organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1R,2R,5R,6R,9S,10S,13S,14S)-1,6,7,8,9,14,15,16,17,17-Deca­chloro­penta­cyclo­[12.2.1.16,9.02,13.05,10]octa­deca-7,15-diene

aWellington Laboratories, Research Division, Guelph, Ontario, Canada N1G 3M5, bDepartment of Chemistry, University of Guelph, Ontario, Canada N1G 2W1, and cDepartment of Chemistry, University of Toronto, Ontario, Canada M5S 3H6
*Correspondence e-mail: alough@chem.utoronto.ca

(Received 20 May 2008; accepted 28 May 2008; online 13 June 2008)

The title compound, C18H14Cl10, is a decachlorinated commercial flame retardant. The structure determination confirms the relative stereochemistry. The central eight-membered ring is in a chair-type conformation. In the crystal structure, there are no significant inter­molecular inter­actions and mol­ecules are separated by normal van der Waals distances.

Related literature

For related literature, see: Garcia et al. (1991[Garcia, J. G., Fronczek, F. R. & McLaughlin, M. L. (1991). Tetrahedron Lett. 32, 3289-3292.]); Hoh et al. (2006[Hoh, E., Zhu, L. & Hites, R. A. (2006). Environ. Sci. Technol. 40, 1184-1189.]); Qiu et al. (2007[Qiu, X., Marvin, C. H. & Hites, R. A. (2007). Environ. Sci. Technol. 41, 2249-2254.]); Sverko et al. (2008[Sverko, E., Tomy, G. T., Marvin, C. H., Zaruk, D., Reiner, E., Helm, P. A., Hill, B. & McCarry, B. E. (2008). Environ. Sci. Technol. 42, 361-366.]); Tomy et al. (2007[Tomy, G. T., Pleskach, K., Ismail, N., Whittle, M., Helm, P. A., Sverko, E., Zaruk, D. & Marvin, C. H. (2007). Environ. Sci. Technol. 41, 2249-2254.]).

[Scheme 1]

Experimental

Crystal data
  • C18H14Cl10

  • Mr = 584.79

  • Orthorhombic, P 21 21 21

  • a = 11.4341 (2) Å

  • b = 12.9704 (3) Å

  • c = 15.0389 (4) Å

  • V = 2230.34 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.25 mm−1

  • T = 150 (1) K

  • 0.24 × 0.20 × 0.18 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.720, Tmax = 0.804

  • 17031 measured reflections

  • 5087 independent reflections

  • 4585 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.072

  • S = 1.04

  • 5087 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.32 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2207 Friedel pairs

  • Flack parameter: −0.01 (6)

Data collection: COLLECT (Nonius, 2002[Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZOSMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZOSMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Dechlorane Plus (DP) is a commercial chlorinated flame retardant used in styrenic plastics (http://www.inchem.org/documents/ehc/ehc/ehc192.htm) to protect human life and property against fires. The two major components found in the commercial material are known as syn-DP (1R,2R,5S,6S,9R,10R,13S,14S)-[1,6,7,8,9,14,15,16,17,17,18,18- decachloropentacyclo[12.2.1.16,9.02,13.05,10]-octadeca-7,15-diene] and anti-DP (1R,2R,5R,6R,9S,10S,13S,14S)-[1,6,7,8,9,14,15,16,17,17,18,18- decachloropentacyclo[12.2.1.16,9.02,13.05,10]-octadeca-7,15-diene] (see (1) and (2) respectively, Fig. 1). X-ray structure determinations have already been completed on both compounds (Garcia et al., 1991). There is growing evidence that this flame retardant is becoming a significant environmental contaminant (Hoh et al., 2006; Qiu et al., 2007; Tomy et al., 2007). 3–5 Dechlorinated DP species have also been detected in the environment (Sverko et al., 2008) although very little is known about their identity. It is important to identify these compounds if analytical chemists wish to quantify the total presence of DP, including its dechlorinated homologues, in the environment.

We have synthesized the dechlorinated compound (1R,2R,5R,6R,9S,10S,13S,14S)-1,6,7,8,9,14,15,16,17,17-decachloropentacyclo[ 12.2.1.16,9.02,13.05,10]-octadeca-7,15-diene (compound (3); see Fig. 1). GC/MS and 1H NMR spectroscopy have confirmed the basic structure of (3) as having the DP-like structure with only 10 chlorine atoms. X-ray structure determination of (3) was required to positively confirm the relative stereochemistry.

Related literature top

For related literature, see: Garcia et al. (1991); Hoh et al. (2006); Qiu et al. (2007); Sverko et al. (2008); Tomy et al. (2007).

Experimental top

The synthesis of compound (3) was carried out at Wellington Laboratories using proprietary methods. The compound was isolated and purified using chromatographic techniques. For single-crystal X-ray crystallography, colourless crystals were grown from a solution of (3) in toluene.

Refinement top

All hydrogen atoms were placed in calculated positions with C—H distances of 0.99 and 1.00 Å and they were included in the refinement in a riding-model approximation with Uiso = 1.2Ueq(C).

Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Schematic representation of compounds (1), (2) and (3).
[Figure 2] Fig. 2. The molecular structure of the title compound. Displacement ellipsoids are at the 30% probability level. H atoms are not shown.
(1R,2R,5R,6R,9S,10S,13S,14S)- 1,6,7,8,9,14,15,16,17,17- Decachloropentacyclo[12.2.1.16,9.02,13.05,10]octadeca-7,15-diene top
Crystal data top
C18H14Cl10F(000) = 1168
Mr = 584.79Dx = 1.742 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 17031 reflections
a = 11.4341 (2) Åθ = 2.7–27.5°
b = 12.9704 (3) ŵ = 1.26 mm1
c = 15.0389 (4) ÅT = 150 K
V = 2230.34 (9) Å3Block, colourless
Z = 40.24 × 0.20 × 0.18 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
5087 independent reflections
Radiation source: fine-focus sealed tube4585 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.7°
ϕ scans and ω scans with κ offsetsh = 1414
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1616
Tmin = 0.720, Tmax = 0.804l = 1919
17031 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.03P)2 + 1.117P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
5087 reflectionsΔρmax = 0.34 e Å3
253 parametersΔρmin = 0.32 e Å3
0 restraintsAbsolute structure: Flack (1983), 2207 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (6)
Crystal data top
C18H14Cl10V = 2230.34 (9) Å3
Mr = 584.79Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 11.4341 (2) ŵ = 1.26 mm1
b = 12.9704 (3) ÅT = 150 K
c = 15.0389 (4) Å0.24 × 0.20 × 0.18 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
5087 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
4585 reflections with I > 2σ(I)
Tmin = 0.720, Tmax = 0.804Rint = 0.036
17031 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.072Δρmax = 0.34 e Å3
S = 1.04Δρmin = 0.32 e Å3
5087 reflectionsAbsolute structure: Flack (1983), 2207 Friedel pairs
253 parametersAbsolute structure parameter: 0.01 (6)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.87131 (5)0.78434 (5)0.55246 (4)0.02288 (14)
Cl21.07256 (5)0.66212 (5)0.43725 (5)0.02523 (14)
Cl31.14507 (6)0.81013 (6)0.25760 (5)0.03027 (16)
Cl40.97237 (6)1.01756 (5)0.25571 (5)0.03129 (16)
Cl51.03310 (6)0.98603 (5)0.47707 (4)0.02853 (16)
Cl60.78892 (6)1.00833 (5)0.44082 (5)0.03032 (16)
Cl70.68597 (7)0.61445 (6)0.03570 (5)0.03760 (18)
Cl80.45590 (8)0.74067 (6)0.04705 (6)0.0468 (2)
Cl90.36780 (6)0.61715 (7)0.23695 (6)0.0441 (2)
Cl100.53873 (7)0.41158 (6)0.26610 (5)0.0406 (2)
C10.7915 (2)0.78678 (19)0.37527 (16)0.0184 (5)
H1A0.71770.81610.40040.022*
C20.8244 (2)0.8505 (2)0.28950 (17)0.0195 (5)
H2A0.76140.90260.27900.023*
C30.8459 (2)0.7930 (2)0.20247 (17)0.0205 (5)
H3A0.89590.73250.21540.025*
H3B0.89070.83890.16240.025*
C40.7364 (2)0.75489 (19)0.15180 (17)0.0197 (5)
H4A0.66560.78170.18180.024*
H4B0.73780.78320.09070.024*
C50.7288 (2)0.63674 (19)0.14688 (17)0.0190 (5)
H5A0.80810.61030.13060.023*
C60.6879 (2)0.57719 (19)0.23264 (17)0.0192 (5)
H6A0.75060.52640.24790.023*
C70.6627 (2)0.6394 (2)0.31572 (17)0.0220 (6)
H7A0.61270.59820.35600.026*
H7B0.61880.70230.29910.026*
C80.7757 (2)0.6710 (2)0.36566 (17)0.0205 (5)
H8A0.77460.63960.42570.025*
H8B0.84400.64250.33350.025*
C90.8936 (2)0.81438 (18)0.43944 (18)0.0186 (5)
C101.0060 (2)0.77145 (19)0.40053 (17)0.0194 (5)
C111.0325 (2)0.8277 (2)0.32990 (17)0.0213 (5)
C120.9372 (2)0.9089 (2)0.32037 (17)0.0212 (5)
C130.9127 (2)0.93046 (19)0.42002 (18)0.0213 (6)
C140.6406 (2)0.5965 (2)0.07546 (17)0.0239 (6)
C150.5203 (2)0.6380 (2)0.09832 (19)0.0258 (6)
C160.4856 (2)0.5901 (2)0.17161 (19)0.0257 (6)
C170.5815 (2)0.5147 (2)0.19615 (19)0.0237 (6)
C180.6255 (3)0.4837 (2)0.10393 (18)0.0252 (6)
H18A0.56640.44620.06830.030*
H18B0.70000.44490.10560.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0260 (3)0.0273 (3)0.0153 (3)0.0008 (3)0.0011 (3)0.0010 (3)
Cl20.0230 (3)0.0248 (3)0.0278 (4)0.0037 (3)0.0027 (3)0.0018 (3)
Cl30.0259 (3)0.0390 (4)0.0259 (4)0.0050 (3)0.0075 (3)0.0007 (3)
Cl40.0420 (4)0.0240 (3)0.0279 (4)0.0119 (3)0.0062 (3)0.0095 (3)
Cl50.0351 (4)0.0252 (3)0.0253 (3)0.0091 (3)0.0081 (3)0.0011 (3)
Cl60.0369 (4)0.0227 (3)0.0313 (4)0.0081 (3)0.0059 (3)0.0054 (3)
Cl70.0549 (5)0.0391 (4)0.0189 (3)0.0113 (4)0.0010 (3)0.0043 (3)
Cl80.0578 (5)0.0361 (4)0.0465 (5)0.0171 (4)0.0290 (4)0.0059 (4)
Cl90.0230 (3)0.0645 (5)0.0447 (5)0.0044 (4)0.0035 (3)0.0276 (4)
Cl100.0526 (5)0.0323 (4)0.0367 (4)0.0228 (4)0.0016 (4)0.0057 (3)
C10.0190 (12)0.0201 (12)0.0160 (13)0.0019 (10)0.0024 (10)0.0008 (10)
C20.0224 (12)0.0174 (12)0.0188 (13)0.0012 (10)0.0026 (10)0.0015 (10)
C30.0218 (12)0.0225 (13)0.0172 (13)0.0028 (11)0.0007 (10)0.0013 (11)
C40.0257 (13)0.0186 (13)0.0150 (13)0.0049 (10)0.0029 (10)0.0019 (10)
C50.0192 (12)0.0185 (12)0.0193 (13)0.0009 (10)0.0015 (10)0.0029 (10)
C60.0196 (11)0.0190 (12)0.0190 (13)0.0015 (10)0.0026 (10)0.0016 (10)
C70.0190 (12)0.0259 (14)0.0210 (13)0.0058 (11)0.0003 (10)0.0021 (11)
C80.0223 (13)0.0207 (13)0.0186 (13)0.0022 (11)0.0013 (11)0.0016 (11)
C90.0220 (12)0.0174 (12)0.0163 (12)0.0005 (9)0.0007 (10)0.0028 (10)
C100.0191 (12)0.0195 (12)0.0197 (13)0.0007 (10)0.0037 (10)0.0010 (10)
C110.0195 (12)0.0233 (13)0.0210 (14)0.0045 (11)0.0010 (11)0.0051 (11)
C120.0276 (14)0.0182 (12)0.0179 (13)0.0045 (11)0.0028 (11)0.0036 (10)
C130.0235 (12)0.0185 (13)0.0220 (15)0.0008 (11)0.0020 (10)0.0028 (10)
C140.0306 (14)0.0222 (13)0.0190 (14)0.0001 (12)0.0026 (11)0.0034 (11)
C150.0246 (13)0.0214 (13)0.0315 (16)0.0026 (11)0.0145 (12)0.0078 (11)
C160.0179 (12)0.0310 (15)0.0282 (16)0.0047 (12)0.0035 (11)0.0109 (12)
C170.0262 (13)0.0181 (12)0.0267 (15)0.0055 (11)0.0001 (11)0.0004 (11)
C180.0299 (14)0.0196 (13)0.0261 (14)0.0021 (12)0.0017 (12)0.0036 (11)
Geometric parameters (Å, º) top
Cl1—C91.762 (3)C5—C141.563 (4)
Cl2—C101.701 (3)C5—C61.574 (3)
Cl3—C111.700 (3)C5—H5A1.0000
Cl4—C121.758 (3)C6—C71.515 (4)
Cl5—C131.775 (3)C6—C171.562 (3)
Cl6—C131.766 (3)C6—H6A1.0000
Cl7—C141.766 (3)C7—C81.550 (3)
Cl8—C151.706 (3)C7—H7A0.9900
Cl9—C161.704 (3)C7—H7B0.9900
Cl10—C171.771 (3)C8—H8A0.9900
C1—C81.519 (3)C8—H8B0.9900
C1—C91.557 (3)C9—C101.518 (3)
C1—C21.577 (3)C9—C131.549 (3)
C1—H1A1.0000C10—C111.324 (4)
C2—C31.526 (4)C11—C121.522 (4)
C2—C121.567 (4)C12—C131.550 (4)
C2—H2A1.0000C14—C151.517 (4)
C3—C41.547 (3)C14—C181.534 (4)
C3—H3A0.9900C15—C161.326 (4)
C3—H3B0.9900C16—C171.514 (4)
C4—C51.537 (3)C17—C181.529 (4)
C4—H4A0.9900C18—H18A0.9900
C4—H4B0.9900C18—H18B0.9900
C8—C1—C9112.1 (2)C10—C9—C1399.5 (2)
C8—C1—C2117.9 (2)C10—C9—C1108.2 (2)
C9—C1—C2102.00 (19)C13—C9—C1102.2 (2)
C8—C1—H1A108.1C10—C9—Cl1114.42 (17)
C9—C1—H1A108.1C13—C9—Cl1114.65 (18)
C2—C1—H1A108.1C1—C9—Cl1116.00 (18)
C3—C2—C12110.9 (2)C11—C10—C9107.5 (2)
C3—C2—C1118.9 (2)C11—C10—Cl2128.1 (2)
C12—C2—C1101.96 (19)C9—C10—Cl2124.01 (19)
C3—C2—H2A108.2C10—C11—C12107.0 (2)
C12—C2—H2A108.2C10—C11—Cl3127.8 (2)
C1—C2—H2A108.2C12—C11—Cl3125.06 (19)
C2—C3—C4116.6 (2)C11—C12—C1399.4 (2)
C2—C3—H3A108.1C11—C12—C2106.4 (2)
C4—C3—H3A108.1C13—C12—C2103.0 (2)
C2—C3—H3B108.1C11—C12—Cl4116.30 (19)
C4—C3—H3B108.1C13—C12—Cl4115.59 (18)
H3A—C3—H3B107.3C2—C12—Cl4114.32 (18)
C5—C4—C3112.9 (2)C9—C13—C1291.88 (19)
C5—C4—H4A109.0C9—C13—Cl6114.20 (18)
C3—C4—H4A109.0C12—C13—Cl6114.79 (18)
C5—C4—H4B109.0C9—C13—Cl5114.36 (18)
C3—C4—H4B109.0C12—C13—Cl5113.56 (18)
H4A—C4—H4B107.8Cl6—C13—Cl5107.68 (13)
C4—C5—C14113.8 (2)C15—C14—C18100.0 (2)
C4—C5—C6117.8 (2)C15—C14—C5108.1 (2)
C14—C5—C6101.98 (19)C18—C14—C5101.5 (2)
C4—C5—H5A107.6C15—C14—Cl7115.73 (19)
C14—C5—H5A107.6C18—C14—Cl7115.04 (18)
C6—C5—H5A107.6C5—C14—Cl7114.65 (19)
C7—C6—C17114.7 (2)C16—C15—C14107.1 (2)
C7—C6—C5118.1 (2)C16—C15—Cl8127.8 (2)
C17—C6—C5101.4 (2)C14—C15—Cl8124.5 (2)
C7—C6—H6A107.3C15—C16—C17106.8 (2)
C17—C6—H6A107.3C15—C16—Cl9128.3 (2)
C5—C6—H6A107.3C17—C16—Cl9124.4 (2)
C6—C7—C8112.5 (2)C16—C17—C18100.8 (2)
C6—C7—H7A109.1C16—C17—C6108.4 (2)
C8—C7—H7A109.1C18—C17—C6101.5 (2)
C6—C7—H7B109.1C16—C17—Cl10115.6 (2)
C8—C7—H7B109.1C18—C17—Cl10115.51 (19)
H7A—C7—H7B107.8C6—C17—Cl10113.47 (19)
C1—C8—C7114.0 (2)C17—C18—C1492.2 (2)
C1—C8—H8A108.8C17—C18—H18A113.2
C7—C8—H8A108.8C14—C18—H18A113.2
C1—C8—H8B108.8C17—C18—H18B113.2
C7—C8—H8B108.8C14—C18—H18B113.2
H8A—C8—H8B107.6H18A—C18—H18B110.6

Experimental details

Crystal data
Chemical formulaC18H14Cl10
Mr584.79
Crystal system, space groupOrthorhombic, P212121
Temperature (K)150
a, b, c (Å)11.4341 (2), 12.9704 (3), 15.0389 (4)
V3)2230.34 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.26
Crystal size (mm)0.24 × 0.20 × 0.18
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.720, 0.804
No. of measured, independent and
observed [I > 2σ(I)] reflections
17031, 5087, 4585
Rint0.036
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.072, 1.04
No. of reflections5087
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.32
Absolute structureFlack (1983), 2207 Friedel pairs
Absolute structure parameter0.01 (6)

Computer programs: COLLECT (Nonius, 2002), DENZO-SMN (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2003).

 

Acknowledgements

The authors acknowledge NSERC Canada and the University of Toronto for funding.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGarcia, J. G., Fronczek, F. R. & McLaughlin, M. L. (1991). Tetrahedron Lett. 32, 3289–3292.  CSD CrossRef CAS Web of Science Google Scholar
First citationHoh, E., Zhu, L. & Hites, R. A. (2006). Environ. Sci. Technol. 40, 1184–1189.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationQiu, X., Marvin, C. H. & Hites, R. A. (2007). Environ. Sci. Technol. 41, 2249–2254.  Web of Science CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSverko, E., Tomy, G. T., Marvin, C. H., Zaruk, D., Reiner, E., Helm, P. A., Hill, B. & McCarry, B. E. (2008). Environ. Sci. Technol. 42, 361–366.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTomy, G. T., Pleskach, K., Ismail, N., Whittle, M., Helm, P. A., Sverko, E., Zaruk, D. & Marvin, C. H. (2007). Environ. Sci. Technol. 41, 2249–2254.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds