), with Uiso(H) = 1.2Ueq(Caromatic, Cmethylene) or Uiso(H) = 1.5Ueq(Cmethyl).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003) and XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of a part of the title polymer, with atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level. Symmetry codes: (A) x, y - 1, z; (B) x, y + 1, z.
[Figure 2] Fig. 2. The one-dimensional chain structure of the title compound.
catena-Poly[[di-µ-chlorido-dicopper(I)]bis[µ-η2,σ1-4-(2-allyl-2H-tetrazol-5-yl)pyridine]] top
Crystal data top
[Cu2Cl2(C9H9N5)2]F(000) = 1152
Mr = 286.21Dx = 1.775 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9724 reflections
a = 17.270 (3) Åθ = 3.2–28.8°
b = 12.040 (2) ŵ = 2.27 mm1
c = 13.064 (3) ÅT = 293 K
β = 127.94 (3)°Block, colourless
V = 2142.3 (7) Å30.2 × 0.15 × 0.1 mm
Z = 8
Data collection top
Rigaku Mercury2
diffractometer
2451 independent reflections
Radiation source: fine-focus sealed tube1814 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.2°
CCD_Profile_fitting scansh = 2222
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1515
Tmin = 0.643, Tmax = 0.800l = 1616
10753 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0422P)2 + 0.6044P]
where P = (Fo2 + 2Fc2)/3
2451 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Cu2Cl2(C9H9N5)2]V = 2142.3 (7) Å3
Mr = 286.21Z = 8
Monoclinic, C2/cMo Kα radiation
a = 17.270 (3) ŵ = 2.27 mm1
b = 12.040 (2) ÅT = 293 K
c = 13.064 (3) Å0.2 × 0.15 × 0.1 mm
β = 127.94 (3)°
Data collection top
Rigaku Mercury2
diffractometer
2451 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1814 reflections with I > 2σ(I)
Tmin = 0.643, Tmax = 0.800Rint = 0.059
10753 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.06Δρmax = 0.33 e Å3
2451 reflectionsΔρmin = 0.39 e Å3
154 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.39314 (3)0.49203 (3)0.59806 (4)0.03726 (16)
Cl10.57394 (6)0.49142 (6)0.69868 (8)0.0343 (2)
N10.3855 (2)0.8479 (2)0.3785 (3)0.0460 (7)
N20.40548 (19)0.91092 (19)0.5524 (3)0.0362 (6)
N30.3659 (2)0.9552 (2)0.3613 (3)0.0435 (7)
N40.40899 (19)0.82409 (19)0.4924 (3)0.0345 (6)
N50.36588 (18)0.33219 (19)0.5431 (2)0.0304 (6)
C10.2946 (2)0.5831 (2)0.4346 (3)0.0388 (8)
H1A0.24110.54720.42590.068 (12)*
H1C0.30620.56830.37290.052 (11)*
C20.3534 (2)0.6549 (2)0.5330 (3)0.0350 (7)
H2A0.34190.66980.59480.089 (15)*
C30.4367 (2)0.7121 (2)0.5475 (3)0.0402 (8)
H3A0.45450.66950.50270.030 (8)*
H3B0.49280.71630.63740.052 (11)*
C40.3685 (2)0.1086 (2)0.4905 (3)0.0273 (6)
C50.3489 (2)0.2998 (2)0.4331 (3)0.0345 (7)
H5A0.33560.35590.37200.041 (9)*
C60.3829 (2)0.1409 (2)0.6025 (3)0.0321 (7)
H6A0.39370.08600.66330.047 (10)*
C70.3811 (2)0.2523 (2)0.6256 (3)0.0317 (7)
H7A0.39110.27410.70370.033 (8)*
C80.3495 (2)0.1902 (2)0.4032 (3)0.0346 (7)
H8A0.33710.17040.32310.054 (11)*
C90.3785 (2)0.9917 (2)0.4676 (3)0.0301 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0528 (3)0.0168 (2)0.0349 (2)0.00049 (16)0.0233 (2)0.00040 (15)
Cl10.0435 (4)0.0304 (4)0.0372 (4)0.0055 (3)0.0290 (4)0.0058 (3)
N10.069 (2)0.0269 (14)0.0416 (16)0.0058 (13)0.0335 (16)0.0005 (12)
N20.0465 (15)0.0205 (12)0.0401 (15)0.0013 (11)0.0259 (13)0.0008 (11)
N30.067 (2)0.0263 (14)0.0390 (16)0.0078 (13)0.0332 (16)0.0024 (12)
N40.0431 (16)0.0165 (12)0.0435 (16)0.0016 (10)0.0265 (14)0.0001 (11)
N50.0371 (14)0.0179 (12)0.0321 (13)0.0020 (10)0.0191 (12)0.0013 (10)
C10.0421 (19)0.0278 (16)0.0394 (18)0.0039 (14)0.0215 (16)0.0070 (14)
C20.052 (2)0.0180 (14)0.0432 (19)0.0075 (13)0.0337 (18)0.0074 (13)
C30.043 (2)0.0164 (14)0.051 (2)0.0045 (13)0.0234 (18)0.0053 (14)
C40.0293 (15)0.0182 (14)0.0291 (15)0.0021 (11)0.0153 (13)0.0002 (11)
C50.0465 (19)0.0197 (14)0.0325 (18)0.0001 (13)0.0218 (16)0.0043 (12)
C60.0415 (18)0.0191 (14)0.0348 (17)0.0026 (12)0.0229 (15)0.0023 (13)
C70.0423 (18)0.0228 (15)0.0328 (17)0.0037 (12)0.0245 (16)0.0014 (12)
C80.0468 (19)0.0257 (15)0.0319 (17)0.0024 (13)0.0246 (15)0.0009 (13)
C90.0357 (16)0.0170 (14)0.0347 (16)0.0027 (12)0.0202 (14)0.0002 (12)
Geometric parameters (Å, º) top
Cu1—N52.006 (2)C1—H1C0.9600
Cu1—C12.047 (3)C2—C31.497 (4)
Cu1—C22.079 (3)C2—H2A0.9599
Cu1—Cl1i2.3491 (11)C3—H3A0.9598
Cu1—Cl12.5358 (12)C3—H3B0.9599
Cl1—Cu1i2.3491 (11)C4—C81.384 (4)
N1—N41.310 (4)C4—C61.381 (4)
N1—N31.319 (4)C4—C9ii1.471 (4)
N2—C91.325 (4)C5—C81.378 (4)
N2—N41.330 (3)C5—H5A0.9600
N3—C91.341 (4)C6—C71.379 (4)
N4—C31.464 (3)C6—H6A0.9599
N5—C51.336 (4)C7—H7A0.9600
N5—C71.345 (4)C8—H8A0.9600
C1—C21.351 (4)C9—C4iii1.471 (4)
C1—H1A0.9600
N5—Cu1—C1106.18 (11)C3—C2—Cu1109.4 (2)
N5—Cu1—C2144.35 (12)C1—C2—H2A119.7
C1—Cu1—C238.23 (12)C3—C2—H2A119.1
N5—Cu1—Cl1i104.01 (8)Cu1—C2—H2A91.1
C1—Cu1—Cl1i130.46 (11)N4—C3—C2111.3 (3)
C2—Cu1—Cl1i104.77 (10)N4—C3—H3A108.8
N5—Cu1—Cl197.23 (8)C2—C3—H3A108.7
C1—Cu1—Cl1120.78 (11)N4—C3—H3B109.4
C2—Cu1—Cl1101.90 (10)C2—C3—H3B110.4
Cl1i—Cu1—Cl192.81 (5)H3A—C3—H3B108.2
Cu1i—Cl1—Cu187.19 (5)C8—C4—C6118.1 (3)
N4—N1—N3106.1 (3)C8—C4—C9ii120.6 (3)
C9—N2—N4101.8 (2)C6—C4—C9ii121.2 (3)
N1—N3—C9106.4 (3)N5—C5—C8123.4 (3)
N1—N4—N2113.7 (2)N5—C5—H5A118.0
N1—N4—C3122.7 (3)C8—C5—H5A118.6
N2—N4—C3123.6 (3)C7—C6—C4119.5 (3)
C5—N5—C7117.3 (2)C7—C6—H6A120.5
C5—N5—Cu1120.90 (19)C4—C6—H6A119.9
C7—N5—Cu1120.8 (2)N5—C7—C6122.6 (3)
C2—C1—Cu172.17 (18)N5—C7—H7A118.4
C2—C1—H1A120.4C6—C7—H7A119.0
Cu1—C1—H1A90.3C4—C8—C5119.0 (3)
C2—C1—H1C119.6C4—C8—H8A120.2
Cu1—C1—H1C107.9C5—C8—H8A120.8
H1A—C1—H1C120.0N2—C9—N3112.0 (3)
C1—C2—C3121.1 (3)N2—C9—C4iii123.9 (3)
C1—C2—Cu169.60 (17)N3—C9—C4iii124.0 (3)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x, y1, z; (iii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···Cl1i0.962.813.459 (3)126
Symmetry code: (i) x+1, y, z+3/2.

Experimental details

Crystal data
Chemical formula[Cu2Cl2(C9H9N5)2]
Mr286.21
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)17.270 (3), 12.040 (2), 13.064 (3)
β (°) 127.94 (3)
V3)2142.3 (7)
Z8
Radiation typeMo Kα
µ (mm1)2.27
Crystal size (mm)0.2 × 0.15 × 0.1
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.643, 0.800
No. of measured, independent and
observed [I > 2σ(I)] reflections
10753, 2451, 1814
Rint0.059
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.100, 1.06
No. of reflections2451
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.39

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003) and XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by a Start-up Grant from SEU to Professor Ren-Gen Xiong.

References

First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, W. (2008a). Acta Cryst. E64, m759  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, W. (2008b). Acta Cryst. E64, m900–m901.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, W. (2008c). Acta Cryst. E64, m902.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYe, Q., Wang, X.-S., Zhao, H. & Xiong, R.-G. (2005). Chem. Soc. Rev. 34, 208–225.  Web of Science PubMed CAS Google Scholar
First citationYe, Q., Zhao, H., Qu, Z.-R., Xiong, R.-G., Fu, D.-W., Xiong, R.-G., Cui, Y.-P., Akutagawa, T., Chan, P. W. H. & Nakamura, T. (2007). Angew. Chem. Int. Ed. 46, 6852–6856.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds