metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-(p-Phenyl­ene)bis­­(1,4,5,6-tetra­hydro­pyrimidinium) bis­­[dicyanidoargentate(I)]

aDepartment of Chemistry and Chemical Engineering, Southeast University, Nanjing, People's Republic of China, and bDepartment of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, People's Republic of China
*Correspondence e-mail: cep02chl@yahoo.com.cn

(Received 24 May 2008; accepted 26 May 2008; online 7 June 2008)

The asymmetric unit of the title compound, (C14H20N4)[Ag(CN)2]2, contains one-half of a centrosymmetric 2,2′-(p-phenyl­ene)bis­(1,4,5,6-tetra­hydro­pyrimidinium) (H2btb) cation and one [Ag(CN)2] anion. In the anions, the AgI atoms adopt near linear coordination modes with the two attached cyanide groups [C—Ag—C = 173.3 (2)°]. In the crystal structure, each H2btb cation links four [Ag(CN)2] anions via N—H⋯N hydrogen bonds into a one-dimensional ribbon.

Related literature

For related structures, see: Braga et al. (2000[Braga, D., Maini, L., Grepioni, F., De Cian, A., Felix, O., Fischer, J. & Hosseini, M. W. (2000). New J. Chem. 24, 547-553.]); Felix et al. (1998[Felix, O., Hosseini, M. W., De Cian, A. & Fischer, J. (1998). New J. Chem. 22, 1389-1393.]). For related literature, see: Burchell et al. (2004[Burchell, T. J., Eisler, D. J. & Puddephatt, R. J. (2004). Chem. Commun. pp. 944-945.]); Holliday & Mirkin (2001[Holliday, B. J. & Mirkin, C. A. (2001). Angew. Chem. Int. Ed. 40, 2022-2043.]).

[Scheme 1]

Experimental

Crystal data
  • (C14H20N4)[Ag(CN)2]2

  • Mr = 564.16

  • Triclinic, [P \overline 1]

  • a = 6.6930 (9) Å

  • b = 7.276 (1) Å

  • c = 11.4982 (15) Å

  • α = 89.963 (2)°

  • β = 87.318 (2)°

  • γ = 68.066 (2)°

  • V = 518.76 (12) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.91 mm−1

  • T = 273 (2) K

  • 0.20 × 0.18 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.702, Tmax = 0.763

  • 4040 measured reflections

  • 2015 independent reflections

  • 1769 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.093

  • S = 1.09

  • 2015 reflections

  • 135 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.07 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯N4i 0.78 (4) 2.13 (4) 2.903 (4) 175 (4)
N2—H2C⋯N3 0.79 (4) 2.13 (4) 2.905 (5) 168 (3)
Symmetry code: (i) x-1, y+1, z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 1998[Bruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Supramolecular chemistry has been a rapidly growing field concerning with the construction of supramolecular assemblies held together by non-classical chemical interactions in addition to covalent bonds (Holliday & Mirkin, 2001). A variety of weak forces, such as hydrogen bond, ππ stacking, and metal–ligand coordination, have been extensively used in this field (Burchell et al., 2004). Within the various types of organic ligands utilized in assembly of supramolecular structures, tetrahydropyrimidines have attracted considerable interest for their versatile coordination mode with the protonated or deprotonated moiety and potential to form supramolecular aggregates through hydrogen bonding (Braga et al., 2000; Felix et al., 1998).

Herein, we report the crystal structure of the title compound, (C14H20N4).2(C2AgN2), based on a tetrahydropyrimidine ligand–1,4-bis(1,4,5,6-tetrahydropyrimidin-2-yl)benzene. The asymmetric unit of the title compound, (C14H20N4).2(C2AgN2), contains half a H2btb cation (btb = 1,4-bis(1,4,5,6-tetrahydropyrimidin-2-yl)benzene) and one Ag(CN)2 anion. In the compound, each H2btb cation links four Ag(CN)2 anions by the N—H···N hydrogen bonds into an one-dimensional ribbon. Meanwhile, each pair of adjacent H2btb cations are hydrogen-bonded by two parallel Ag(CN)2 anions. The hydrogen-bonding distances are 2.904 (5) and 2.905 (6) Å. In one chain, the shortest Ag···Ag distance is 4.218 (2) Å. The distance of adjacent H2btb cations seperated by Ag(CN)2 anions is 13.655 (3) Å.

Related literature top

For related structures, see: Braga et al. (2000); Felix et al. (1998). For related literature, see: Burchell et al. (2004); Holliday & Mirkin (2001).

Experimental top

A mixture of btb (0.024 g, 0.1 mmol), k[Ag(CN)2] (0.010 g, 0.05 mmol), and water (8 ml) was stirred for 1 h at room temperature, and then filtered. The filtrate was allowed to evaporate slowly at room temperature. After 3 weeks, colorless block crystals were obtained in 60% yield (0.034 g) based on btb.

Refinement top

H atoms bonded to N atoms were located in a difference map and they were freely refined. Other H atoms were positioned geometrically and refined using a riding model with C—H = 0.97 Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound with 30% displacement ellipsoids. H atoms bonded to C atoms have been omitted for clarity. [Symmetry code (A): 3-x, -y, 1-z.]
[Figure 2] Fig. 2. The hydrogen-bonding pattern of the title compound.
2,2'-(p-Phenylene)bis(1,4,5,6-tetrahydropyrimidinium) bis[dicyanidoargentate(I)] top
Crystal data top
(C14H20N4)[Ag(CN)2]2Z = 1
Mr = 564.16F(000) = 278
Triclinic, P1Dx = 1.806 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6930 (9) ÅCell parameters from 783 reflections
b = 7.276 (1) Åθ = 2.5–28.0°
c = 11.4982 (15) ŵ = 1.91 mm1
α = 89.963 (2)°T = 273 K
β = 87.318 (2)°Block, colourless
γ = 68.066 (2)°0.20 × 0.18 × 0.15 mm
V = 518.76 (12) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2015 independent reflections
Radiation source: fine-focus sealed tube1769 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ϕ and ω scansθmax = 26.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 87
Tmin = 0.702, Tmax = 0.763k = 88
4040 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0523P)2 + 0.1388P]
where P = (Fo2 + 2Fc2)/3
2015 reflections(Δ/σ)max < 0.001
135 parametersΔρmax = 1.07 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
(C14H20N4)[Ag(CN)2]2γ = 68.066 (2)°
Mr = 564.16V = 518.76 (12) Å3
Triclinic, P1Z = 1
a = 6.6930 (9) ÅMo Kα radiation
b = 7.276 (1) ŵ = 1.91 mm1
c = 11.4982 (15) ÅT = 273 K
α = 89.963 (2)°0.20 × 0.18 × 0.15 mm
β = 87.318 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2015 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1769 reflections with I > 2σ(I)
Tmin = 0.702, Tmax = 0.763Rint = 0.015
4040 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 1.07 e Å3
2015 reflectionsΔρmin = 0.33 e Å3
135 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag11.75049 (5)0.46673 (5)0.11338 (2)0.06556 (17)
C10.7736 (6)0.2925 (7)0.3110 (3)0.0600 (10)
H1A0.76720.41290.27220.072*
H1B0.64010.32080.35720.072*
C20.8010 (7)0.1333 (8)0.2228 (4)0.0702 (12)
H2A0.68620.17990.16880.084*
H2B0.79080.01850.26170.084*
C31.0154 (6)0.0746 (6)0.1567 (3)0.0589 (10)
H3A1.04390.04700.11270.071*
H3B1.01250.17730.10230.071*
C41.1503 (5)0.1093 (5)0.3465 (3)0.0385 (7)
C51.3309 (5)0.0529 (5)0.4257 (3)0.0370 (6)
C61.3411 (5)0.1879 (5)0.5078 (3)0.0416 (7)
H6A1.23460.31450.51280.050*
C71.4921 (5)0.1357 (5)0.4178 (3)0.0432 (7)
H7A1.48690.22650.36230.052*
C81.6530 (7)0.3227 (7)0.0448 (4)0.0652 (11)
C91.8252 (6)0.5801 (6)0.2799 (3)0.0536 (9)
N10.9572 (4)0.2250 (5)0.3863 (3)0.0459 (7)
H1C0.934 (5)0.254 (5)0.452 (3)0.040 (9)*
N21.1869 (5)0.0453 (5)0.2384 (2)0.0456 (7)
H2C1.303 (6)0.023 (5)0.214 (3)0.036 (9)*
N31.5816 (7)0.2314 (7)0.1250 (3)0.0828 (12)
N41.8570 (5)0.6394 (5)0.3728 (3)0.0616 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0783 (3)0.0661 (2)0.0430 (2)0.01739 (17)0.00644 (14)0.01324 (14)
C10.0390 (18)0.078 (3)0.052 (2)0.0090 (17)0.0110 (16)0.0055 (19)
C20.059 (2)0.084 (3)0.067 (3)0.024 (2)0.028 (2)0.005 (2)
C30.067 (2)0.068 (2)0.0389 (19)0.0198 (19)0.0212 (17)0.0030 (17)
C40.0378 (16)0.0433 (17)0.0334 (15)0.0137 (13)0.0051 (12)0.0008 (13)
C50.0361 (15)0.0434 (16)0.0314 (15)0.0144 (13)0.0035 (12)0.0011 (12)
C60.0396 (16)0.0402 (16)0.0383 (17)0.0071 (13)0.0021 (13)0.0050 (13)
C70.0440 (17)0.0429 (17)0.0391 (17)0.0119 (14)0.0053 (13)0.0119 (13)
C80.064 (2)0.074 (3)0.047 (2)0.015 (2)0.0055 (18)0.010 (2)
C90.055 (2)0.056 (2)0.047 (2)0.0178 (16)0.0016 (16)0.0061 (17)
N10.0383 (14)0.0607 (18)0.0327 (15)0.0112 (12)0.0053 (11)0.0030 (13)
N20.0430 (15)0.0557 (17)0.0335 (14)0.0126 (13)0.0065 (12)0.0061 (12)
N30.085 (3)0.097 (3)0.052 (2)0.020 (2)0.0103 (19)0.023 (2)
N40.0624 (19)0.071 (2)0.048 (2)0.0220 (17)0.0042 (15)0.0109 (16)
Geometric parameters (Å, º) top
Ag1—C92.050 (4)C4—N11.312 (4)
Ag1—C82.052 (4)C4—C51.481 (4)
C1—N11.466 (4)C5—C61.385 (4)
C1—C21.493 (7)C5—C71.393 (4)
C1—H1A0.9700C6—C7i1.376 (4)
C1—H1B0.9700C6—H6A0.9300
C2—C31.503 (6)C7—C6i1.376 (4)
C2—H2A0.9700C7—H7A0.9300
C2—H2B0.9700C8—N31.115 (6)
C3—N21.471 (4)C9—N41.133 (5)
C3—H3A0.9700N1—H1C0.78 (4)
C3—H3B0.9700N2—H2C0.79 (4)
C4—N21.307 (4)
C9—Ag1—C8173.24 (15)N2—C4—C5119.5 (3)
N1—C1—C2108.6 (3)N1—C4—C5119.0 (3)
N1—C1—H1A110.0C6—C5—C7119.6 (3)
C2—C1—H1A110.0C6—C5—C4120.1 (3)
N1—C1—H1B110.0C7—C5—C4120.3 (3)
C2—C1—H1B110.0C7i—C6—C5120.3 (3)
H1A—C1—H1B108.3C7i—C6—H6A119.8
C1—C2—C3111.0 (4)C5—C6—H6A119.8
C1—C2—H2A109.4C6i—C7—C5120.1 (3)
C3—C2—H2A109.4C6i—C7—H7A120.0
C1—C2—H2B109.4C5—C7—H7A120.0
C3—C2—H2B109.4N3—C8—Ag1172.6 (4)
H2A—C2—H2B108.0N4—C9—Ag1177.0 (4)
N2—C3—C2109.8 (3)C4—N1—C1121.6 (3)
N2—C3—H3A109.7C4—N1—H1C121 (3)
C2—C3—H3A109.7C1—N1—H1C117 (3)
N2—C3—H3B109.7C4—N2—C3123.5 (3)
C2—C3—H3B109.7C4—N2—H2C122 (2)
H3A—C3—H3B108.2C3—N2—H2C114 (2)
N2—C4—N1121.5 (3)
Symmetry code: (i) x+3, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···N4ii0.78 (4)2.13 (4)2.903 (4)175 (4)
N2—H2C···N30.79 (4)2.13 (4)2.905 (5)168 (3)
Symmetry code: (ii) x1, y+1, z+1.

Experimental details

Crystal data
Chemical formula(C14H20N4)[Ag(CN)2]2
Mr564.16
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)6.6930 (9), 7.276 (1), 11.4982 (15)
α, β, γ (°)89.963 (2), 87.318 (2), 68.066 (2)
V3)518.76 (12)
Z1
Radiation typeMo Kα
µ (mm1)1.91
Crystal size (mm)0.20 × 0.18 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.702, 0.763
No. of measured, independent and
observed [I > 2σ(I)] reflections
4040, 2015, 1769
Rint0.015
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.093, 1.09
No. of reflections2015
No. of parameters135
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.07, 0.33

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···N4i0.78 (4)2.13 (4)2.903 (4)175 (4)
N2—H2C···N30.79 (4)2.13 (4)2.905 (5)168 (3)
Symmetry code: (i) x1, y+1, z+1.
 

Acknowledgements

The authors thank the Program for Young Excellent Talents in Southeast University for financial support.

References

First citationBraga, D., Maini, L., Grepioni, F., De Cian, A., Felix, O., Fischer, J. & Hosseini, M. W. (2000). New J. Chem. 24, 547–553.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurchell, T. J., Eisler, D. J. & Puddephatt, R. J. (2004). Chem. Commun. pp. 944–945.  Web of Science CSD CrossRef Google Scholar
First citationFelix, O., Hosseini, M. W., De Cian, A. & Fischer, J. (1998). New J. Chem. 22, 1389–1393.  Web of Science CrossRef CAS Google Scholar
First citationHolliday, B. J. & Mirkin, C. A. (2001). Angew. Chem. Int. Ed. 40, 2022–2043.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds