organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-N-(2-meth­oxy­phen­yl)-4,5-di­methyl­thio­phene-3-carboxamide

aDepartment of Engineering Physics, HKBK College of Engineering, Nagawara, Bangalore 560 045, Karnataka, India, bDepartment of Physics, Bangalore University, Bangalore 560 056, Karnataka, India, cPES College of Pharmacy, Hanumanthanagar, Bangalore 560 050, Karnataka, India, and dDepartment of Chemistry, Karnatak University, Dharwad 580 003, Karnataka, India
*Correspondence e-mail: prmkkgroup@gmail.com

(Received 5 June 2008; accepted 16 June 2008; online 21 June 2008)

In the title compound, C14H16N2O2S, the two aromatic rings make a dihedral angle of 13.9 (1)°. The crystal structure is stabilized by both inter- and intra­molecular N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds.

Related literature

For related literature, see: Gewald et al. (1966[Gewald, K., Schinke, E. & Botcher, H. (1966). Chem. Ber. 99, 94-100.]); Cohen et al. (1977[Cohen, V. I., Rist, N. & Duponchel, C. (1977). J. Pharm. Sci. 66, 1332-1334.]); Csaszar & Morvay (1983[Csaszar, J. & Morvay, J. (1983). Acta Pharm. Hung. 53, 121-128.]); Lakshmi et al. (1985[Lakshmi, V. V., Sridhar, P. & Polsa, H. (1985). Indian J. Pharm. Sci. 23, 327-336.]); Mohan & Saravanan (2003[Mohan, S. & Saravanan, J. (2003). Asian J. Chem. 15, 67-70.]); Bruns et al. (1990[Bruns, R. F., Fergus, J. H., Coughenour, L. L., Courtland, G. E., Pugsley, T. A., Dodd, J. H. & Tinney, F. J. (1990). Mol. Pharmacol. 38, 950-958.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16N2O2S

  • Mr = 276.35

  • Monoclinic, P 21 /n

  • a = 8.606 (2) Å

  • b = 7.5193 (19) Å

  • c = 21.297 (5) Å

  • β = 100.599 (5)°

  • V = 1354.7 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 291 (2) K

  • 0.45 × 0.35 × 0.28 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.908, Tmax = 0.937

  • 9834 measured reflections

  • 2514 independent reflections

  • 1503 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.142

  • S = 0.99

  • 2514 reflections

  • 175 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.86 2.15 2.724 (3) 124
N1—H1B⋯O1i 0.86 2.23 3.009 (4) 151
N2—H2⋯O2 0.86 2.15 2.565 (3) 109
C8—H8⋯O1 0.93 2.30 2.874 (4) 119
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Thiophene derivates containing amino and carboxyl functions have been found to exhibit anti-viral, antiinflamatory and antimicrobial activities (Mohan & Saravanan, 2003). Specifically the 2-amino-carboxylic acid esters were recognized as allosteric enhancers for A1 adenosine receptors (Bruns et al., 1990).

Interaction of 3-(2-thienyl alanine) with human phenyl alanine has been studied with a view to understand the mechanism of catalysis and substrate activation. Diffraction studies on bis 5-bromo-2-substituted thiophene derivatives have revealed the existence of S—S stacking interactions. Our earlier investigations on the structures of the biologically active thiophene carboxamide, has shown that the chloro substitution in the aryl amide group had a significant effect. The ortho-chloro group reversed the orientation of the amide linkage and favoured the formation of more intra molecular hydrogen bonds. The para-chloro substitution induces stabilizing effects via inter molecular hydrogen bonds. The compound in the present study bears a close structural relationship with the reported allosteric enhancers for adenosine and hence the structure has been investigated.

The molecular structure and the packing diagram are shown in Fig. 1 and 2, respectively. The molecular structure is stabilized by intra molecular C—H···O, N—H···O hydrogen bonds and intermolecular N—H···O interactions. (Table 2) The intra molecular C8 - H8···O1 and N1 - H1···O1 hydrogen bonds form pseudo- six membered rings and N2 - H2···O2 forms a pseudo five membered ring thus locking the molecular conformation and eliminating conformational flexibility.

Related literature top

For related literature, see: Gewald et al. (1966); Cohen et al. (1977); Csaszar & Morvay (1983); Lakshmi et al. (1985); Mohan & Saravanan (2003); Bruns et al. (1990).

Experimental top

The title compound was synthesized by mixing of ethyl methyl ketone (0.72 g, 0.01 mol) and o-methoxycyanoacetanilide (1.94 g, 0.01 mol) and refluxing the mixture for 1 h (Gewald et al., 1966) in the presence of 4.0 ml of diethylamine. Sulfur powder (1.28 g, 0.04 mol) and 40 ml ethanol were then added and the resulting solution was heated for 2 h at 323 K. Crystals were grown by slow evaporation in a solution of isopropyl alcohol (yield 50%).

Refinement top

H atoms were positioned geometrically [N—H = 0.86 Å, and C— H = 0.93 (CH), 0.97 (CH2) and 0.96 Å (CH3)] and constrained to ride on their parent atoms with Uiso(H) values of 1.2 (1.5 for methyl) times Ueq(C, N). A rotating group model was used for the methyl groups.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.Dashed lines indicate intramolecular hydrogen bonds; H atoms not involved in hydrogen bonding have been omitted.
[Figure 2] Fig. 2. The packing of (I), viewed down the a axis shows molecules connected by N—H···O hydrogen bonds (dashedlines). H atoms not involved in hydrogen bonding have been omitted.
2-Amino-N-(2-methoxyphenyl)-4,5-dimethylthiophene-3-carboxamide top
Crystal data top
C14H16N2O2SF(000) = 584
Mr = 276.35Dx = 1.355 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ynCell parameters from 670 reflections
a = 8.606 (2) Åθ = 2.0–28.5°
b = 7.5193 (19) ŵ = 0.24 mm1
c = 21.297 (5) ÅT = 291 K
β = 100.599 (5)°Block, yellow
V = 1354.7 (6) Å30.45 × 0.35 × 0.28 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2514 independent reflections
Radiation source: fine-focus sealed tube1503 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ψ and ω scansθmax = 25.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.908, Tmax = 0.937k = 99
9834 measured reflectionsl = 2523
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0749P)2]
where P = (Fo2 + 2Fc2)/3
2514 reflections(Δ/σ)max = 0.001
175 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C14H16N2O2SV = 1354.7 (6) Å3
Mr = 276.35Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.606 (2) ŵ = 0.24 mm1
b = 7.5193 (19) ÅT = 291 K
c = 21.297 (5) Å0.45 × 0.35 × 0.28 mm
β = 100.599 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2514 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1503 reflections with I > 2σ(I)
Tmin = 0.908, Tmax = 0.937Rint = 0.051
9834 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 0.99Δρmax = 0.25 e Å3
2514 reflectionsΔρmin = 0.18 e Å3
175 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2740 (3)0.5092 (4)0.74695 (12)0.0593 (8)
H1A0.20560.55820.76620.071*
H1B0.24360.45700.71090.071*
N20.4683 (3)0.6863 (3)0.93475 (11)0.0480 (7)
H20.56460.65120.94550.058*
O10.2675 (3)0.7169 (3)0.85124 (9)0.0630 (7)
O20.6570 (3)0.7367 (3)1.04138 (10)0.0676 (7)
S10.56490 (10)0.41424 (12)0.73395 (4)0.0535 (3)
C20.4302 (3)0.5144 (4)0.77352 (13)0.0420 (7)
C30.5040 (3)0.5902 (4)0.83034 (12)0.0377 (7)
C40.6745 (3)0.5669 (4)0.84070 (13)0.0398 (7)
C50.7229 (3)0.4775 (4)0.79298 (15)0.0467 (7)
C60.4057 (3)0.6700 (4)0.87196 (14)0.0420 (7)
C70.3992 (4)0.7521 (4)0.98507 (14)0.0473 (8)
C80.2397 (4)0.7879 (4)0.98133 (16)0.0627 (9)
H80.16940.77260.94300.075*
C90.1854 (5)0.8470 (5)1.0354 (2)0.0760 (11)
H90.07840.87051.03320.091*
C100.2894 (6)0.8706 (5)1.09189 (19)0.0783 (12)
H100.25190.90961.12780.094*
C110.4478 (5)0.8375 (4)1.09617 (16)0.0681 (11)
H110.51740.85491.13460.082*
C120.5028 (4)0.7782 (4)1.04318 (14)0.0528 (8)
C130.7904 (4)0.6333 (4)0.89802 (14)0.0574 (9)
H13A0.78490.55900.93420.086*
H13B0.76420.75340.90740.086*
H13C0.89550.62980.88890.086*
C140.8866 (4)0.4251 (5)0.78467 (17)0.0650 (9)
H14A0.96300.49700.81190.097*
H14B0.89700.44280.74100.097*
H14C0.90430.30210.79580.097*
C150.7716 (5)0.7639 (6)1.09758 (16)0.0876 (13)
H15A0.77540.88791.10860.131*
H15B0.87330.72651.09020.131*
H15C0.74350.69591.13200.131*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0488 (17)0.082 (2)0.0435 (15)0.0024 (14)0.0015 (13)0.0087 (14)
N20.0424 (14)0.0643 (17)0.0367 (14)0.0069 (12)0.0056 (12)0.0021 (12)
O10.0517 (14)0.0900 (18)0.0449 (13)0.0223 (12)0.0019 (11)0.0006 (12)
O20.0649 (16)0.0908 (18)0.0437 (13)0.0020 (14)0.0012 (12)0.0051 (12)
S10.0587 (6)0.0575 (5)0.0451 (5)0.0032 (4)0.0117 (4)0.0088 (4)
C20.0434 (17)0.0445 (16)0.0374 (16)0.0041 (14)0.0055 (14)0.0028 (13)
C30.0402 (17)0.0392 (15)0.0327 (15)0.0016 (13)0.0043 (13)0.0021 (13)
C40.0418 (17)0.0356 (15)0.0410 (17)0.0004 (13)0.0051 (13)0.0033 (13)
C50.0457 (18)0.0442 (17)0.0508 (18)0.0008 (14)0.0106 (15)0.0013 (14)
C60.0418 (18)0.0429 (17)0.0395 (17)0.0021 (14)0.0031 (14)0.0067 (13)
C70.058 (2)0.0443 (18)0.0433 (18)0.0022 (15)0.0187 (16)0.0033 (14)
C80.067 (2)0.070 (2)0.055 (2)0.0124 (18)0.0222 (18)0.0090 (18)
C90.083 (3)0.075 (3)0.081 (3)0.024 (2)0.044 (2)0.020 (2)
C100.126 (4)0.061 (2)0.060 (3)0.019 (2)0.046 (3)0.0082 (19)
C110.109 (3)0.055 (2)0.044 (2)0.002 (2)0.023 (2)0.0019 (16)
C120.075 (2)0.0466 (18)0.0370 (18)0.0016 (17)0.0123 (17)0.0028 (14)
C130.0458 (19)0.068 (2)0.055 (2)0.0007 (16)0.0024 (16)0.0063 (17)
C140.056 (2)0.066 (2)0.075 (2)0.0058 (18)0.0185 (19)0.0091 (19)
C150.088 (3)0.123 (3)0.044 (2)0.026 (3)0.010 (2)0.007 (2)
Geometric parameters (Å, º) top
N1—C21.360 (3)C7—C81.387 (5)
N1—H1A0.8600C8—C91.392 (5)
N1—H1B0.8600C8—H80.9300
N2—C61.352 (3)C9—C101.373 (5)
N2—C71.407 (4)C9—H90.9300
N2—H20.8600C10—C111.373 (5)
O1—C61.241 (3)C10—H100.9300
O2—C121.370 (4)C11—C121.376 (4)
O2—C151.419 (4)C11—H110.9300
S1—C21.727 (3)C13—H13A0.9600
S1—C51.740 (3)C13—H13B0.9600
C2—C31.382 (4)C13—H13C0.9600
C3—C41.454 (4)C14—H14A0.9600
C3—C61.462 (4)C14—H14B0.9600
C4—C51.347 (4)C14—H14C0.9600
C4—C131.512 (4)C15—H15A0.9600
C5—C141.504 (4)C15—H15B0.9600
C7—C121.399 (4)C15—H15C0.9600
C2—N1—H1A120.0C8—C9—H9119.9
C2—N1—H1B120.0C10—C9—H9119.9
H1A—N1—H1B120.0C11—C10—C9120.9 (4)
C6—N2—C7129.6 (3)C11—C10—H10119.5
C6—N2—H2115.2C9—C10—H10119.5
C7—N2—H2115.2C10—C11—C12119.5 (4)
C12—O2—C15118.0 (3)C10—C11—H11120.3
C2—S1—C591.95 (14)C12—C11—H11120.3
N1—C2—C3129.5 (3)O2—C12—C11125.3 (3)
N1—C2—S1119.1 (2)O2—C12—C7114.0 (3)
C3—C2—S1111.4 (2)C11—C12—C7120.8 (3)
C2—C3—C4111.8 (3)C4—C13—H13A109.5
C2—C3—C6118.4 (2)C4—C13—H13B109.5
C4—C3—C6129.6 (2)H13A—C13—H13B109.5
C5—C4—C3112.9 (3)C4—C13—H13C109.5
C5—C4—C13121.6 (3)H13A—C13—H13C109.5
C3—C4—C13125.4 (3)H13B—C13—H13C109.5
C4—C5—C14130.2 (3)C5—C14—H14A109.5
C4—C5—S1111.9 (2)C5—C14—H14B109.5
C14—C5—S1117.9 (2)H14A—C14—H14B109.5
O1—C6—N2120.5 (3)C5—C14—H14C109.5
O1—C6—C3121.6 (3)H14A—C14—H14C109.5
N2—C6—C3117.9 (2)H14B—C14—H14C109.5
C12—C7—N2115.7 (3)O2—C15—H15A109.5
C12—C7—C8119.1 (3)O2—C15—H15B109.5
N2—C7—C8125.2 (3)H15A—C15—H15B109.5
C9—C8—C7119.6 (4)O2—C15—H15C109.5
C9—C8—H8120.2H15A—C15—H15C109.5
C7—C8—H8120.2H15B—C15—H15C109.5
C8—C9—C10120.2 (4)
C5—S1—C2—N1179.1 (2)C4—C3—C6—O1163.3 (3)
C5—S1—C2—C31.1 (2)C2—C3—C6—N2157.1 (3)
N1—C2—C3—C4179.5 (3)C4—C3—C6—N218.8 (4)
S1—C2—C3—C40.8 (3)C6—N2—C7—C12170.1 (3)
N1—C2—C3—C63.9 (5)C6—N2—C7—C811.3 (5)
S1—C2—C3—C6175.8 (2)C12—C7—C8—C90.7 (5)
C2—C3—C4—C50.1 (3)N2—C7—C8—C9177.8 (3)
C6—C3—C4—C5176.3 (3)C7—C8—C9—C100.4 (5)
C2—C3—C4—C13179.9 (3)C8—C9—C10—C110.3 (6)
C6—C3—C4—C133.8 (5)C9—C10—C11—C120.6 (5)
C3—C4—C5—C14179.9 (3)C15—O2—C12—C113.0 (5)
C13—C4—C5—C140.1 (5)C15—O2—C12—C7178.2 (3)
C3—C4—C5—S11.0 (3)C10—C11—C12—O2178.6 (3)
C13—C4—C5—S1179.1 (2)C10—C11—C12—C70.3 (5)
C2—S1—C5—C41.2 (2)N2—C7—C12—O20.7 (4)
C2—S1—C5—C14179.7 (3)C8—C7—C12—O2179.4 (3)
C7—N2—C6—O10.1 (5)N2—C7—C12—C11178.3 (3)
C7—N2—C6—C3177.8 (3)C8—C7—C12—C110.4 (5)
C2—C3—C6—O120.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.862.152.724 (3)124
N1—H1B···O1i0.862.233.009 (4)151
N2—H2···O20.862.152.565 (3)109
C8—H8···O10.932.302.874 (4)119
Symmetry code: (i) x+1/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC14H16N2O2S
Mr276.35
Crystal system, space groupMonoclinic, P21/n
Temperature (K)291
a, b, c (Å)8.606 (2), 7.5193 (19), 21.297 (5)
β (°) 100.599 (5)
V3)1354.7 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.45 × 0.35 × 0.28
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.908, 0.937
No. of measured, independent and
observed [I > 2σ(I)] reflections
9834, 2514, 1503
Rint0.051
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.142, 0.99
No. of reflections2514
No. of parameters175
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.18

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.86002.15002.724 (3)124.00
N1—H1B···O1i0.86002.23003.009 (4)151.00
N2—H2···O20.86002.15002.565 (3)109.00
C8—H8···O10.93002.30002.874 (4)119.00
Symmetry code: (i) x+1/2, y1/2, z+3/2.
 

Acknowledgements

The authors are grateful to Professor T. N. Guru Row, Indian Institute of Science, and the Department of Science and Technology, India, for the data collection using the CCD facility, and Bangalore University. CK thanks the Management, Administrator and Principal of HKBK College of Engineering for encouragement and support.

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruns, R. F., Fergus, J. H., Coughenour, L. L., Courtland, G. E., Pugsley, T. A., Dodd, J. H. & Tinney, F. J. (1990). Mol. Pharmacol. 38, 950–958.  CAS PubMed Web of Science Google Scholar
First citationCohen, V. I., Rist, N. & Duponchel, C. (1977). J. Pharm. Sci. 66, 1332–1334.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCsaszar, J. & Morvay, J. (1983). Acta Pharm. Hung. 53, 121–128.  CAS PubMed Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGewald, K., Schinke, E. & Botcher, H. (1966). Chem. Ber. 99, 94–100.  CrossRef CAS Web of Science Google Scholar
First citationLakshmi, V. V., Sridhar, P. & Polsa, H. (1985). Indian J. Pharm. Sci. 23, 327–336.  Google Scholar
First citationMohan, S. & Saravanan, J. (2003). Asian J. Chem. 15, 67–70.  CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds