metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[tri­aqua­tri-μ5-tartrato-dilanthanum(III)] dihydrate]

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: liushizhu521@126.com

(Received 18 April 2008; accepted 11 June 2008; online 19 June 2008)

In the title polymer, {[La2(C4H4O6)3(H2O)3]·2H2O}n, two symmetry-independent LaIII ions are nine-coordinated and display a distorted monocapped square-anti­prismatic geometry. One is coordinated by seven O atoms from four tartrate ligands and two water mol­ecules, the other by eight O atoms from five tartrate ligands and one water mol­ecule. The three tartrate ligands in the asymmetric unit act identically as μ5-ligands, which link lanthanum centres to form a three-dimensional coordination framework. An extensive network of hydrogen bonds is observed in the crystal structure, involving two uncoordinated water mol­ecules, one of which is disordered over two positions, with occupancies of 0.550 (13) and 0.450 (13).

Related literature

For related literature, see: Yaghi et al. (1998[Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474-484.], 2003[Yaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705-714.]); Serre et al. (2004[Serre, C., Millange, F., Thouvenot, C., Gardant, N., Pellé, F. & Férey, G. (2004). J. Mater. Chem. 14, 1540-1543.]); James et al. (2003[James, S. L. (2003). Chem. Soc. Rev. 32, 276-288.]).

[Scheme 1]

Experimental

Crystal data
  • [La2(C4H4O6)3(H2O)3]·2H2O

  • Mr = 812.12

  • Monoclinic, P 21 /c

  • a = 12.6271 (2) Å

  • b = 12.9273 (2) Å

  • c = 16.6556 (3) Å

  • β = 127.801 (1)°

  • V = 2148.22 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.04 mm−1

  • T = 296 (2) K

  • 0.25 × 0.21 × 0.18 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.372, Tmax = 0.480

  • 19115 measured reflections

  • 3771 independent reflections

  • 3226 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.057

  • S = 1.05

  • 3771 reflections

  • 344 parameters

  • H-atom parameters constrained

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O8i 0.82 1.87 2.677 (4) 169
O4—H4⋯O18ii 0.82 1.80 2.619 (4) 174
O9—H9⋯O16 0.82 2.46 3.177 (5) 147
O10—H10A⋯O8iii 0.82 1.94 2.745 (4) 167
O15—H15⋯O2i 0.82 1.82 2.632 (4) 175
O16—H16⋯O4WA 0.82 1.89 2.667 (9) 158
O16—H16⋯O4WB 0.82 1.94 2.708 (9) 157
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x, -y+2, -z+2.

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The use of multifunctional organic linker molecules to polymerize metal centers into open-framework materials has led to the development of a rich field of chemistry (Yaghi et al., 1998, 2003; Serre et al., 2004; James, 2003) owing to the potential applications of these materials in catalysis, separation, gas storage and molecular recognition. Among such novel open-framework materials, lanthanide oxalates are particularly noteworthy. The wide variety of coordination modes of the tartarate anion permits the use of metal-tartarate units as excellent building blocks to construct a great diversity of frameworks ranging from discrete oligomeric entities to one-, two- and three-dimensional networks. Recently, we obtained the title LaIII polymer, (I), and its crystal structure is reported here.

In the asymmetric unit of (I), two symmetry independent LaIII ions are nine-coordinated and display a distorted monocapped square antiprism geometry. One is coordinated by seven O atoms from four tartarate ligands and two coordinated water molecules, the other is defined by eight O atoms from five tartarate ligands and one coordinated water molecule (Fig. 1). All three unique tartarate ligands only act as one type of coordination mode, which link lanthanum centres to form a three-dimensional coordination framework (Fig. 2). The shortest La···La separations in the solid are 6.207 (2), 6.520 (3) and 6.535 (2) Å. The voids between the individual metal complex units are filled with classical hydrogen bonded (Table 1) interstitial disordered water molecules.

Related literature top

For related literature, see: Yaghi et al. (1998, 2003); Serre et al. (2004); James et al. (2003).

Experimental top

A mixture of La2O3 (0.5 mmol), tartaric acid (1.5 mmol) and H2O (10 ml) in the presence of HClO4 (0.385 mmol) was stirred vigorously for 20 min and then sealed in a Teflon-lined stainless-steel autoclave (20 ml, capacity). The autoclave was heated to 433 K and maintained at this temperature for 7 days, and then cooled to room temperature at 5 K.h-1. The crystals were obtained in ca. 46% yield based on La.

Refinement top

Lattice water molecule O4W is disordered over two sites, O4WA and O4WB, with refined occupancies of 0.450 (13) and 0.550 (13), respectively. Water H atoms were located in a difference map and refined isotropically with Uiso(H) = 1.5Ueq(O) and a regularized geometry: O—H bond lengths were restrained to 0.82 (2)/0.85 (1) Å and H···H separations were restrained to 1.35 (2) Å for coordinated and 1.39 Å for interstitial water molecules. In the final cycles, a riding model was applied for all water H atoms. All other H atoms were placed in calculated positions with a C—H distance of 0.98 Å and O—H distance of 0.82 Å, and refined using a riding model with Uiso(H) = 1.2Ueq(C) for CH groups and Uiso(H) = 1.5Ueq(O) for hydroxyl groups.

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A packing view of (I), showing the inter and intramolecular hydrogen bonds.
Poly[[triaquatri-µ5-tartrato-dilanthanum(III)] dihydrate] top
Crystal data top
[La2(C4H4O6)3(H2O)3]·2H2OF(000) = 1568
Mr = 812.12Dx = 2.511 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 15678 reflections
a = 12.6271 (2) Åθ = 1.4–28.0°
b = 12.9273 (2) ŵ = 4.04 mm1
c = 16.6556 (3) ÅT = 296 K
β = 127.801 (1)°Block, colourless
V = 2148.22 (6) Å30.25 × 0.21 × 0.18 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
3771 independent reflections
Radiation source: fine-focus sealed tube3226 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ϕ and ω scansθmax = 25.2°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.372, Tmax = 0.480k = 1514
19115 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0203P)2 + 3.8165P]
where P = (Fo2 + 2Fc2)/3
3771 reflections(Δ/σ)max = 0.001
344 parametersΔρmax = 0.87 e Å3
0 restraintsΔρmin = 0.65 e Å3
Crystal data top
[La2(C4H4O6)3(H2O)3]·2H2OV = 2148.22 (6) Å3
Mr = 812.12Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.6271 (2) ŵ = 4.04 mm1
b = 12.9273 (2) ÅT = 296 K
c = 16.6556 (3) Å0.25 × 0.21 × 0.18 mm
β = 127.801 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
3771 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3226 reflections with I > 2σ(I)
Tmin = 0.372, Tmax = 0.480Rint = 0.047
19115 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.057H-atom parameters constrained
S = 1.05Δρmax = 0.87 e Å3
3771 reflectionsΔρmin = 0.65 e Å3
344 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.0900 (4)0.9566 (4)0.5698 (3)0.0155 (10)
C20.1083 (4)0.8523 (4)0.5199 (3)0.0177 (10)
H20.02950.84160.52240.021*
C30.2308 (4)0.8455 (4)0.4086 (3)0.0176 (10)
H30.24320.91360.37820.021*
C40.2140 (4)0.7672 (4)0.3482 (3)0.0174 (10)
C50.0357 (5)1.0235 (4)0.9197 (3)0.0183 (10)
C60.1840 (4)0.9984 (4)0.9767 (3)0.0184 (10)
H60.22491.05870.96970.022*
C70.2635 (4)0.9782 (3)1.0918 (3)0.0165 (10)
H70.23331.02651.11930.020*
C80.4144 (4)0.9950 (4)1.1463 (3)0.0172 (10)
C90.2706 (4)0.7265 (4)0.8239 (3)0.0171 (10)
C100.2636 (4)0.6536 (4)0.8918 (3)0.0152 (10)
H100.24240.58410.86230.018*
C110.3977 (4)0.6497 (3)0.9974 (3)0.0150 (10)
H110.46870.64460.98990.018*
C120.4096 (4)0.5570 (3)1.0589 (3)0.0137 (10)
La10.02226 (2)0.81431 (2)0.77118 (2)0.01422 (8)
La20.54797 (2)0.73846 (2)0.22545 (2)0.01381 (8)
O10.0471 (3)0.9566 (3)0.6612 (2)0.0248 (8)
O20.1144 (3)1.0376 (2)0.5208 (2)0.0207 (7)
O30.1053 (3)0.7743 (2)0.5816 (2)0.0221 (7)
H3A0.06610.72670.57760.033*
O40.3519 (3)0.8206 (2)0.3936 (2)0.0184 (7)
H40.36500.86450.42220.028*
O50.3178 (3)0.7172 (2)0.2791 (2)0.0221 (8)
O60.1040 (3)0.7609 (3)0.3649 (2)0.0232 (8)
O70.0495 (3)0.9637 (3)0.8484 (2)0.0255 (8)
O80.0074 (3)1.1045 (2)0.9438 (3)0.0226 (8)
O90.1947 (3)0.9140 (3)0.9266 (3)0.0294 (8)
H90.23720.87030.97100.044*
O100.2457 (3)0.8752 (2)1.1112 (2)0.0237 (8)
H10A0.17140.87111.09730.036*
O110.4892 (3)0.9167 (2)1.1844 (2)0.0214 (7)
O120.4517 (3)1.0853 (2)1.1460 (2)0.0213 (7)
O130.1759 (3)0.7910 (3)0.7713 (3)0.0256 (8)
O140.3687 (3)0.7181 (3)0.8235 (2)0.0235 (8)
O150.1587 (3)0.6864 (2)0.8953 (2)0.0197 (7)
H150.14380.64270.92280.030*
O160.4191 (3)0.7419 (2)1.0529 (2)0.0212 (7)
H160.45260.78321.03700.032*
O170.4440 (3)0.5724 (2)1.1455 (2)0.0238 (8)
O180.3836 (3)0.4696 (2)1.0164 (2)0.0194 (7)
O1W0.2694 (3)0.8479 (3)0.6519 (3)0.0322 (9)
H1W0.30290.84250.68090.048*
H2W0.30740.89670.61290.048*
O2W0.1015 (3)0.6276 (3)0.7134 (2)0.0307 (8)
H4W0.17750.61380.69320.046*
H3W0.05430.58150.75430.046*
O3W0.7660 (3)0.6479 (3)0.1489 (3)0.0363 (10)
H6W0.80760.64210.17150.054*
H5W0.80250.60850.10040.054*
O5W0.6940 (6)0.5141 (5)0.6746 (7)0.139 (3)
H10W0.65040.56180.63120.208*
H9W0.64460.49370.69000.208*
O4WA0.4665 (13)0.9039 (8)0.9799 (8)0.056 (5)0.450 (13)
H4WA0.43040.84940.98180.084*0.450 (13)
H4WB0.48770.88890.94170.084*0.450 (13)
O4WB0.5902 (11)0.8436 (8)1.0338 (7)0.072 (4)0.550 (13)
H4WC0.58540.82950.98180.108*0.550 (13)
H4WD0.54000.89611.01690.108*0.550 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.008 (2)0.020 (3)0.017 (3)0.0002 (18)0.008 (2)0.000 (2)
C20.018 (2)0.019 (3)0.019 (2)0.0007 (19)0.013 (2)0.001 (2)
C30.014 (2)0.018 (3)0.019 (3)0.0001 (18)0.010 (2)0.001 (2)
C40.018 (3)0.020 (3)0.016 (2)0.0001 (19)0.011 (2)0.002 (2)
C50.026 (3)0.015 (3)0.017 (2)0.000 (2)0.015 (2)0.005 (2)
C60.023 (2)0.016 (3)0.018 (2)0.0038 (19)0.013 (2)0.003 (2)
C70.025 (3)0.010 (2)0.019 (2)0.0028 (19)0.015 (2)0.003 (2)
C80.025 (3)0.015 (3)0.013 (2)0.000 (2)0.012 (2)0.002 (2)
C90.019 (3)0.020 (3)0.013 (2)0.0007 (19)0.010 (2)0.001 (2)
C100.015 (2)0.015 (3)0.020 (2)0.0020 (18)0.013 (2)0.0033 (19)
C110.020 (2)0.014 (2)0.016 (2)0.0004 (18)0.013 (2)0.0021 (19)
C120.010 (2)0.016 (3)0.018 (2)0.0019 (18)0.0102 (19)0.002 (2)
La10.01520 (14)0.01340 (16)0.01582 (14)0.00137 (10)0.01041 (12)0.00210 (11)
La20.01507 (14)0.01329 (15)0.01485 (14)0.00060 (10)0.01008 (12)0.00145 (11)
O10.035 (2)0.024 (2)0.0153 (18)0.0022 (15)0.0153 (16)0.0006 (15)
O20.0321 (19)0.0115 (18)0.0204 (18)0.0018 (14)0.0170 (16)0.0048 (14)
O30.0296 (19)0.0142 (18)0.0211 (18)0.0049 (14)0.0148 (16)0.0042 (14)
O40.0148 (16)0.0217 (19)0.0211 (18)0.0020 (13)0.0123 (14)0.0078 (14)
O50.0188 (18)0.027 (2)0.0230 (18)0.0058 (14)0.0140 (15)0.0108 (15)
O60.0202 (18)0.031 (2)0.0234 (19)0.0026 (14)0.0158 (15)0.0061 (15)
O70.0218 (18)0.025 (2)0.0244 (19)0.0017 (14)0.0116 (16)0.0084 (16)
O80.0267 (18)0.0119 (18)0.034 (2)0.0001 (14)0.0208 (16)0.0045 (15)
O90.0268 (19)0.033 (2)0.0237 (19)0.0059 (15)0.0129 (16)0.0087 (16)
O100.0199 (17)0.0202 (19)0.033 (2)0.0000 (14)0.0170 (16)0.0073 (16)
O110.0196 (17)0.0160 (18)0.0259 (18)0.0002 (14)0.0126 (15)0.0017 (15)
O120.0273 (18)0.0150 (19)0.0174 (17)0.0051 (14)0.0115 (15)0.0027 (14)
O130.0247 (19)0.031 (2)0.028 (2)0.0126 (15)0.0197 (16)0.0147 (16)
O140.0207 (18)0.033 (2)0.0245 (19)0.0064 (15)0.0181 (16)0.0072 (16)
O150.0174 (17)0.0201 (19)0.0271 (19)0.0030 (13)0.0164 (15)0.0106 (15)
O160.0309 (19)0.0135 (18)0.0235 (18)0.0071 (14)0.0189 (16)0.0049 (14)
O170.037 (2)0.0175 (19)0.0171 (18)0.0001 (15)0.0166 (16)0.0003 (15)
O180.0267 (18)0.0165 (19)0.0195 (17)0.0007 (14)0.0164 (15)0.0011 (14)
O1W0.0219 (19)0.051 (2)0.028 (2)0.0068 (16)0.0173 (16)0.0164 (18)
O2W0.035 (2)0.022 (2)0.0256 (19)0.0047 (16)0.0143 (17)0.0026 (16)
O3W0.027 (2)0.052 (3)0.039 (2)0.0224 (17)0.0246 (18)0.0308 (19)
O5W0.117 (5)0.100 (5)0.255 (10)0.012 (4)0.142 (6)0.041 (6)
O4WA0.103 (11)0.045 (7)0.053 (7)0.036 (7)0.064 (8)0.019 (5)
O4WB0.090 (9)0.075 (8)0.056 (6)0.033 (7)0.047 (6)0.005 (5)
Geometric parameters (Å, º) top
C1—O21.245 (5)La1—O2W2.563 (3)
C1—O11.266 (5)La1—O92.679 (3)
C1—C21.525 (6)La1—O32.698 (3)
C2—O31.424 (5)La2—O52.478 (3)
C2—C31.524 (6)La2—O14ii2.488 (3)
C2—H20.9800La2—O17iii2.496 (3)
C3—O41.427 (5)La2—O3W2.505 (3)
C3—C41.531 (6)La2—O11iii2.529 (3)
C3—H30.9800La2—O42.569 (3)
C4—O61.241 (5)La2—O12iv2.606 (3)
C4—O51.269 (5)La2—O16iii2.641 (3)
C5—O81.249 (5)La2—O10iii2.730 (3)
C5—O71.265 (5)O3—H3A0.8187
C5—C61.527 (6)O4—H40.8211
C6—O91.430 (5)O6—La1v2.534 (3)
C6—C71.547 (6)O9—H90.8167
C6—H60.9800O10—La2vi2.730 (3)
C7—O101.420 (5)O10—H10A0.8180
C7—C81.543 (6)O11—La2vi2.529 (3)
C7—H70.9800O12—La2vii2.606 (3)
C8—O111.258 (5)O14—La2viii2.488 (3)
C8—O121.260 (5)O15—H150.8188
C9—O141.249 (5)O16—La2vi2.641 (3)
C9—O131.268 (5)O16—H160.8184
C9—C101.516 (6)O17—La2vi2.496 (3)
C10—O151.426 (5)O1W—H1W0.8167
C10—C111.520 (6)O1W—H2W0.8174
C10—H100.9800O2W—H4W0.8180
C11—O161.429 (5)O2W—H3W0.8220
C11—C121.523 (6)O3W—H6W0.8155
C11—H110.9800O3W—H5W0.8177
C12—O171.241 (5)O5W—H10W0.8468
C12—O181.265 (5)O5W—H9W0.8478
La1—O72.458 (3)O4WA—H4WA0.8498
La1—O12.476 (3)O4WA—H4WB0.8499
La1—O1W2.505 (3)O4WA—H4WD0.7409
La1—O132.519 (3)O4WB—H4WC0.8505
La1—O6i2.534 (3)O4WB—H4WD0.8503
La1—O152.537 (3)
O2—C1—O1122.7 (4)O1—La1—O359.64 (10)
O2—C1—C2119.5 (4)O1W—La1—O372.73 (10)
O1—C1—C2117.8 (4)O13—La1—O369.61 (10)
O3—C2—C3113.3 (4)O6i—La1—O3129.38 (10)
O3—C2—C1107.7 (4)O15—La1—O3109.80 (10)
C3—C2—C1114.6 (4)O2W—La1—O366.30 (10)
O3—C2—H2106.9O9—La1—O3131.08 (10)
C3—C2—H2106.9O5—La2—O14ii131.51 (10)
C1—C2—H2106.9O5—La2—O17iii75.65 (10)
O4—C3—C2113.9 (4)O14ii—La2—O17iii130.47 (10)
O4—C3—C4107.5 (4)O5—La2—O3W144.32 (11)
C2—C3—C4113.1 (4)O14ii—La2—O3W70.40 (10)
O4—C3—H3107.3O17iii—La2—O3W69.74 (11)
C2—C3—H3107.3O5—La2—O11iii80.05 (10)
C4—C3—H3107.3O14ii—La2—O11iii101.25 (11)
O6—C4—O5124.2 (4)O17iii—La2—O11iii126.38 (10)
O6—C4—C3118.9 (4)O3W—La2—O11iii128.09 (11)
O5—C4—C3116.8 (4)O5—La2—O461.24 (9)
O8—C5—O7124.6 (4)O14ii—La2—O472.79 (10)
O8—C5—C6117.5 (4)O17iii—La2—O4129.34 (10)
O7—C5—C6117.8 (4)O3W—La2—O4140.56 (10)
O9—C6—C5108.5 (4)O11iii—La2—O472.77 (10)
O9—C6—C7111.8 (4)O5—La2—O12iv76.47 (10)
C5—C6—C7115.0 (4)O14ii—La2—O12iv78.72 (10)
O9—C6—H6107.0O17iii—La2—O12iv68.33 (10)
C5—C6—H6107.0O3W—La2—O12iv82.92 (11)
C7—C6—H6107.0O11iii—La2—O12iv147.59 (10)
O10—C7—C8108.0 (3)O4—La2—O12iv76.44 (10)
O10—C7—C6111.6 (4)O5—La2—O16iii76.20 (10)
C8—C7—C6109.6 (3)O14ii—La2—O16iii149.60 (10)
O10—C7—H7109.2O17iii—La2—O16iii60.38 (10)
C8—C7—H7109.2O3W—La2—O16iii93.63 (10)
C6—C7—H7109.2O11iii—La2—O16iii67.75 (10)
O11—C8—O12125.4 (4)O4—La2—O16iii125.67 (9)
O11—C8—C7117.3 (4)O12iv—La2—O16iii126.16 (9)
O12—C8—C7117.2 (4)O5—La2—O10iii136.93 (10)
O14—C9—O13124.9 (4)O14ii—La2—O10iii72.81 (10)
O14—C9—C10117.5 (4)O17iii—La2—O10iii118.40 (10)
O13—C9—C10117.6 (4)O3W—La2—O10iii70.51 (11)
O15—C10—C9109.0 (3)O11iii—La2—O10iii58.50 (9)
O15—C10—C11111.5 (4)O4—La2—O10iii111.26 (10)
C9—C10—C11110.6 (4)O12iv—La2—O10iii146.07 (9)
O15—C10—H10108.6O16iii—La2—O10iii77.54 (10)
C9—C10—H10108.6C1—O1—La1131.0 (3)
C11—C10—H10108.6C2—O3—La1121.9 (3)
O16—C11—C10110.8 (4)C2—O3—H3A103.0
O16—C11—C12108.7 (3)La1—O3—H3A114.7
C10—C11—C12112.6 (4)C3—O4—La2119.8 (2)
O16—C11—H11108.2C3—O4—H4108.6
C10—C11—H11108.2La2—O4—H4121.1
C12—C11—H11108.2C4—O5—La2127.0 (3)
O17—C12—O18125.4 (4)C4—O6—La1v135.2 (3)
O17—C12—C11118.4 (4)C5—O7—La1131.3 (3)
O18—C12—C11116.2 (4)C6—O9—La1121.6 (2)
O7—La1—O178.94 (11)C6—O9—H9104.2
O7—La1—O1W76.88 (11)La1—O9—H9104.9
O1—La1—O1W75.70 (11)C7—O10—La2vi123.3 (2)
O7—La1—O13123.42 (11)C7—O10—H10A108.1
O1—La1—O1376.42 (10)La2vi—O10—H10A126.4
O1W—La1—O13140.85 (11)C8—O11—La2vi131.4 (3)
O7—La1—O6i74.88 (11)C8—O12—La2vii133.4 (3)
O1—La1—O6i145.67 (10)C9—O13—La1126.5 (3)
O1W—La1—O6i77.03 (10)C9—O14—La2viii143.6 (3)
O13—La1—O6i137.11 (10)C10—O15—La1123.8 (2)
O7—La1—O15115.51 (10)C10—O15—H15110.8
O1—La1—O15136.82 (10)La1—O15—H15120.3
O1W—La1—O15145.22 (10)C11—O16—La2vi122.1 (2)
O13—La1—O1561.51 (10)C11—O16—H16105.4
O6i—La1—O1575.61 (10)La2vi—O16—H16126.4
O7—La1—O2W142.04 (11)C12—O17—La2vi128.9 (3)
O1—La1—O2W125.34 (11)La1—O1W—H1W111.2
O1W—La1—O2W81.70 (12)La1—O1W—H2W127.1
O13—La1—O2W92.68 (11)H1W—O1W—H2W105.8
O6i—La1—O2W69.95 (11)La1—O2W—H4W116.7
O15—La1—O2W69.01 (10)La1—O2W—H3W117.0
O7—La1—O960.31 (10)H4W—O2W—H3W104.7
O1—La1—O987.05 (11)La2—O3W—H6W128.7
O1W—La1—O9136.24 (11)La2—O3W—H5W124.9
O13—La1—O968.26 (11)H6W—O3W—H5W105.5
O6i—La1—O998.66 (11)H10W—O5W—H9W105.7
O15—La1—O969.45 (10)H4WA—O4WA—H4WB105.2
O2W—La1—O9138.45 (11)H4WA—O4WA—H4WD106.4
O7—La1—O3133.15 (10)H4WC—O4WB—H4WD105.1
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x1, y+3/2, z1/2; (iii) x1, y, z1; (iv) x, y1/2, z+3/2; (v) x, y+3/2, z1/2; (vi) x+1, y, z+1; (vii) x, y+1/2, z+3/2; (viii) x+1, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O8iv0.821.872.677 (4)169
O4—H4···O18vii0.821.802.619 (4)174
O9—H9···O160.822.463.177 (5)147
O10—H10A···O8ix0.821.942.745 (4)167
O15—H15···O2iv0.821.822.632 (4)175
O16—H16···O4WA0.821.892.667 (9)158
O16—H16···O4WB0.821.942.708 (9)157
Symmetry codes: (iv) x, y1/2, z+3/2; (vii) x, y+1/2, z+3/2; (ix) x, y+2, z+2.

Experimental details

Crystal data
Chemical formula[La2(C4H4O6)3(H2O)3]·2H2O
Mr812.12
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.6271 (2), 12.9273 (2), 16.6556 (3)
β (°) 127.801 (1)
V3)2148.22 (6)
Z4
Radiation typeMo Kα
µ (mm1)4.04
Crystal size (mm)0.25 × 0.21 × 0.18
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.372, 0.480
No. of measured, independent and
observed [I > 2σ(I)] reflections
19115, 3771, 3226
Rint0.047
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.057, 1.05
No. of reflections3771
No. of parameters344
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.87, 0.65

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O8i0.821.872.677 (4)169.1
O4—H4···O18ii0.821.802.619 (4)174.2
O9—H9···O160.822.463.177 (5)147.1
O10—H10A···O8iii0.821.942.745 (4)166.5
O15—H15···O2i0.821.822.632 (4)175.2
O16—H16···O4WA0.821.892.667 (9)157.9
O16—H16···O4WB0.821.942.708 (9)157.2
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x, y+1/2, z+3/2; (iii) x, y+2, z+2.
 

Acknowledgements

The author acknowledges South China Normal University for supporting this work.

References

First citationBruker (2004). SMART and SAINT. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationJames, S. L. (2003). Chem. Soc. Rev. 32, 276–288.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSerre, C., Millange, F., Thouvenot, C., Gardant, N., Pellé, F. & Férey, G. (2004). J. Mater. Chem. 14, 1540–1543.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474–484.  Web of Science CrossRef CAS Google Scholar
First citationYaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705–714.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds