metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{Bis[4-(2-pyrid­yl)pyrimidin-2-yl] sulfide}di­bromidocobalt(II)

aDepartment of Pharmaceutical Science, Tianjin Medical College, Tianjin 300222, People's Republic of China, and bDepartment of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
*Correspondence e-mail: tlhu@nankai.edu.cn

(Received 15 May 2008; accepted 26 May 2008; online 7 June 2008)

The title compound, [CoBr2(C18H12N6S)], is a mononuclear complex in which a twofold rotation axis passes through the Co and S atoms. The CoII center is six-coordinated by four N atoms from one bis­[4-(2-pyrid­yl)pyrimidin-2-yl] sulfide (L) ligand and two bromide anions, forming an octa­hedral coordination geometry, where the four donor N atoms are located in the equatorial plane and the Br atoms occupy the axial positions. The sum of the bond angles around the Co atom in the equatorial plane is 360.5°, with the four N atoms and the central Co atom almost coplanar. In the crystal structure, the mononuclear units are linked by ππ stacking inter­actions (the inter­planar distances are 3.469 and 3.533 Å, and the corresponding centroid–centroid distances are 3.791 and 3.896 Å) into a three-dimensional supra­molecular network.

Related literature

For related literature, see: de Faria et al. (2007[Faria, D. M. de, Yoshida, M. I., Pinheiro, C. B., Guedes, K. J., Krambrock, K., Diniz, R., de Oliveira, L. F. C. & Machado, F. C. (2007). Polyhedron, 26, 4525-4532.]); Teles et al. (2006[Teles, W. M., Marinho, M. V., Yoshida, M. I., Speziali, N. L., Krambrock, K., Pinheiro, C. B., Pinhal, N. M., Leitão, A. A. & Machado, F. C. (2006). Inorg. Chim. Acta, 359, 4613-4618.]); Li & Bu (2008[Li, J. R. & Bu, X. H. (2008). Eur. J. Inorg. Chem. pp. 27-40.]); Bridson & Walker (1970[Bridson, M. E. & Walker, W. R. (1970). Aust. J. Chem. 23, 1191-1197.]).

[Scheme 1]

Experimental

Crystal data
  • [CoBr2(C18H12N6S)]

  • Mr = 563.15

  • Monoclinic, C 2/c

  • a = 15.191 (5) Å

  • b = 10.350 (4) Å

  • c = 13.338 (5) Å

  • β = 112.312 (5)°

  • V = 1940.0 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.13 mm−1

  • T = 294 (2) K

  • 0.20 × 0.18 × 0.14 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.375, Tmax = 0.489

  • 5288 measured reflections

  • 1970 independent reflections

  • 1456 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.061

  • S = 1.04

  • 1970 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Selected geometric parameters (Å, °)

Br1—Co1 2.6178 (10)
Co1—N2 2.099 (2)
Co1—N1 2.125 (2)
N2i—Co1—N2 96.18 (13)
N2—Co1—N1 78.04 (9)
N1—Co1—N1i 108.24 (13)
N2—Co1—Br1 86.87 (7)
N1—Co1—Br1 92.90 (7)
Symmetry code: (i) [-x+1, y, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Semirigid thioether ligands containing heterocycle with N-donors are gradually used in constructing coordination architectures with novel topologies and useful functions in recent years (de Faria et al., 2007; Teles et al., 2006). The pyridine and pyrimidine groups as normal heterocycle were used to incorporate with different mercapto units to form a series of bi- and multi-dentate ligands, which can adopt different conformations according to the different geometric requirements of metal centers when forming metal complexes (Li & Bu, 2008). Herein, we synthesized a semirigid thioether ligand bis[4-(pyridin-2-yl)pyrimidin-2-yl]sulfide (L) as well as its CoII complex, [Co(C18H12N6S)Br2] (I), and report the crystal structure of this complex.

In the molecule of (I), (Fig. 1), the bond lengths and angles are generally within normal ranges (Bridson & Walker, 1970). The CoII center is six-coordinated by four N atoms from one L ligand and two bromine ions, forming an octahedral coordination geometry. The bond angles N1—Co1—N2, N2—Co1—N2A, N2A—Co1—N1A and N1A—Co1—N1 are 78.04 (9), 96.18 (1), 78.04 (9) and 108.24 (1)°, respectively. The sum of these angles is 360.5 (2)°, suggesting that N1, N2, N1A, N2A and Co1 are almost in a plane. In the crystal structure of (I), the mononuclear units are interconnected by two π···π stacking interactions between the rings (N1/C1-C5) and (N2/N3/C6-C9) forming a three-dimensional supramolecular network.

Related literature top

For related literatures, see: de Faria et al. (2007); Teles et al. (2006); Li & Bu (2008); Bridson & Walker (1970).

Experimental top

The ligand bis[4-(pyridin-2-yl)pyrimidin-2-yl]sulfide (L) was synthesized according to the following method. Some amount of potassium 4-(pyridin-2-yl)pyrimine-2-thiolate was dissolved in the distilled water, and the dense hydrochloric acid was added drop by drop with slowly stirring. A lot of yellow precipitate appeared and then gradually disappear when the dense hydrochloric acid was continuously added. After complete disappearance of the yellow precipitate, the potassium hydroxide solution was added to the mixture until another kind of precipitate was obtained largely. The crude product was filtered and washed with the distilled water three times, and recrystallized with the mixture of chloroform and hexane (v/v=1:1), yield: 60%. The title coordination complex, (I), was synthesized according to the following method. A buffer layer of chloroform/methanol (v/v=2:1, 5 ml) was carefully layered over a chloroform solution (4 mL) of L (6.8 mg, 0.02 mmol). Then a solution of CoBr2 (4.4 mg, 0.02 mmol) in methanol (4 ml) was layered on the buffer layer. Red block crystals suitable for X-ray analysis were collected after five weeks, yield: 30%.

Refinement top

H atoms were included in calculated positions and treated in the subsequent refinement as riding atoms, with C—H = 0.93 and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radius [symmetry code: (i) -x + 1, y, -z + 1/2].
{Bis[4-(2-pyridyl)pyrimidin-2-yl] sulfide}dibromidocobalt(II) top
Crystal data top
[CoBr2(C18H12N6S)]F(000) = 1100
Mr = 563.15Dx = 1.928 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -c 2ycCell parameters from 2104 reflections
a = 15.191 (5) Åθ = 2.6–26.1°
b = 10.350 (4) ŵ = 5.13 mm1
c = 13.338 (5) ÅT = 294 K
β = 112.312 (5)°Block, red
V = 1940.0 (12) Å30.20 × 0.18 × 0.14 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
1970 independent reflections
Radiation source: fine-focus sealed tube1456 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 26.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1816
Tmin = 0.375, Tmax = 0.489k = 128
5288 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0192P)2 + 2.0266P]
where P = (Fo2 + 2Fc2)/3
1970 reflections(Δ/σ)max = 0.001
128 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
[CoBr2(C18H12N6S)]V = 1940.0 (12) Å3
Mr = 563.15Z = 4
Monoclinic, C2/cMo Kα radiation
a = 15.191 (5) ŵ = 5.13 mm1
b = 10.350 (4) ÅT = 294 K
c = 13.338 (5) Å0.20 × 0.18 × 0.14 mm
β = 112.312 (5)°
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
1970 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1456 reflections with I > 2σ(I)
Tmin = 0.375, Tmax = 0.489Rint = 0.037
5288 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.061H-atom parameters constrained
S = 1.04Δρmax = 0.39 e Å3
1970 reflectionsΔρmin = 0.36 e Å3
128 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.47796 (2)0.71842 (3)0.43535 (3)0.04031 (12)
C10.3781 (2)0.4680 (3)0.1581 (3)0.0462 (9)
H10.43580.42480.17630.055*
C20.2944 (3)0.3973 (3)0.1140 (3)0.0540 (10)
H20.29620.30850.10460.065*
C30.2092 (3)0.4609 (4)0.0846 (3)0.0515 (10)
H30.15220.41530.05620.062*
C40.2086 (2)0.5924 (3)0.0976 (3)0.0425 (9)
H40.15140.63720.07650.051*
C50.29483 (19)0.6578 (3)0.1429 (2)0.0297 (7)
C60.30020 (19)0.7994 (3)0.1562 (2)0.0302 (7)
C70.2209 (2)0.8785 (3)0.1266 (3)0.0415 (8)
H70.15980.84410.10020.050*
C80.2354 (2)1.0094 (4)0.1374 (3)0.0457 (9)
H80.18271.06360.11770.055*
C90.3946 (2)0.9792 (3)0.2033 (2)0.0353 (7)
Co10.50000.71573 (5)0.25000.02984 (15)
N10.37930 (17)0.5954 (2)0.1755 (2)0.0332 (6)
N20.38904 (15)0.8512 (2)0.1956 (2)0.0294 (6)
N30.3215 (2)1.0622 (3)0.1749 (2)0.0429 (7)
S10.50001.07169 (11)0.25000.0597 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02302 (16)0.0472 (2)0.0458 (2)0.00028 (14)0.00748 (13)0.00055 (16)
C10.044 (2)0.0312 (19)0.052 (2)0.0043 (15)0.0054 (17)0.0006 (15)
C20.067 (3)0.041 (2)0.045 (2)0.0245 (19)0.011 (2)0.0037 (17)
C30.042 (2)0.060 (3)0.045 (2)0.0292 (19)0.0083 (18)0.0007 (18)
C40.0269 (17)0.060 (2)0.038 (2)0.0124 (15)0.0093 (15)0.0018 (16)
C50.0214 (15)0.0413 (18)0.0251 (17)0.0055 (13)0.0072 (13)0.0007 (13)
C60.0209 (14)0.043 (2)0.0235 (16)0.0028 (13)0.0047 (12)0.0025 (13)
C70.0206 (16)0.061 (2)0.040 (2)0.0065 (15)0.0089 (14)0.0005 (17)
C80.0348 (19)0.058 (2)0.041 (2)0.0238 (17)0.0110 (16)0.0041 (17)
C90.0355 (18)0.0325 (17)0.0349 (19)0.0081 (14)0.0100 (15)0.0010 (14)
Co10.0159 (3)0.0224 (3)0.0438 (4)0.0000.0030 (2)0.000
N10.0245 (13)0.0318 (15)0.0373 (16)0.0042 (10)0.0051 (12)0.0002 (11)
N20.0203 (12)0.0295 (14)0.0343 (15)0.0032 (10)0.0060 (11)0.0024 (11)
N30.0433 (17)0.0387 (16)0.0437 (18)0.0201 (13)0.0130 (14)0.0052 (13)
S10.0424 (7)0.0221 (6)0.0980 (12)0.0000.0079 (7)0.000
Geometric parameters (Å, º) top
Br1—Co12.6178 (10)C7—C81.371 (5)
C1—N11.338 (4)C7—H70.9300
C1—C21.388 (5)C8—N31.328 (4)
C1—H10.9300C8—H80.9300
C2—C31.371 (5)C9—N21.329 (4)
C2—H20.9300C9—N31.339 (4)
C3—C41.373 (5)C9—S11.764 (3)
C3—H30.9300Co1—N2i2.099 (2)
C4—C51.392 (4)Co1—N22.099 (2)
C4—H40.9300Co1—N12.125 (2)
C5—N11.353 (4)Co1—N1i2.125 (2)
C5—C61.475 (4)Co1—Br1i2.6178 (10)
C6—N21.359 (3)S1—C9i1.764 (3)
C6—C71.385 (4)
N1—C1—C2122.9 (3)N2—C9—S1126.2 (2)
N1—C1—H1118.6N3—C9—S1107.2 (2)
C2—C1—H1118.6N2i—Co1—N296.18 (13)
C3—C2—C1118.8 (3)N2i—Co1—N1171.98 (9)
C3—C2—H2120.6N2—Co1—N178.04 (9)
C1—C2—H2120.6N2i—Co1—N1i78.04 (9)
C2—C3—C4119.4 (3)N2—Co1—N1i171.98 (9)
C2—C3—H3120.3N1—Co1—N1i108.24 (13)
C4—C3—H3120.3N2i—Co1—Br192.32 (7)
C3—C4—C5119.1 (3)N2—Co1—Br186.87 (7)
C3—C4—H4120.4N1—Co1—Br192.90 (7)
C5—C4—H4120.4N1i—Co1—Br187.82 (7)
N1—C5—C4121.9 (3)N2i—Co1—Br1i86.87 (7)
N1—C5—C6115.7 (2)N2—Co1—Br1i92.32 (7)
C4—C5—C6122.4 (3)N1—Co1—Br1i87.82 (7)
N2—C6—C7120.4 (3)N1i—Co1—Br1i92.90 (7)
N2—C6—C5116.1 (2)Br1—Co1—Br1i178.78 (3)
C7—C6—C5123.5 (3)C1—N1—C5117.8 (3)
C8—C7—C6117.8 (3)C1—N1—Co1127.7 (2)
C8—C7—H7121.1C5—N1—Co1114.53 (19)
C6—C7—H7121.1C9—N2—C6116.6 (2)
N3—C8—C7122.8 (3)C9—N2—Co1128.34 (19)
N3—C8—H8118.6C6—N2—Co1114.81 (19)
C7—C8—H8118.6C8—N3—C9115.7 (3)
N2—C9—N3126.6 (3)C9—S1—C9i114.3 (2)
N1—C1—C2—C31.5 (6)Br1—Co1—N1—C579.4 (2)
C1—C2—C3—C41.2 (6)Br1i—Co1—N1—C599.7 (2)
C2—C3—C4—C51.6 (5)N3—C9—N2—C60.9 (4)
C3—C4—C5—N10.7 (5)S1—C9—N2—C6179.2 (2)
C3—C4—C5—C6178.0 (3)N3—C9—N2—Co1174.6 (2)
N1—C5—C6—N22.5 (4)S1—C9—N2—Co17.1 (4)
C4—C5—C6—N2176.2 (3)C7—C6—N2—C90.2 (4)
N1—C5—C6—C7179.6 (3)C5—C6—N2—C9177.1 (3)
C4—C5—C6—C70.9 (5)C7—C6—N2—Co1174.4 (2)
N2—C6—C7—C80.7 (5)C5—C6—N2—Co18.4 (3)
C5—C6—C7—C8176.4 (3)N2i—Co1—N2—C93.7 (2)
C6—C7—C8—N30.1 (5)N1—Co1—N2—C9178.0 (3)
C2—C1—N1—C53.7 (5)Br1—Co1—N2—C988.3 (2)
C2—C1—N1—Co1176.2 (3)Br1i—Co1—N2—C990.8 (2)
C4—C5—N1—C13.3 (4)N2i—Co1—N2—C6177.5 (2)
C6—C5—N1—C1175.5 (3)N1—Co1—N2—C68.2 (2)
C4—C5—N1—Co1176.7 (2)Br1—Co1—N2—C685.46 (19)
C6—C5—N1—Co14.6 (3)Br1i—Co1—N2—C695.45 (19)
N2—Co1—N1—C1173.2 (3)C7—C8—N3—C90.9 (5)
N1i—Co1—N1—C112.0 (2)N2—C9—N3—C81.5 (5)
Br1—Co1—N1—C1100.6 (3)S1—C9—N3—C8180.0 (2)
Br1i—Co1—N1—C180.4 (3)N2—C9—S1—C9i3.8 (2)
N2—Co1—N1—C56.8 (2)N3—C9—S1—C9i177.7 (3)
N1i—Co1—N1—C5168.0 (2)
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[CoBr2(C18H12N6S)]
Mr563.15
Crystal system, space groupMonoclinic, C2/c
Temperature (K)294
a, b, c (Å)15.191 (5), 10.350 (4), 13.338 (5)
β (°) 112.312 (5)
V3)1940.0 (12)
Z4
Radiation typeMo Kα
µ (mm1)5.13
Crystal size (mm)0.20 × 0.18 × 0.14
Data collection
DiffractometerRigaku R-AXIS RAPID-S
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.375, 0.489
No. of measured, independent and
observed [I > 2σ(I)] reflections
5288, 1970, 1456
Rint0.037
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.061, 1.04
No. of reflections1970
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.36

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Br1—Co12.6178 (10)Co1—N12.125 (2)
Co1—N22.099 (2)
N2i—Co1—N296.18 (13)N1—Co1—N1i108.24 (13)
N2—Co1—N178.04 (9)N2—Co1—Br186.87 (7)
N2i—Co1—N1i78.04 (9)N1—Co1—Br192.90 (7)
Symmetry code: (i) x+1, y, z+1/2.
 

Acknowledgements

The authors thank Nankai University for supporting this work.

References

First citationBridson, M. E. & Walker, W. R. (1970). Aust. J. Chem. 23, 1191–1197.  CrossRef CAS Google Scholar
First citationBruker (1998). SMART (Version 5.051), SAINT (Version 5.01), SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFaria, D. M. de, Yoshida, M. I., Pinheiro, C. B., Guedes, K. J., Krambrock, K., Diniz, R., de Oliveira, L. F. C. & Machado, F. C. (2007). Polyhedron, 26, 4525–4532.  Google Scholar
First citationLi, J. R. & Bu, X. H. (2008). Eur. J. Inorg. Chem. pp. 27–40.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTeles, W. M., Marinho, M. V., Yoshida, M. I., Speziali, N. L., Krambrock, K., Pinheiro, C. B., Pinhal, N. M., Leitão, A. A. & Machado, F. C. (2006). Inorg. Chim. Acta, 359, 4613–4618.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds