organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 5a-acet­oxy­methyl-3-iso­propyl-8-methyl-1,2,3,3a,4,5,5a,6,7,10,10a,10b-dodeca­hydro-7,10-endo-epi­dioxy­cylohepta­[e]indene-3a-carboxyl­ate

aDepartamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile, bDepartamento de Física, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile, and cInstituto de Bio-Orgánica `Antonio González', Universidad de La Laguna, Astrofísico Francisco Sánchez No. 2, La Laguna, Tenerife, Spain
*Correspondence e-mail: ivanbritob@yahoo.com

(Received 27 May 2008; accepted 29 May 2008; online 7 June 2008)

The mol­ecule of the title compound, C23H34O6, is built up from three fused carbocycles, one five-membered, one six-membered and one seven-membered. The five-membered ring has an envelope conformation, whereas the six-membered ring has a perfect chair conformation and the seven-membered ring has a boat conformation. Intra­molecular C—H⋯O hydrogen bonds together with van der Waals inter­actions stabilize the mol­ecular conformation.

Related literature

For related literature, see: Araya et al. (2003[Araya, J. E., Neira, I., da Silva, S., Mortara, R. A., Manque, P., Cordero, E., Sagua, H., Loyola, A., Bórquez, J., Morales, G. & González, J. (2003). Mem. Inst. Oswaldo Cruz Rio de Janeiro, 98, 413-418.]); Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Loyola et al. (1990[Loyola, L. A., Morales, G., Perales, A. & Rodríguez, B. (1990). Tetrahedron, 46, 5413-5420.], 2004[Loyola, L. A., Bórquez, J., Morales, G., San-Martín, A., Darias, J., Flores, N. & Giménez, A. (2004). Phytochemistry, 65, 1931-1935.]); Munizaga & Gunkel (1958[Munizaga, C. & Gunkel, H. (1958). Notas etnobotánicas del pueblo de Socaire. Publicación No. 5. Universidad de Chile.]).

[Scheme 1]

Experimental

Crystal data
  • C23H34O6

  • Mr = 406.5

  • Orthorhombic, P 21 21 21

  • a = 7.7014 (1) Å

  • b = 12.1234 (3) Å

  • c = 23.2773 (6) Å

  • V = 2173.34 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 (2) K

  • 0.24 × 0.24 × 0.02 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: none

  • 5538 measured reflections

  • 3052 independent reflections

  • 2499 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.127

  • S = 1.08

  • 3052 reflections

  • 269 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5B⋯O3 0.97 2.39 2.877 (3) 110
C10A—H10A⋯O3 0.98 2.33 2.848 (3) 112
C10B—H10B⋯O1 0.98 2.43 2.778 (3) 101

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound was obtained from a methylation reaction over the acid group of 17-acetoxymulinic acid, which was previously isolated from Mulinum crassifolium (Apiaceae). Mulinum crassifolium is a 15 cm small shrub, which grows in the north of Chile at altitudes above 4000 m. This plant, commonly known as chuquican, susurco or espinilla is used in the folk medicine, principally against diabetes, and bronchial (caught) and intestinal disorders (Munizaga et al., 1958). Mulinane diterpenes exhibits antiplasmodial (Loyola et al., 2004) and anti-Tripanosomacruzi (Araya et al., 2003) activities.We have undertaken the X-ray crystal-structure determination of (I) in order to establish its molecular conformation and relative stereochemistry. We are not able to determine the absolute stereochemistry by X-ray methods and the configuration shown here was chosen to be in accord with that reported in previous chemical studies (Loyola et al., 1990). The structure consists of a mulinic acid skeleton and the isopropyl, acetyloxymethyl and carboxylate groups at C3, C5a and C3 are β-oriented respectively, whereas the endo-peroxide group is α-oriented. The cyclopentane (A), cyclohexane (B) and cycloheptene (C) rings are in an envelope, chair and boat conformation, respectively [Q2 = 0.424 (3) Å, ϕ2= 107.2 (4)° for ring A; QT= 0.553 (3) Å, θ = 159.6 (3)°, ϕ=189.2 (8)° for ring B; QT= 1.123 (3) Å, ϕ2=179.9 (2)°, for ring C] (Cremer & Pople, 1975). The A and B and B and C rings are trans and cis-fused respectively. The molecular conformation of the title compound, is stabilized by three strong intramolecular hydrogen bonds, Fig.2.

Related literature top

For related literature, see: Araya et al. (2003); Cremer & Pople (1975); Loyola et al. (1990, 2004); Munizaga & Gunkel (1958).

Experimental top

Dried and finely powdered aerial parts of Mulinum crassifolium (1530 g) were extracted with petroleum ether at room temperature. The solvent was evaporated in vacuum yielding a gum (40 g). The concentrated petrol ether extract was fractionated on silica gel column with hexane-ethyl acetate mixtures of increasing polarity as elution solvents. The fraction (0.867 g) eluted was further separated and purified by silica gel chromatography to give 120.5 mg of 17-acetoxymulinic acid which was methylated with diazomethane using ethyl ether as solvent at room temperature to give 110 mg de (I). Recrystallization from hexane-ethyl acetate (7:3) at room temperature afforded colourless crystals suitable for X-ray diffraction analysis.

Refinement top

H atoms bonded to C atoms were included in calculated positions and refined as riding atoms, with calculated C - H bond lengths in the range 0.96 - 0.98 Å. For methyl atoms, Uiso(H) = 1.5Ueq(C), while for other H atoms, Uiso(H) = 1.2Ueq(C).

The data are 96% complete. Measurements were nor complete because the single-crystal used was extremely small and curved. The material was difficult to obtain in a suitable crystalline form and the best available specimen was lost late in the data collection. However, the reduced precision does not seriously affect the molecular skeleton and molecular arrangement. We are not able to determine the absolute stereochemistry by X-ray methods and the configuration shown here was chosen to be in accord with that reported in previous chemical studies (Loyola et al., 1990). In the absence of significant anomalous scattering effects, Friedel pairs were averaged. The highest electron-density peak is located 0.71 Å from atom C3a in the final difference Fourier and the deepest hole is located 0.81 Å from O4.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Intramolecular C—H···O interactions (dashed lines) in the title compound.
Methyl 5a-acetoxymethyl-3-isopropyl-8-methyl- 1,2,3,3a,4,5,5a,6,7,10,10a,10b-dodecahydro-7,10-endo- epidioxycylohepta[e]indene-3a-carboxylate top
Crystal data top
C23H34O6F(000) = 880
Mr = 406.5Dx = 1.242 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4314 reflections
a = 7.7014 (1) Åθ = 6.5–28.5°
b = 12.1234 (3) ŵ = 0.09 mm1
c = 23.2773 (6) ÅT = 298 K
V = 2173.34 (8) Å3Block, colourless
Z = 40.24 × 0.24 × 0.02 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
2499 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 28.7°, θmin = 6.5°
ϕ scans, and ω scans with κ offsetsh = 09
5538 measured reflectionsk = 016
3052 independent reflectionsl = 3131
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.059 w = 1/[σ2(Fo2) + (0.0421P)2 + 0.8253P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.127(Δ/σ)max = 0.007
S = 1.08Δρmax = 0.22 e Å3
3052 reflectionsΔρmin = 0.16 e Å3
269 parameters
Crystal data top
C23H34O6V = 2173.34 (8) Å3
Mr = 406.5Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.7014 (1) ŵ = 0.09 mm1
b = 12.1234 (3) ÅT = 298 K
c = 23.2773 (6) Å0.24 × 0.24 × 0.02 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
2499 reflections with I > 2σ(I)
5538 measured reflectionsRint = 0.031
3052 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.08Δρmax = 0.22 e Å3
3052 reflectionsΔρmin = 0.16 e Å3
269 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2384 (3)0.1347 (2)0.68889 (10)0.0639 (7)
O20.1528 (4)0.2323 (2)0.71350 (11)0.0687 (7)
O30.3065 (3)0.10383 (17)0.68850 (9)0.0518 (5)
O40.5474 (3)0.1354 (2)0.73855 (15)0.0867 (9)
O50.0901 (3)0.14722 (16)0.55258 (10)0.0552 (6)
O60.3186 (3)0.06177 (16)0.51523 (9)0.0487 (5)
C10.2121 (4)0.0030 (3)0.57004 (13)0.0535 (8)
H1A0.31690.0390.58350.052 (2)*
H1B0.21620.07420.58080.052 (2)*
C20.1933 (4)0.0156 (3)0.50447 (14)0.0591 (8)
H2A0.29150.05580.48890.052 (2)*
H2B0.18850.05630.48630.052 (2)*
C30.0234 (4)0.0795 (2)0.49338 (12)0.0473 (7)
H30.05240.15820.49540.052 (2)*
C3A0.0889 (3)0.0529 (2)0.54768 (11)0.0343 (5)
C40.2315 (4)0.1336 (2)0.56491 (12)0.0398 (6)
H4A0.32030.1360.53540.052 (2)*
H4B0.18340.20710.56920.052 (2)*
C50.3105 (4)0.0957 (2)0.62158 (12)0.0415 (6)
H5A0.39640.14990.63310.052 (2)*
H5B0.37170.02710.61460.052 (2)*
C5A0.1856 (3)0.0774 (2)0.67296 (11)0.0347 (5)
C60.1561 (4)0.1917 (2)0.70137 (13)0.0468 (7)
H6A0.26220.21150.72130.052 (2)*
H6B0.14020.24510.67080.052 (2)*
C70.0054 (5)0.2063 (3)0.74379 (14)0.0525 (8)
H70.03340.27060.76760.052 (2)*
C80.0245 (4)0.1123 (3)0.78396 (13)0.0508 (8)
C90.0977 (4)0.0257 (3)0.75995 (13)0.0520 (8)
H90.12090.0380.78080.052 (2)*
C100.1419 (4)0.0345 (3)0.69763 (13)0.0470 (7)
H100.22240.02610.68940.052 (2)*
C10A0.0111 (3)0.0217 (2)0.65466 (11)0.0337 (5)
H10A0.03470.05750.65170.052 (2)*
C10B0.0497 (3)0.0591 (2)0.59511 (11)0.0356 (6)
H10B0.07920.13730.5990.052 (2)*
C110.0302 (6)0.1227 (4)0.84575 (14)0.0737 (11)
H11A0.00640.05840.86660.105 (4)*
H11B0.02240.18710.86230.105 (4)*
H11C0.15430.12920.84780.105 (4)*
C120.2888 (4)0.0041 (3)0.71470 (13)0.0462 (7)
H12A0.40250.03580.72180.052 (2)*
H12B0.2280.00190.75110.052 (2)*
C130.4416 (4)0.1652 (3)0.70431 (15)0.0500 (8)
C140.4426 (5)0.2734 (3)0.67401 (19)0.0705 (10)
H14A0.55820.28960.66110.105 (4)*
H14B0.36580.27020.64160.105 (4)*
H14C0.40460.33020.69980.105 (4)*
C150.1611 (3)0.0632 (2)0.53996 (11)0.0355 (5)
C160.3949 (5)0.1677 (3)0.50295 (16)0.0618 (9)
H16A0.40360.20970.53780.105 (4)*
H16B0.50870.15740.48690.105 (4)*
H16C0.32340.20660.47590.105 (4)*
C170.0546 (5)0.0591 (3)0.43302 (13)0.0569 (8)
H170.09580.01740.43190.052 (2)*
C180.2077 (7)0.1326 (4)0.41986 (16)0.0870 (14)
H18A0.17630.20810.42670.105 (4)*
H18B0.24070.12360.38040.105 (4)*
H18C0.30340.11290.44420.105 (4)*
C190.0846 (7)0.0713 (4)0.38666 (15)0.0855 (14)
H19A0.13380.1440.38860.105 (4)*
H19B0.17410.01750.39280.105 (4)*
H19C0.03330.06020.34950.105 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0484 (12)0.0844 (17)0.0589 (13)0.0207 (13)0.0003 (11)0.0204 (13)
O20.0731 (16)0.0593 (15)0.0738 (16)0.0192 (14)0.0024 (14)0.0054 (13)
O30.0489 (12)0.0487 (11)0.0579 (12)0.0085 (10)0.0136 (11)0.0031 (10)
O40.0587 (16)0.0741 (18)0.127 (2)0.0043 (14)0.0425 (18)0.0106 (17)
O50.0608 (13)0.0319 (10)0.0730 (15)0.0098 (10)0.0136 (12)0.0067 (10)
O60.0469 (11)0.0377 (10)0.0617 (12)0.0068 (10)0.0138 (10)0.0047 (10)
C10.0323 (15)0.074 (2)0.0541 (17)0.0029 (15)0.0033 (13)0.0075 (16)
C20.0488 (17)0.076 (2)0.0520 (17)0.0034 (17)0.0165 (15)0.0075 (17)
C30.0612 (18)0.0406 (15)0.0401 (14)0.0098 (14)0.0074 (14)0.0016 (12)
C3A0.0391 (13)0.0287 (12)0.0351 (12)0.0006 (11)0.0014 (11)0.0003 (10)
C40.0450 (15)0.0311 (13)0.0435 (14)0.0062 (12)0.0101 (12)0.0040 (11)
C50.0326 (13)0.0429 (15)0.0490 (15)0.0102 (12)0.0035 (12)0.0077 (12)
C5A0.0335 (12)0.0346 (13)0.0360 (12)0.0055 (11)0.0015 (11)0.0061 (11)
C60.0563 (18)0.0379 (15)0.0461 (16)0.0087 (14)0.0008 (14)0.0086 (13)
C70.070 (2)0.0420 (16)0.0460 (16)0.0030 (17)0.0046 (16)0.0103 (13)
C80.0541 (17)0.0584 (19)0.0400 (15)0.0037 (16)0.0076 (14)0.0049 (14)
C90.0612 (19)0.0476 (16)0.0471 (16)0.0007 (16)0.0176 (15)0.0010 (13)
C100.0398 (14)0.0531 (17)0.0482 (16)0.0100 (13)0.0097 (13)0.0049 (14)
C10A0.0288 (11)0.0343 (12)0.0379 (13)0.0026 (11)0.0014 (10)0.0047 (10)
C10B0.0298 (12)0.0363 (13)0.0408 (13)0.0032 (11)0.0004 (10)0.0040 (11)
C110.080 (3)0.097 (3)0.0439 (18)0.003 (2)0.0008 (19)0.0052 (19)
C120.0418 (15)0.0522 (17)0.0447 (15)0.0055 (14)0.0078 (13)0.0073 (13)
C130.0363 (15)0.0521 (18)0.0615 (19)0.0016 (13)0.0014 (14)0.0189 (15)
C140.067 (2)0.054 (2)0.090 (3)0.0167 (19)0.006 (2)0.0085 (19)
C150.0399 (13)0.0326 (12)0.0342 (12)0.0005 (12)0.0027 (11)0.0035 (11)
C160.067 (2)0.0506 (18)0.068 (2)0.0200 (17)0.0143 (19)0.0075 (16)
C170.084 (2)0.0468 (16)0.0399 (15)0.0123 (19)0.0024 (16)0.0003 (14)
C180.123 (4)0.088 (3)0.0499 (19)0.016 (3)0.020 (2)0.005 (2)
C190.128 (4)0.083 (3)0.0457 (18)0.032 (3)0.021 (2)0.0038 (19)
Geometric parameters (Å, º) top
O1—C101.438 (4)C6—H6B0.97
O1—O21.470 (4)C7—C81.492 (5)
O2—C71.443 (5)C7—H70.98
O3—C131.331 (4)C8—C91.316 (5)
O3—C121.450 (4)C8—C111.504 (5)
O4—C131.196 (4)C9—C101.494 (5)
O5—C151.193 (3)C9—H90.93
O6—C151.342 (3)C10—C10A1.554 (4)
O6—C161.441 (4)C10—H100.98
C1—C10B1.538 (4)C10A—C10B1.532 (4)
C1—C21.541 (5)C10A—H10A0.98
C1—H1A0.97C10B—H10B0.98
C1—H1B0.97C11—H11A0.96
C2—C31.542 (5)C11—H11B0.96
C2—H2A0.97C11—H11C0.96
C2—H2B0.97C12—H12A0.97
C3—C171.548 (4)C12—H12B0.97
C3—C3A1.565 (4)C13—C141.490 (5)
C3—H30.98C14—H14A0.96
C3A—C41.524 (4)C14—H14B0.96
C3A—C151.525 (4)C14—H14C0.96
C3A—C10B1.538 (4)C16—H16A0.96
C4—C51.523 (4)C16—H16B0.96
C4—H4A0.97C16—H16C0.96
C4—H4B0.97C17—C181.510 (6)
C5—C5A1.551 (4)C17—C191.528 (5)
C5—H5A0.97C17—H170.98
C5—H5B0.97C18—H18A0.96
C5A—C121.538 (4)C18—H18B0.96
C5A—C61.553 (4)C18—H18C0.96
C5A—C10A1.563 (3)C19—H19A0.96
C6—C71.534 (5)C19—H19B0.96
C6—H6A0.97C19—H19C0.96
C10—O1—O2113.1 (2)O1—C10—C10A112.7 (2)
C7—O2—O1113.1 (2)C9—C10—C10A116.4 (2)
C13—O3—C12117.5 (2)O1—C10—H10106.2
C15—O6—C16116.2 (2)C9—C10—H10106.2
C10B—C1—C2104.8 (3)C10A—C10—H10106.2
C10B—C1—H1A110.8C10B—C10A—C10108.7 (2)
C2—C1—H1A110.8C10B—C10A—C5A112.5 (2)
C10B—C1—H1B110.8C10—C10A—C5A115.7 (2)
C2—C1—H1B110.8C10B—C10A—H10A106.5
H1A—C1—H1B108.9C10—C10A—H10A106.5
C1—C2—C3107.2 (2)C5A—C10A—H10A106.5
C1—C2—H2A110.3C10A—C10B—C3A115.0 (2)
C3—C2—H2A110.3C10A—C10B—C1117.5 (2)
C1—C2—H2B110.3C3A—C10B—C1105.7 (2)
C3—C2—H2B110.3C10A—C10B—H10B105.9
H2A—C2—H2B108.5C3A—C10B—H10B105.9
C2—C3—C17113.6 (3)C1—C10B—H10B105.9
C2—C3—C3A103.3 (2)C8—C11—H11A109.5
C17—C3—C3A119.0 (3)C8—C11—H11B109.5
C2—C3—H3106.7H11A—C11—H11B109.5
C17—C3—H3106.7C8—C11—H11C109.5
C3A—C3—H3106.7H11A—C11—H11C109.5
C4—C3A—C15111.2 (2)H11B—C11—H11C109.5
C4—C3A—C10B106.3 (2)O3—C12—C5A107.7 (2)
C15—C3A—C10B112.5 (2)O3—C12—H12A110.2
C4—C3A—C3118.6 (2)C5A—C12—H12A110.2
C15—C3A—C3107.3 (2)O3—C12—H12B110.2
C10B—C3A—C3100.7 (2)C5A—C12—H12B110.2
C5—C4—C3A108.8 (2)H12A—C12—H12B108.5
C5—C4—H4A109.9O4—C13—O3123.3 (3)
C3A—C4—H4A109.9O4—C13—C14125.3 (3)
C5—C4—H4B109.9O3—C13—C14111.4 (3)
C3A—C4—H4B109.9C13—C14—H14A109.5
H4A—C4—H4B108.3C13—C14—H14B109.5
C4—C5—C5A117.6 (2)H14A—C14—H14B109.5
C4—C5—H5A107.9C13—C14—H14C109.5
C5A—C5—H5A107.9H14A—C14—H14C109.5
C4—C5—H5B107.9H14B—C14—H14C109.5
C5A—C5—H5B107.9O5—C15—O6122.1 (3)
H5A—C5—H5B107.2O5—C15—C3A126.3 (2)
C12—C5A—C5104.5 (2)O6—C15—C3A111.6 (2)
C12—C5A—C6108.8 (2)O6—C16—H16A109.5
C5—C5A—C6106.9 (2)O6—C16—H16B109.5
C12—C5A—C10A111.5 (2)H16A—C16—H16B109.5
C5—C5A—C10A112.6 (2)O6—C16—H16C109.5
C6—C5A—C10A112.1 (2)H16A—C16—H16C109.5
C7—C6—C5A119.2 (2)H16B—C16—H16C109.5
C7—C6—H6A107.5C18—C17—C19110.3 (3)
C5A—C6—H6A107.5C18—C17—C3113.1 (3)
C7—C6—H6B107.5C19—C17—C3110.7 (3)
C5A—C6—H6B107.5C18—C17—H17107.5
H6A—C6—H6B107C19—C17—H17107.5
O2—C7—C8110.1 (3)C3—C17—H17107.5
O2—C7—C6110.4 (2)C17—C18—H18A109.5
C8—C7—C6115.6 (3)C17—C18—H18B109.5
O2—C7—H7106.7H18A—C18—H18B109.5
C8—C7—H7106.7C17—C18—H18C109.5
C6—C7—H7106.7H18A—C18—H18C109.5
C9—C8—C7114.1 (3)H18B—C18—H18C109.5
C9—C8—C11126.4 (3)C17—C19—H19A109.5
C7—C8—C11119.5 (3)C17—C19—H19B109.5
C8—C9—C10117.0 (3)H19A—C19—H19B109.5
C8—C9—H9121.5C17—C19—H19C109.5
C10—C9—H9121.5H19A—C19—H19C109.5
O1—C10—C9108.4 (2)H19B—C19—H19C109.5
C10—O1—O2—C73.0 (3)C9—C10—C10A—C5A39.5 (4)
C10B—C1—C2—C30.8 (4)C12—C5A—C10A—C10B152.2 (2)
C1—C2—C3—C17156.3 (3)C5—C5A—C10A—C10B35.1 (3)
C1—C2—C3—C3A25.9 (3)C6—C5A—C10A—C10B85.5 (3)
C2—C3—C3A—C4155.8 (2)C12—C5A—C10A—C1082.1 (3)
C17—C3—C3A—C477.2 (3)C5—C5A—C10A—C10160.9 (2)
C2—C3—C3A—C1577.4 (3)C6—C5A—C10A—C1040.2 (3)
C17—C3—C3A—C1549.7 (3)C10—C10A—C10B—C3A179.1 (2)
C2—C3—C3A—C10B40.4 (3)C5A—C10A—C10B—C3A49.7 (3)
C17—C3—C3A—C10B167.5 (3)C10—C10A—C10B—C155.4 (3)
C15—C3A—C4—C560.2 (3)C5A—C10A—C10B—C1175.1 (2)
C10B—C3A—C4—C562.4 (3)C4—C3A—C10B—C10A63.6 (3)
C3—C3A—C4—C5174.8 (2)C15—C3A—C10B—C10A58.3 (3)
C3A—C4—C5—C5A54.7 (3)C3—C3A—C10B—C10A172.2 (2)
C4—C5—C5A—C12161.1 (2)C4—C3A—C10B—C1165.1 (2)
C4—C5—C5A—C683.6 (3)C15—C3A—C10B—C173.0 (3)
C4—C5—C5A—C10A39.9 (3)C3—C3A—C10B—C140.9 (3)
C12—C5A—C6—C782.6 (3)C2—C1—C10B—C10A155.3 (3)
C5—C5A—C6—C7165.1 (3)C2—C1—C10B—C3A25.3 (3)
C10A—C5A—C6—C741.2 (4)C13—O3—C12—C5A154.3 (2)
O1—O2—C7—C848.3 (3)C5—C5A—C12—O369.1 (3)
O1—O2—C7—C680.6 (3)C6—C5A—C12—O3177.0 (2)
C5A—C6—C7—O285.8 (3)C10A—C5A—C12—O352.8 (3)
C5A—C6—C7—C840.0 (4)C12—O3—C13—O40.2 (5)
O2—C7—C8—C951.4 (4)C12—O3—C13—C14179.9 (3)
C6—C7—C8—C974.6 (4)C16—O6—C15—O52.0 (4)
O2—C7—C8—C11129.2 (3)C16—O6—C15—C3A176.7 (3)
C6—C7—C8—C11104.8 (4)C4—C3A—C15—O5143.0 (3)
C7—C8—C9—C101.0 (4)C10B—C3A—C15—O523.9 (4)
C11—C8—C9—C10179.7 (3)C3—C3A—C15—O585.9 (3)
O2—O1—C10—C951.2 (3)C4—C3A—C15—O638.5 (3)
O2—O1—C10—C10A79.1 (3)C10B—C3A—C15—O6157.5 (2)
C8—C9—C10—O150.8 (4)C3—C3A—C15—O692.6 (3)
C8—C9—C10—C10A77.4 (4)C2—C3—C17—C18172.8 (3)
O1—C10—C10A—C10B41.0 (3)C3A—C3—C17—C1865.2 (4)
C9—C10—C10A—C10B167.1 (3)C2—C3—C17—C1948.4 (4)
O1—C10—C10A—C5A86.6 (3)C3A—C3—C17—C19170.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5B···O30.972.392.877 (3)110
C10A—H10A···O30.982.332.848 (3)112
C10B—H10B···O10.982.432.778 (3)101

Experimental details

Crystal data
Chemical formulaC23H34O6
Mr406.5
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)7.7014 (1), 12.1234 (3), 23.2773 (6)
V3)2173.34 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.24 × 0.24 × 0.02
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5538, 3052, 2499
Rint0.031
(sin θ/λ)max1)0.675
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.127, 1.08
No. of reflections3052
No. of parameters269
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.16

Computer programs: COLLECT (Nonius, 1998), DENZO-SMN (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5B···O30.972.392.877 (3)110
C10A—H10A···O30.982.332.848 (3)112
C10B—H10B···O10.982.432.778 (3)101
 

Acknowledgements

LAL thanks the Fondo Nacional de Desarrollo Científico y Tecnológico de Chile for grant No. 1060339. The authors thank the Spanish Research Council (CSIC) for the provision of a free-of-charge licence for use of the Cambridge Structural Database.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAraya, J. E., Neira, I., da Silva, S., Mortara, R. A., Manque, P., Cordero, E., Sagua, H., Loyola, A., Bórquez, J., Morales, G. & González, J. (2003). Mem. Inst. Oswaldo Cruz Rio de Janeiro, 98, 413–418.  CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLoyola, L. A., Bórquez, J., Morales, G., San-Martín, A., Darias, J., Flores, N. & Giménez, A. (2004). Phytochemistry, 65, 1931–1935.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLoyola, L. A., Morales, G., Perales, A. & Rodríguez, B. (1990). Tetrahedron, 46, 5413–5420.  CSD CrossRef CAS Web of Science Google Scholar
First citationMunizaga, C. & Gunkel, H. (1958). Notas etnobotánicas del pueblo de Socaire. Publicación No. 5. Universidad de Chile.  Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds